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Summary This study sought to determine the time- 
course of development of reduced nerve laser Doppler 
flux in experimental diabetes and the effect on this 
anomaly of insulin treatment. In addition, we aimed to 
compare nerve laser Doppler flux in streptozotocin- 
and genetically-diabetic BB rat models. Sciatic nerve 
laser Doppler flux in diabetic rats was variable during 
the 2days following streptozotocin injection; from 
day 4, when the measurement was 80% of control, 
fluxes fell steadily and formed a plateau at 40 % of con- 
trol values after 4 weeks of diabetes. In a second study, 
using rats with 4-week streptozotocin-'diabetes, sciatic 
nerve laser Doppler flux was reduced to 44 % of the 
value measured in control rats. Treatment of a parallel 
group of diabetic rats with insulin, by sustained release 
implants, prevented this ischaemia, so that nerve laser 
Doppler flux was 91% of controls. Nerve Doppler flux 
in BB rats with 6-week genetic diabetes was 57 % of a 
control (non-diabetic) BB group. There were no dif- 

ferences in mean arterial pressures between control 
and diabetic rats in any of the studies. Heart  rates of 
control and insulin-treated diabetic animals were 
higher than those of the untreated diabetic group; in 
the other studies heart rates of diabetic animals were 
numerically lower than controls, but not significantly 
so. These observations suggest that sciatic nerves of 
rats with short-term diabetes, whether induced with 
streptozotocin or of genetic origin, are markedly is- 
chaemic and that this ischaemia in streptozotocin- 
diabetes is evident within a week of diabetes onset, 
forms a plateau after 4 weeks and is maintained for at 
least 2 months. The findings also indicate that treat- 
ment of short-term diabetes with insulin can prevent 
nerve ischaemia. [Diabetologia (1994) 37: 4348]  
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Reduced nerve conduction velocity, together with 
exaggerated resistance to anoxia are characteristic of 
both experimental and clinical diabetes mellitus [1]. 
The development of these anomalies is associated with 
both poor blood glucose control and long duration of 
diabetes [2, 3], as well as genetic and other factors [4]. 
The aetiology of nerve disorders is still unclear, al- 
though current hypotheses offer both biochemical and 
vascular explanations. The former are concerned with 
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increased glucose flux through the polyol pathway and, 
thus, extensive investigation into the potential benefit 
of blocking aldose reductase, the first enzyme of this 
pathway, has been pursued. Some inhibitors have 
prevented conduction abnormalities in experimental 
diabetes, but clinical effects have been minimal (see [5] 
for review). Neurovascular insufficiency, leading to 
nerve ischaemia, has been implicated in the second 
group of hypotheses. This is supported by findings of 
reduced endoneurial nutritive flow in experimental 
diabetes [6, 7] and by low nerve oxygen tension in both 
diabetic animals [6] and patients [8]. Further support 
comes from the demonstration that maintenance of 
persistent central hypoxaemia in non-diabetic rats 
causes a nerve conduction deficit of similar magnitude 
to that seen in diabetic rats [9]. Pharmacological inter- 
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vent ion aimed at improving nerve blood flow is also, 
therefore,  rat ional  for prevent ion  of nerve functional  
abnormalities.  Indeed,  studies with compounds  which 
are likely to a t tenuate  vasoconstrict ion,  such as guane- 
thidine [7], lisinopril [10] and prazosin [11], have 
prevented  slowed conduct ion in experimental  dia- 
betes. Trea tment  of  diabetic rats with evening prim- 
rose oil has also a t tenuated these anomalies [12, 13], as 
well as prevent ing diabetes- induced ischaemia [14]. 

We have previously measured  nerve laser Dopp le r  
flux (nerve b lood  flux) as a pa ramete r  of nerve b lood  
flow and demons t ra ted  a 50 % reduct ion in s treptozo- 
tocin-diabetes [14]. The present  study was designed to 
follow the t ime-course of  deve lopment  of  this abnor-  
mality and to determine the effect of t rea tment  with in- 
sulin, delivered via sustained release implants for strict 
glycaemic control,  on  the diabetes- induced nerve 
b lood flux deficit. We have also compared  nerve b lood  
flux in s t reptozotocin-  and BB-diabet ic  rats. 

