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Summary Vanadium is a potent insulinomimetic 
agent. In vivo, its blood glucose lowering action in in- 
sulin-deficient diabetic rats is associated with correct- 
ed expression of genes involved in hepatic glucose 
metabolism. In this study, we investigated whether  
vanadate treatment also reverses the impaired ex- 
pression of genes coding for key enzymes of lipoge- 
nesis in diabetic liver and white adipose tissue. Oral 
administration of vanadate to streptozotocin-rats 
caused a 55 % fall in plasma glucose levels after feed- 
ing without modifying low insulinaemia. It also par- 
tially corrected the low thyroid hormone concentra- 
tions. In untreated diabetic animals, hepatic m R N A  
levels of acetyl-CoA carboxylase and fatty acid syn- 
thase were reduced by more than 80 and 90 %, re- 
spectively, in close correlation with changes in en- 
zyme activities. Three weeks of vanadate treatment 
totally restored acetyl-CoA carboxylase m R N A  and 

partially restored fatty acid synthase m R N A  (71% 
of control levels). The activities of both lipogenic en- 
zymes were increased 3.5 to 4-fold, to reach 45 to 
65 % of control values. By contrast, in white adipose 
tissue, vanadate modified neither expression nor ac- 
tivity of both lipogenic enzymes, which remained 
blunted (< 10 % of control levels). In conclusion, va- 
nadate treatment partially restores the activities of 
two key lipogenic enzymes in liver, but not in white 
adipose tissue, of diabetic rats. This correction re- 
sults from a reversal of impaired pre-translational 
regulatory mechanisms possibly mediated by an im- 
provement of thyroid function and a selective re- 
storation of liver glycolytic flux. [Diabetologia 
(1994) 37:1065-1072] 

Key words Vanadium, lipogenic enzymes, gene ex- 
pression, streptozotocin-diabetic rats. 

In diabetes, abnormalities of lipogenesis and lipolysis 
lead to a gradual elevation of plasma non-esterified 
fatty acids, which worsens the insulin resistance in 
muscles and augments glucose production by the 
liver. These disorders of fat metabolism, therefore, 
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contribute to promote and maintain the alterations 
of glucose homeostasis [1]. 

The trace element vanadium is a potent insulino- 
mimetic agent in various cell types. Its insulin-like 
properties have usually been ascribed to enhanced 
phosphorylation of the insulin receptor, although me- 
chanisms distal to the receptor may also be involved 
[2, 3]. Oral administration of vanadium salts to insu- 
lin-deficient rats markedly lowers blood glucose con- 
centrations without modifying low levels of insulin- 
aemia [4-8]. Considerable attention has thus been re- 
cently focused on the in vivo effects of vanadate on 
carbohydrate metabolism [2, 3]. However, fewer and 
less extensive studies have examined its influence on 
lipid metabolism in vivo [9-11]. It is now well estab- 
lished that vanadate treatment is able to restore the 
abnormal expression of genes involved in glucose 
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m e t a b o l i s m  in l iver  o f  d iabe t i c  rats  [12, 13]. I ts  e f fec t  
on  l ipogen ic  e n z y m e  exp re s s ion  has  n e v e r  b e e n  s tud-  
ied. 

I n  the  p r e s e n t  study, we  inves t iga t ed  w h e t h e r  va-  
n a d a t e  a d m i n i s t r a t i o n  to  s t r e p t o z o t o c i n - d i a b e t i c  rats  
cou ld  r eve r se  the  i m p a i r e d  exp res s ion  of  genes  in- 
v o l v e d  in k e y  s teps  o f  l ipogenes i s  in the  t wo  m a j o r  
sites i n v o l v e d  in this m e t a b o l i c  p a t h w a y :  l iver and  
whi te  ad ipose  tissue. To this end,  we  m e a s u r e d  
m R N A  levels  and  act ivi t ies  o f  a c e t y l - C o A  c a r b o x y -  
lase ( A C C )  and  fa t ty  acid syn thase  (FAS)  in vana -  
d a t e - t r e a t e d  rats. 

Materials and methods 

Animals and experimental design. Male Wistar/CPB rats 
(7 weeks old; 221 + 2 g) were purchased from IFFA Credo 
(Brussels, Belgium). All rats received standard laboratory 
chow ad libitum (A04, UAR, Villemoisson-sur-Orge, 
France;% of wet weight: 59 % carbohydrate, 3 % fat, 17 % pro- 
tein, 21% water-minerals-cellulose). They were housed in indi- 
vidual cages at a constant temperature (22 ~ with a fixed 12- 
h-light-dark cycle (lights on 07.00-19.00 hours). 

The animals were divided into three experimental groups: 
non-diabetic control rats (C; n = 6); untreated diabetic rats 
(D; n = 6); diabetic rats treated with vanadate (V; n = 5). Non- 
ketotic diabetes was induced by an i. v. injection of streptozoto- 
cin (42.5 mg/kg body weight) into a tail vein. Streptozotocin 
(Upjohn Co, Kalamazoo, Mich., USA) was dissolved in cold 
0.1 tool/1 citrate buffer (pH 4.5) immediately before use. Con- 
trol animals received only the buffer. Five days after buffer in- 
jection, the body weight and plasma glucose levels of control 
rats averaged 250 _+ 2 g and 6.8 _+ 0.1 retool/l, respectively. Five 
days after streptozotocin injection, the diabetic rats were as- 
signed to untreated or treated groups. The two groups of dia- 
betic rats were matched for body weight (D: 222 + 1 g, V: 
227 _+ 3 g, p > 0.05) and plasma glucose levels after feeding (D: 
22 _+ 1 retool/l, V: 22 _+ 1 retool/l, p > 0.05). The treated group 
received increasing amounts of sodium metavanadate 
(NaVO> Merck, Darmstadt, Germany) in drinking solutions 
(up to 0.35 mg/ml), as previously described [14]. This concen- 
tration was reached after 15 days of treatment and was main- 
tained until the end of the study. The progressive increase per- 
mitted us to partially overcome the aversion of the rats for va- 
nadate. 

On several occasions, tail vein blood was collected from fed 
animals for determination of plasma glucose levels. Plasma in- 
sulin levels were also measured in the final samples. 

After 20 days of treatment, the rats were killed between 
02.00 and 04.00 hours (i.e., in the absorptive state). Liver and 
pairs of epididymal fat pads were immediately removed, fro- 
zen in liquid nitrogen and stored at -70~ for subsequent 
RNA extraction and enzyme measurement. 

RNA extraction and Northern blot analysis. Total RNA was iso- 
lated with an acid guanidinium-thiocyanate-phenol-chloro- 
form mixture [15], after liver glycogen removal [16]. The con- 
centration of RNA was determined by absorbance at 260 nm. 
All samples had a 260/280 absorbance ratio of about 1.8. For 
Northern blot analysis, RNA (10 ~tg for white adipose tissue, 
20 ~g for liver) was denatured in a solution containing 
2.2 mmol/1 formaldehyde and 50 % formamide (volume/vol- 
ume) by heating at 95 ~ for 2 rain. RNA was then size-fractio- 

S.M. Brichard et al.: Vanadate effects on lipogenic enzyme gene expression 

nated by 1% agarose gel electrophoresis, transferred to a Hy- 
bond-N membrane (Amersham Int., Amersham, Bucks, UK) 
and cross-linked by ultraviolet irradiation. The integrity and 
relative amounts of RNA were assessed by methylene blue 
staining of the blot. 