Materials and methods 

Experimental organization 

Three separate studies are described; the first two of which used 
male Wistar rats (290-360 g; 9-13 weeks of age; Charles River 
(UK) Ltd., Margate, UK) and the third of which used BB (Bio- 
breeding) Wistar rats (Southampton University, Southampton, 
UK). In the first two studies (a time-course experiment and an 
insulin study) diabetes was induced with streptozotocin. Rats 
were fasted overnight and, early the following morning, given a 
single intraperitoneal injection of 50 mg.kg -1 streptozotocin 
(ICI Pharmaceuticals, Macclesfield, UK) freshly dissolved in 
sterile saline (0.9 % weight/volume aqueous NaC1). Two days 
later, blood samples were obtained by tail prick from the strepto- 
zotocin-treated rats and blood glucose concentration was 
measured by strip-operated reflectance photometry (Reflolux, 
Boehringer Mannheim, Mannheim, Germany). All the animals 
had blood glucose concentration greater than 15 mmol/1 and 
were included in the studies. 

The first study examined the time-course of development of 
nerve blood flux deficit in streptozotocin-diabetes, using un- 
treated control and diabetic rats for time-points over a total of 
8 weeks. 

The aim of the second experiment was to determine the ef- 
fect of treatment with insulin on diabetes-induced changes in 
nerve blood flux. The control group and one group of diabetic 
rats were left untreated. Immediately after confirmation of 
diabetes, in a second group of diabetic rats, two sustained release 
insulin implants (Linplant; Mr Ejby, Denmark; release 
rate 2 IU/day/implant for more than 40 days), were inserted sub- 
cutaneously, under halothane anaesthesia, in the back of the 
neck of each rat. Blood glucose concentration was measured at 
least weekly and in the second week of the study a 24-h blood 
glucose profile was monitored in two parts separated by 5 days. 

The third study used BB non-diabetic and diabetic rats, with 
mean ( + SD) age at death of 151 • 41 and 132 _+ 31 days, respec- 
tively. Diabetic animals had a mean ( + SD) duration of diabetes 
of 45 + 25 days and had been maintained throughout the proto- 
col on a thrice-weeNy insulin regime, using a long-acting heat- 
treated Ultralente preparation (Novo Industri A/S, Copen- 
hagen, Denmark) [15] designed for minimal glycaemic control. 
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All rats were weighed at least weekly. Immediately prior to 
experiment, blood glucose levels were again tested. After death, 
whole blood and plasma samples were collected for later deter- 
ruination of glycated haemoglobin levels and glucose content, 
by spectrophotometric assay (GOD-PERID test; Boehringer 
Mannheim), respectively. 

Sciatic nerve Doppler flux 

Animals were anaesthetised initially with halothane (4 % in 0 2 

for induction, 2-2.5 % for maintenance) and a left jugular venous 
catheter inserted for infusion of alphaxalone 9 mg/ml and alpha- 
dolone acetate 3 mg/ml (Saffan; Pitman-Moore Ltd, Uxbridge, 
UK). The manufacturer's solution was diluted 1 : 3 with 0.9 % 
NaC1 and an initial dose of 4 mg/kg body weight of this dilution 
was given on removal of the rats from the halothane source; the 
solution was infused slowly as the halothane was breathed off. 
Anaesthesia was maintained by continuous infusion of a 1 : 6 sol- 
ution of alphaxalone/alphadolone at a rate of 12 mg/h. The left 
carotid artery was cannulated (PVC Intravenous Cannula- outer 
diameter 1.34 mm. inner diameter 1.00 mm; Portex. Hythe, UK) 
and connected to a transducer (Type 4-327 L221: Bell & Howell, 
Basingstoke. UK) for measurement of systemic arterial pres- 
sure and heart rate. Via a small incision in the left flank the sciatic 
nerve was exposed. A fibre optic flow probe (Type P4: tip 
diameter 0.85 mm; Moor Instruments. Axminster, UK) was 
manoeuvred using a X-Y-Z micropositioner (Prior Scientific In- 
struments. Bishop's Stortford, UK) until it was just in contact with 
the nerve and Doppler flux was registered on the flow monitor 
(Type MBF3D: Moor Instruments). Measurements were made 
from each nerve by withdrawal and repositioning of the probe 
between each. This was repeated until three measurements 
of similar proportions were obtained (in practice these were 
usually the first and only three). Both systemic pressure and nerve 
blood flux outputs were amplified via a MacLab Bridge Amp 
(AD Instruments Ltd., London, UK), digitized (MacLab/8 In- 
terface Module; AD Instruments), displayed and recorded simul- 
taneously using MacLab "Chart" software (AD Instruments) 
with a Macintosh personal computer and monitor (supplied as 
above). Values for all cardiovascular variables were averaged 
over a 2-min recording period. Body temperature for all rats 
was maintained at 37.7 + 0.5 ~ via homeothermic blanket (Har- 
vard Apparatus Ltd.. Edenbridge, UK), with biofeedback by 
rectal probe. Rats were killed without recovery from anaesthesia. 

Statistical analysis 

Data are presented as mean + 1 SD. For the insulin study, statis- 
tical analyses were carried out by one way analysis of variance 
(ANOVA). Where the F ratio gave p < 0.05, and where there 
was homogeneity of variance (Cochrans & Bartlett Box, 
p > 0.05), comparisons between individual group means were 
made using Duncan's Multiple Range Test at significance levels 
ofp < 0.05 and p < 0.01. Diabetic BB rats were compared with 
their controls by unpaired t-test. 

Results 

Animals 

In the t ime-course study, immediately  following strep- 
tozotocin  injection rats lost weight and were hypergly- 
caemic; the severity of  the diabetic state in these ani- 



E. J. Stevens et al.: Nerve ischaemia in diabetic rats 

mals progressed with time, as i l lustrated by  the t rends 
shown in Figure 1. Final body  weights were  (mean  
+ 1 SD) 467 + 79 g for  control  rats and 325 + 40 g for 
diabetic rats. A t  the end of  protocols  in the o ther  
studies, un t rea ted  s t reptozotocin-diabet ic  rats and 
diabetic BB rats had characterist ically reduced  body  
weights, toge ther  with elevated b lood  glucose, plasma 
glucose and glycated haemoglob in  levels, compared  to 
their  respect ive controls (Table 1). In Study 2, treat-  
ment  of diabetic animals with insulin p reven ted  these 
anomalies (Table 1). 

Efficacy of  insulin treatment 

The  strict glycaemic control  obta ined  with insulin im- 
plants in diabetic animals was demons t ra ted  by the 
compar ison of insulin-treated diabetic rats with con- 
trols, showing similar final weights, plasma glucose 
and glycated haemoglobin  levels (Table 1) and by the 
narrow range of b lood glucose values measured  
th roughout  a typical 24-h per iod  (Fig. 2). 

Sciatic nerve Doppler flux 
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pa red  to those of controls,  although, after  8 weeks of 
diabetes,  differences be tween  these groups were not  
seen. 

Study 2. Figure 3 shows individual animal data points 
with group means  + 1 SD f rom this study. A 66 % re- 
duct ion in Dopp le r  flux was seen in sciatic nerves  of un- 
t rea ted  diabetic animals compared  to those of controls.  
Fluxes in nerves of insulin-treated diabetic rats were  
only marginally lower  than  those of  the control  group 
(91% of  control  mean  and the difference was not  signi- 
ficantly different) ,  indicating substantial  p reven t ion  of 
the diabetes-associated decrease. Th e re  were  no dif- 
ferences be tween  group mean  arterial  pressures 
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Study 1. Individual  nerve  Dopp le r  flux and hear t  ra te  
values for  rats in the t ime-course  study are shown in 
Figure 1. Nerve  fluxes in control  animals fell only @ 
slightly over  the 8-week protocol .  In diabetic animals, o 30 
nerve  Dopp le r  flux was variable during the 2 days ~ I~|176 0 
after  s t reptozotocin  injection; however,  f rom day4 ,  ~20-~% 0 0  
when  the flux in diabetic rats was 80% of control ,  zo ~~ t 
measurements  fell steadily and appeared  to plateau ~ t*** ** 
at 40% of  control  values af ter  4 weeks of diabetes,  v 0 1 . . . . . .  
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Mean  arterial  pressures of  control  and diabetic ani- ~ Day 
mals were  not  different  (mean  + 1 SD in mm Hg were  
107 + 11 and 110 + 9, respectively).  F rom day 4, hear t  
rates of diabetic animals were  reduced  when  com- 
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Fig.1. Time course of development of changes in nerve laser 
Doppler flux, blood glucose and heart rate in diabetes. Individua ! 
points show values for each rat. Control rats, � 9  diabetic rats, O 