The cDNA probes were kindly supplied by Drs. K.H. Kim 
for ACC [17], A.G. Goodridge for FAS [18], R.W. Hanson 
for phosphoenolpyruvate carboxykinase (PEPCK) [19]. 
Probes were labelled with 32p using the Multiprime labelling 
system kit (Amersham). Hybridizations with ACC and FAS 
probes were carried out in a medium containing 45 % deio- 
nized formamide, 0.1 mol/1 NaHPO4 (pH 6.5), 4 x sodium sa- 
line citrate (SSC), 1 • Denhardt's solution (Denhardt 1 x : 0.2 
g/1 polyvinylpyrrolidone, 0.2 g/1 bovine serum albumin, 0.2 g/1 
ficoll 400), 10% dextran sulphate, 0.1% sodium pyrophos- 
phate, 0.1% SDS and denatured herring sperm DNA (0.15 
mg/ml) at 42 ~ overnight. Hybridizations with PEPCK probe 
were performed in 42 % formamide, 40 mmol/1-Tris/HCl (pH 
7.5), 8 • Denhardt's solution, 7.5 % dextran sulphate, 0.1% so- 
dium pyrophosphate, 1% SDS and denatured herring sperm 
DNA (0.3 mg/ml) at 42 ~ overnight. The membranes hybri- 
dized with FAS and ACC were washed three times for 20 min 
in 2 x SSC/0.1% SDS at 42~ twice for 30 min in 1 • SSC/ 
0.1% SDS at 65 ~ and once for 10-30 min in 0.1 x SSC/0.1% 
SDS at 65 ~ The membranes hybridized with PEPCK were 
first washed twice for 30 rain in 2 x SSC/0.1% SDS at 42~ 
then once or twice for 15-30 min in 0.1-0.5 x SSC/0.1% SDS. 
The filters were thereafter exposed to Kodak X-OMAT AR 
films for 2-14 h at -80 ~ with intensifying screens. 

Intensity of the mRNA bands on the blots was quantified 
by scanning densitometry (Ultroscan XL; LKB, Bromma, 
Sweden). To normalize the amount of total RNA loaded on 
each lane, specific mRNA levels were expressed relative to 
those of [3 actin mRNA, a house-keeping gene which did not 
vary between the three groups. 

Measurements of enzyme activities. All enzyme activities were 
carried out at 37~ FAS activity was determined using the 
spectrophotometric assay of Linn [20]. Results were expres- 
sed as nmol NADPH oxidized per rain per mg protein of tis- 
sue supernatant solutions (105 000 g fractions). The maximal 
activity of ACC (EC 6.4.1.2) was measured according to Mae- 
da et al. [21], after incubation in the presence of 10 mmol/1 ci- 
trate, by the incorporation of NaH[14C]O3 into malonyl-CoA. 
The results were expressed as nmol malonyl-CoA formed per 
min per mg protein of Sephadex eluates from tissue superna- 
tant solutions. PEPCK (EC 4.1.1.32) activity was determined 
in tissue cytosolic fractions using the NaHp4C]O3 fixation as- 
say of Chang and Lane [22]. Results were expressed as nmol 
NaH[14C]O3 fixed per rain per mg protein. One milliunit of en- 
zyme is defined as that amount which catalyses the conversion 
of 1 nmol substrate per min under the conditions mentioned 
above. 

Analytical procedures. Plasma glucose was measured by a glu- 
cose oxidase method (Glucose analyzer; Beckman, Fullerton, 
Calif., USA). Plasma insulin was determined by a double-anti- 
body radioimmunoassay, using rat insulin as standard (Novo 
Research Institute, Bagsvaerd, Denmark). Plasma thyroid hor- 
mones were measured by radioimmunoassay using commer- 
cial kits (Abbott T 3 Riabead; Abbott GmbH Diagnostika, 
Wiesbaden, Germany; Magic T4; Ciba Corning Diagnostics 
GmbH, Fernwald, Germany). Plasma NEFA was analysed 
using acetyl-coenzyme-A oxidase-based colorimetric kit 
(Wako NEFA-C; Wako Chemicals GmbH, Neuss, Germany). 
Proteins in tissue homogenates or in cytosolic fractions were 
determined by the method of Bradford (Bio-Rad, Munich, 
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Table 1. Body weight, and plasma glucose, insulin, thyroid hormone and NEFA levels in fed rats of the three experimental groups 