Table 1. Body weight, final plasma glucose, glycated haemoglobin, mean arterial pressure, heart rate and sciatic nerve Doppler flux 
from the insulin study (Study 2) and from the comparison of control and diabetic BB rats (Study 3) 

Body weight (g) Plasma Glycated Mean arterial Heart rate Nerve Dopp- 
Initial Final glucose haemoglo- pressure (beats/min) ler flux (arbi- 

(mmol/1) bin (%) (ram Hg) trary units) 

Study 2 
Control (10) 321 _+ 19 455 + 31 

NS p < 0.01 
Diabetic (9) 321 + 19 361 + 38 

NS p < 0.05 
Diabetic-insulin (10) 322 + 17 419 + 99 

Study 3 
Control BB (11) NM 344 + 95 

p < 0.05 
Diabetic BB (8) NM 269 + 39 

8.6+0.9 3.7_+ 0.7 114+5.9 426+97 435+53 
p < 0.01 p < 0.01 NS NS p < 0.01 
33.4+6.7 7.5+1.9 112+6.4 355+84 193+62 
p < 0.01 p < 0.01 NS p < 0.05 p < 0.01 

8.0 + 5.5 4.3 + 0.7 109 + 13.6 479 + 128 396 + 62 

8.2 + 1.6 4.0 + 1.2 108 + 11 329 + 62 336 + 118 
p < 0.01 ' p < 0.05 NS NS p < 0.01 
30.5 + 4.3 7.3 + 1.8 106 + 11 296 + 40 190 + 53 

Data are mean + 1 SD; numbers of rats are in parentheses. Data 
from Study 2 were analysed by one-way analysis of variance with 
Duncan's multiple range tests. Study 3 data were compared 

(control vs diabetic) by unpaired t-tests. Allp values indicate dif- 
ferences between data immediately above and below. NS, Not 
significant; NM, not measured 
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Fig. 2. Twenty-four hour profiles of blood glucose in the group of 
streptozotocin-diabetic rats given sustained insulin delivery im- 
plants. �9 represent a continuous set of data obtained over one 
night; O represent daytime data obtained 5 days later�9 Upper 
limit bars represent calculated standard deviations, though since 
the data were clearly positively skewed, they are included only to 
give a rough indication of scatter 

Control 

Diabetic 
untreated 

Diabetic 
insulin 

Sciatic nerve Doppler flux (arbitrary units) 
0 200 400 600 

, I , I f I , I ~ I , 

8 ~ - ~  oo 

Fig. 3. Effects of diabetes and of treatment with insulin on sciatic 
nerve laser Doppler flux. Individual points show nerve Doppler 
flux for each rat, bars indicate group means and boxes show 
+1 SD 

(Table 1). Heart  rates of control and insulin-treated 
diabetic animals were higher than those of the remain- 
ing diabetic groups (Table 1). 