Control Diabetic Diabetic + vanadate 

Body weight 318 +_ 7 230 q- 5 b 229 • 4 b 

(g) 
Plasma glucose 5.5 • 0.1 25.1 + 0.4 b 11.1 _+ 0.9 b'd 

(mmol/1) 
Plasma insulin 3.45 + 0.62 0.82 _+ 0.09 b 1.19 _+ 0.15 b 

(ng/ml) 
Plasma T3 57 + 3 30 + 2 b 40 + 2 b,c 

(ng/dl) 
Plasma T4 4.7 + 0.3 1.5 + 0.2 b 3.4 • 0.5 a,d 

(pg/dl) 
Plasma NEFA 145 • 3 330 • 22 b 244 • 8 b'd 

(~tEq/1) 

~p < 0.05; Up < 0.01 vs control rats ; Cp < 0.05; dp < 0.01 VS un- 
treated diabetic rats 
Values are means + SEM for 5-6 rats in each group. Diabetes 
was induced by an i.v. injection of streptozotocin 5 days be- 
fore starting the treatment. One group of diabetic rats was un- 
treated; the other group received NaVO 3 in drinking solutions 
for 20 days. Control rats were injected with citrate buffer and 

did not receive vanadate. The values for body weight, and plas- 
ma thyroid hormone and NEFA levels are those measured at 
the end of the experiment. For plasma glucose and insulin 
measurements, two blood samples were taken during the last 
week of the study; the values obtained were averaged for each 
rat 

Table 2. Characteristics of liver and white adipose tissue in the three groups of rats 

Control Diabetic Diabetic + vanadate 

Liver 
Weight (g) 11.7 + 0.4 9.t • 0.2 b 10.5 • 0.3 a'd 
Protein (mg/g) 151 + 4 167 • 3 b 146 + 2 ~ 
DNA (rag/g) 5.89 _+ 0.12 6.54 + 0.13 a 5.73 + 0.23 d 
RNA (mg/g) 4.34 + 0.15 4.12 + 0.10 4.34 + 0.37 

White adipose tissue 
Weight (g) 3.84 + 0.32 0.93 + 0.10 b 1.31 _+ 0.08 b 
Protein (mg/g) 7.9 + 0.7 15.4 _+ 1.2 b 11.8 _+ 1.1 a.c 
DNA (mg/g) 0.15 _+ 0.03 0.70 + 0.22 ~ 0.35 + 0.08 
RNA (rag/g) 0.11 + 0.01 0.29 + 0.05 b 0.18 + 0.04 c 

ap < 0.05, bp < 0.01 VS control rats ; Cp < 0.05, dp < 0.01 VS un- 
treated diabetic rats 

Values are means + SEM for 5-6 rats in each group. The ani- 
mals were killed after 20 days of treatment. Weight refers to 
wet weight, white adipose tissue to epididymal fat pads 

Germany) [23], using bovine serum albumin as standard. DNA 
was measured using a spectrofluorimetric method [24]. 

Statistical analysis 

Results are given as the mean + SEM for the indicated number 
of rats. Comparisons between control, diabetic, and vanadate- 
treated diabetic rats were carried out by analysis of variance 
followed by the Newman-Keuls test for multiple comparisons 
[25]. Differences were considered statistically significant at 
p < 0.05. 