Study 3. Group means + 1 SD for nerve Doppler  flux, 
mean arterial pressure and heart rate for BB rats are 
shown in Table 1. Fluxes for diabetic rats were similar 
to those found in animals with 2 to 8 weeks of strepto- 
zotocin-diabetes and were 57 % of their respective con- 
trol levels. The mean nerve Doppler  flux for non- 
diabetic BB rats was slightly lower than that registered 
in control Wistar animals. Mean heart rate was again 
numerically lower in the diabetic group, when com- 
pared to controls, but the difference was not significant�9 
There were no differences in group mean arterial pres- 
sures. 
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Discussion 

Untreated streptozotocin-injected rats suffered weight 
loss, hyperglycaemia and raised levels of glycated 
haemoglobin, characteristic of experimental Type 1 
(insulin-dependent) diabetes. The spontaneously 
diabetic BB rats also showed reduced body weight and 
increased levels of both plasma glucose and glycated 
haemoglobin, when compared to their controls. Insulin 
delivery reduced the severity of the diabetic state in 
streptozotocin-treated rats, as indicated by attenuation 
of the body weight change and normalisation of plasma 
glucose and glycated haemoglobin levels. 

The time-course study indicated that deficits in 
nerve Doppler  flux of streptozotocin-diabetic rats, 
compared to control animals, are evident within a week 
following induction of the disease, progress over the 
next 3 weeks, form a plateau at about 40 % of control 
values after 4 weeks and are sustained at this level for at 
least another 4 weeks�9 Cameron et al. [7] also found 
early changes in sciatic nerve blood flow, albeit endo- 
neurial flow, of diabetic rats, as measured by hydrogen 
clearance�9 After I week of diabetes, blood flow reduc- 
tions were slightly larger (59 % of control values) than 
those found in the present study, but remained at this 
level for 4 months�9 The hydrogen clearance technique 
may underestimate reductions in flow, due to diffusion 
of gas from the nerve during measurement [7], which 
would account for the relatively larger changes in strep- 
tozotocin-diabetes seen at later time-points in the pres- 
ent study�9 Data from both the time-course and insulin 
studies, after 4 and 8 weeks of diabetes, show marked 
reductions in fluxes of untreated diabetic animals, com- 
pared to controls; this is consistent with a mean flux of 
47 % of the control mean, in 5-week diabetic animals 
found in a previous study [14]. Similar reductions after 
1 or more months of streptozotocin-diabetes in rats 
have also been found using laser Doppler velocimetry 
[16] and other techniques for measuring both endoneu- 
rial and whole nerve blood flow [6, 17-20], although, as 
mentioned, those determined by hydrogen clearance 
may underestimate differences. One group failed to 
find reduced nerve blood flow in diabetic animals, 
using hydrogen dearance [21], although an explanation 
for this is unclear. It should also be noted that, in con- 
trast to other studies, Corbett  et al [22] and Sutera et al. 
[23], using radiolabelled microspheres to determine 
nerve perfusion, consistently found increases in flow in 
nerves of diabetic rats, compared to controls�9 This may 
reflect accumulation of label in vessels, normally of 
greater diameter than the microspheres, because of 
vascular compression due to the reported expansion of 
endoneurial space in experimental diabetes [24]. 

The limitations of laser Doppler  flux measurements 
as parameters of nerve blood flow were discussed in de- 
tail in our previous study [14], but some further con- 
sideration should be given here. Nerve Doppler  flux 
readings are not direct measures of blood flow but are 
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dependent on the number and velocity of erythrocytes 
passing the probe and, therefore, give an index of 
whole blood flow. This method does not, therefore, 
give absolute flow values, nor can flow between nerve 
compartments be distinguished. Other studies have, 
however, demonstrated linear correlations of this 
method with hydrogen clearance [25] and iodo- 
[14C]antipyrine [26] methods for measuring nerve 
blood flow at steady state. Laser Doppler  velocimetry 
is therefore recommended for relative estimations of 
nerve blood flow [25], especially in disease states [26]. 
We suggest, therefore, that observed reductions in 
Doppler flux in nerves of diabetic animals, compared 
to those of controls, are indicative of reduced sciatic 
nerve blood flow. We cannot discriminate between epi- 
neurial and endoneurial vessels, but, as endoneurial 
flow accounts for approximately 50 % of whole nerve 
flow [26] and is primarily delivered via epineurial ves- 
sels [27], reductions approaching 60 % in short-term 
diabetic rats, relative to controls, are unlikely to be due 
solely to lowered epineurial flow. It is, therefore, logical 
to suggest that the data reflect deficits in sciatic nerve 
blood flow in streptozotocin-diabetic animals and that 
decreases in endoneurial nutritive flow may have con- 
tributed. The magnitude of changes in nerve flux in ex- 
perimental diabetes are, thus, likely to indicate debili- 
tating ischaemia. This is supported by the exaggerated 
resistance to ischaemic conduction block and reduced 
nerve oxygen tension of diabetic animals [6, 28] and 
may contribute to their slowed conduction [1, 29]. It is 
possible that nerve laser Doppler  velocimetry overesti- 
mates diabetes-associated deficits in flow because of its 
dependence on movement of erythrocytes, which are 
poorly deformable in this disease [30]. 