Results 

Twenty- f ive  days a f te r  s t r ep tozo toc in  injection,  the 
body  weight  of  d iabet ic  rats  was m a r k e d l y  r e duced  
c o m p a r e d  to tha t  of  controls.  As  p rev ious ly  r e p o r t e d  
[7, 13], this g rowth  r e t a r d a t i o n  was not  i m p r o v e d  by 
v a n a d a t e  t r e a t m e n t  (Table  1). P l a s m a  glucose levels 
in fed d iabet ic  rats  w e r e  a r o u n d  25 mmol/1, and  their  

p l a sma  insulin levels were  dec rea sed  by  75 %. Vana-  
da te  admin is t ra t ion  to d iabet ic  rats  resu l ted  in a 55 % 
fall in glucose concentra t ions .  This b lood  glucose low- 
er ing effect  was not  due to a rise in p l a sma  insulin lev- 
els. The  low concen t ra t ions  of  thyro id  h o r m o n e s  in 
s t r ep tozo toc in -d iabe t i c  rats  were  par t ly  co r rec ted  by  
v a n a d a t e  t r e a tmen t ,  whereas  the e leva ted  levels of  
p l a sma  N E F A  were  slightly dec reased  (Table  1). 

The  a t t enua t ion  of h y p e r g l y c a e m i a  in v a n a d a t e -  
t r ea t ed  rats  was a c c o m p a n i e d  by  a 75 % reduc t ion  in 
fluid in take  (49 _+ 4 ml /day  vs 211 + 9 ml /day  in D 
rats, p < 0.01). Dur ing  the  last 5 days  of  the  study, the 
ave rage  consumpt ion  of  sod ium m e t a v a n a d a t e  was 
75 + 6 mg.kg . - lday  -1, which co r re sponds  to 21 _+ 2 mg  
v a n a d i u m  e lement .kg . - lday-<  

The  character is t ics  of  the  two m a j o r  tissues in- 
vo lved  in l ipogenesis  are s u m m a r i z e d  in Table  2. In  
liver, the re  were  only slight d i f ferences  in the  pa ra -  
me t e r s  s tudied b e t w e e n  the th ree  test  groups.  By con-  
trast,  in whi te  ad ipose  tissue, d iabe tes  induced  a 
sharp  reduc t ion  of  fat  p a d  weight,  while increasing 
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Liver White adipose tissue 

ACC mRNA 9.5 kb 

FAS mRNA 
9.4 kb 
8.5 kb 

PEPCK mRNA 2.6 kb 

actin mRNA 2.0kb 

C D V C D V 

Fig .L Northern-blot analysis of acetyl-CoA carboxylase 
(ACC), fatty acid synthase (FAS), phosphoenolpyruvate car- 
boxykinase (PEPCK) and ~3 actin m R N A  in liver and white 
adipose tissue from control (C), untreated diabetic (D) and va- 
nadate-treated diabetic (V) rats. All  lanes were loaded with 
20 ~g (liver) or 10 ~tg (adipose tissue) of total RNA. The filters 
were then successively hybridized with the different radiola- 
belled eDNA probes. This figure is representative of 5-6 differ- 
ent rats in each group, kb, kilobase 

protein, D N A  and total R N A  concentrations. These 
concentrations reached intermediate levels in vana- 
date-treated rats. 

To determine whether  vanadate t reatment  of dia- 
betic rats affects the altered expression of genes in- 
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volved in key steps of lipogenesis, we measured 
m R N A  levels of ACC and FAS in liver and white adi- 
pose tissue. The m R N A  abundance was assessed by 
Nor thern  blot analysis. 

In liver, the m R N A  transcripts of ACC (9.5 kilo- 
bases (kb)) and FAS (9.4 and 8.5 kb) were barely de- 
tectable in diabetic rats (Fig. 1). Quantifications of 
autoradiographic signals showed that ACC and FAS 
m R N A s  were decreased by more than 80 and 90 %, 
respectively, in diabetic rats compared to controls 
(Fig. 2). The activities of ACC and FAS were low- 
ered accordingly (Table 3). Vanadate t reatment  total- 
ly corrected ACC m R N A  and partially corrected 
FAS m R N A  (71% of control levels) (Figs. 1 and 2). 
The activities of both lipogenic enzymes were re- 
stored to 45-65 % of control values. Compared  to un- 
treated diabetic rats, these activities were increased 
3.5- to 4-fold by vanadate t reatment  (Table 3). The 
gluconeogenic enzyme, PEPCK,  served as an estab- 
lished control of vanadate action. In agreement  with 
our previous results [13], PEPCK m R N A  and activ- 
ity decreased to normal  or near normal  values after 
vanadate administration. PEPCK parameters were 
thus found to follow a reverse pat tern to that of 
ACC and FAS in liver of the three groups of rats 
(Figs. 1 and 2, Table 3). 

Diabetes also markedly reduced the expression 
and activity of both lipogenic enzymes in white adi- 
pose tissue ( < 10 % of control levels). In contrast to 
the correction observed in the liver, vanadate treat- 
ment  did not modify ACC and FAS m R N A  and ac- 
tivity, which remained extremely low (Figs. 1 and 2, 
Table 3). Examinat ion of PEPCK m R N A  abun- 
dance on Nor thern  blots (optical density (OD) / Fg 
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Fig.2. Effects of vanadate treatment 
on acetyl-CoA carboxylase (ACC), fat- 
ty acid synthase (FAS) and phosphoe- 
nolpyruvate carboxykinase (PEPCK) 
m R N A  levels in liver and white adipose 
tissue of diabetic rats. Values are 
means + SEM for 5-6 control (C), un- 
treated diabetic (D) and vanadate- 
treated diabetic (V) rats. m R N A  levels 
were quantified by scanning densito- 
metry of autoradiographic signals ob- 
tained from Northern blots. The results 
were then calculated per mg D N A  and 
expressed as percentages of values in 
control rats. Statistical significance of 
differences (analysis of variance fol- 
lowed by Newman-Keuls test): 
** p < 0.01 vs control rats; ++ p < 0.01 vs 
untreated diabetic rats 
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Table 3. Effects of vanadate treatment on acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and phosphoenolpyruvate 
carboxykinase (PEPCK) activities in liver and white adipose tissue of diabetic rats 

Control Diabetic Diabetic + vanadate 

Liver 
ACC (mU/mg protein) 8.3 _+ 1.1 1.1 • 0.2 b 3.7 • 0.7 b'c 

(mU/mg DNA) 102 + 13 13 • 3 b 46 _+ 7 b'c 

FAS (mU/mg protein) 18.6 + 1.7 2.7 • 0.2 b 11.1 4- 0.7 b,d 
(mU/mg DNA) 305 _+ 24 49 _ 4 b 200 _+ 19 b'd 

PEPCK (mU/mg protein) 8.0 _+ 0.8 34.9 + 2.2 b 10.7 + 0.5 d 
(mU/mg DNA) 133 + 13 637 + 25 b 194 • 9 a.d 

White adipose tissue 
ACC (mU/mg protein) 8.0 + 1.0 0.9 • 0.1 b 0.9 +_ 0.1 b 

(mU/mg DNA) 264 + 57 19 • 4 b 23 _ 9 b 

FAS (mU/mg protein) 51.5 • 9.5 3.6 • 0.4 b 4.3 _+ 0.4 b 

(mU/mg DNA) 2286 • 524 106 • 33 b 191 • 69 b 
PEPCK (mU/mg protein) 5.9 + 0.5 9.3 +_ 0.7 b 4.6 __ 0.2 d 

(mU/mg DNA) 262 +_ 39 257 • 69 191 + 58 

ap < 0.05, bp < 0.01 VS control rats ; Cp < 0.05, dp < 0.01 VS un- 
treated diabetic rats 

Values are means + SEM for 5-6 rats in each group. The anima 
ls were killed in the fed state after 20 days of treatment. White 
adipose tissue refers to epididymal fat pads 