Nerve fluxes of control animals fell only slightly over 
the 8 weeks of the time-course study, although body 
weight progressively increased (data not shown). Such 
a decline was not evident in another study, which used 
older animals for an extended protocol period [7]. It is, 
thus, unlikely that Doppler flux is related to body 
weight, which may have artifactually resulted in defi- 
cient nerve fluxes of the smaller diabetic animals. Of in- 
terest, Kihara et al. [31] have reported that nerve blood 
flow declines with increasing age due to reduced micro- 
vascular calibre, although this effect occurred over a 
longer time-course than that of the control animals 
used in this study. 

Tight glycaemic control of streptozotocin-diabetic 
rats with insulin implants prevented the diabetes-in- 
duced deficit in nerve Doppler  flux and we suggest that 
this was due to amelioration of the diabetic state. We 
should state that the respective roles of prevention of 
hyperglycaemia or of hypoinsulinaemia per se by in- 
sulin treatment are not defined. Cameron et al. [7] have 
reported reductions in nerve blood flow of rats made 
hyperglycaemic by glucose infusion which were similar 
to those of streptozotocin-diabetic animals, indicating 
hyperglycaemia as a primary cause. 
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Our final study reported decreased nerve fluxes in 6- 
week diabetic BB rats, relative to their controls, which 
was of slightly increased proportions compared to the 
changes seen in 4-week streptozotocin-diabetes. This 
indicates the presence of peripheral nerve ischaemia in 
this model of Type i diabetes, albeit of a lesser degree 
than that found in acute streptozotocin-diabetes. Al- 
though, to our knowledge, nerve blood flow of sponta- 
neously diabetic BB rats has not previously been 
measured, the finding is consistent with reported nerve 
conduction abnormalities of these animals, similar to 
those of streptozotocin-diabetic rats [32]. 

Systemic arterial pressures did not vary between 
groups suggesting that changes in sciatic nerve Doppler  
flux were due to local vasomotor anomalies in diabetes. 
These could include altered release of cyclooxygenase 
products and nitric oxide - phenomena which have 
both been demonstrated in experimental diabetes [33, 
34]. Heart  rates of control and insulin-treated diabetic 
animals were consistently higher than those of respec- 
tive groups of diabetic rats. Bradycardia of streptozo- 
tocin-diabetic rats has repeatedly been reported and 
may reflect disturbances of cardiac autonomic inner- 
vation [35, 36] or altered pacemaker potentials due, 
perhaps, to deficient Na+/K +-ATPase activity [37, 38]. 
However, as arterial pressures in diabetic animals did 
not differ from control values, it is unlikely that the 
diabetes-induced reductions in peripheral nerve blood 
flux resulted from a general vascular insufficiency. 

In summary, we suggest that reduced nerve Doppler  
flux seen in short-term diabetic animals reflects defec- 
tive nerve blood supply, indicative of an ischaemia, 
which occurs in both the streptozotocin- and sponta- 
neously-diabetic (BB) rat. In streptozotocin diabetes, 
neurovascular insufficiency presents within a week of 
onset of the disease, forms a plateau after 4 weeks and 
is maintained for at least 2 months. The data indicate 
that intensive treatment with insulin can prevent nerve 
ischaemia. 
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