R N A )  ) suggested an increase of this transcript in adi- 
pose tissue of both groups of diabetic rats (Fig. 1). 
However,  scanning densitometry analyses of the au- 
toradiograms revealed no significant differences be- 
tween the three test groups. This remained true 
when data were expressed on a cellular basis (OD/  
mg D N A )  (Fig.2). In agreement with the latter re- 
sults, no significant difference was found among the 
three groups when PEPCK activity was expressed 
per mg D N A  (Table 3). Interestingly, when expres- 
sed per mg protein, the activity of PEPCK was high- 
er in diabetic rats, and this increase was corrected by 
vanadate treatment. 

Discussion 

We show that vanadate partially restores the activ- 
ities of two key lipogenic enzymes in liver, but not in 
white adipose tissue, of insulin-deficient diabetic 
rats. We further demonstrate that this correction is 
explained by changes in corresponding m R N A  levels. 

As expected [26, 27], lipogenic enzyme activities 
were found to be depressed in both liver and adipose 
tissue of diabetic rats. The partial restoration of 
AC C and FAS activities in liver of vanadate-treated 
rats is in agreement with what has been recently re- 
ported for the activities of ATP-citrate lyase, malic 
enzyme and glucose 6-phosphate dehydrogenase in 
similarly-treated animals [9, 11]. The increase in 
AC C and FAS activities, observed in our study, is 
likely to reflect an increase in the amount of enzyme 
[28]. Indeed, FAS activity is known to closely paral- 
lel the enzyme content [26]. ACC activity is allosteri- 
cally regulated, but the values obtained in the pres- 
ence of 10 mmol/1 citrate reflect the total amount of 
the enzyme [29]. 

The restoration of lipogenic enzyme activities 
brought about by vanadate may completely be ex- 
plained by an increase in corresponding m R N A  lev- 
els. In agreement with previous reports [28, 30], we 
found that lipogenic enzyme gene expression was 
markedly reduced in liver and adipose tissue of dia- 
betic rats. Vanadate treatment partially restored 
FAS m R N A  and totally corrected AC C  expression 
in diabetic liver. Several mechanisms may be in- 
volved. 

First, the production of glycolytic metabolites. 
Evidence has been presented that glucose 6-phos- 
phate could be the inducer of AC C  and FAS gene 
expression in cultured cells [31]. This mechanism 
may explain how feeding fructose to insulinopenic 
diabetic rats led to a marked increase in lipogenic 
m R N A  concentration and enzyme activity in liver 
[32, 33], but did not correct the low activity of FAS 
in adipose tissue [26]. In the liver of diabetic rats, 
fructose yields appreciable amounts of glycolytic in- 
termediates [32] because the fructokinase activity is 
not markedly reduced despite the low activity of glu- 
cokinase (or hexokinase). Such a bypass of the first 
steps of glycolysis does not occur in adipose tissue 
which does not possess fructokinase [26, 28]. Strik- 
ing similarities exist between vanadate and fructose 
administration. Vanadate treatment of diabetic rats 
has been shown to induce glucokinase m R N A  and 
activity, to restore fructose 2,6 bisphosphate concen- 
trations and to stimulate overall glycolysis in the li- 
ver [6, 12, 13, 34]. On the other hand, vanadate treat- 
ment of diabetic rats did not increase the low levels 
of G L U T  4 protein [35] or G L U T  4 m R N A  and 
hexokinase II m R N A  (S. M. Brichard, unpublished 
data) in adipose tissue. This suggests that glycolytic 
intermediates, which are increased by vanadate in 
diabetic liver, may remain low in adipose tissue, 
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which might explain the distinct effects of vanadate 
on lipogenic enzyme gene expression in the two tis- 
sues. Moreover, because glycolytic intermediates pri- 
marily stimulate the lipogenic enzyme transcription 
rate [32], it might also explain why post-transcrip- 
tional defects in hepatic ACC gene expression were 
not completely corrected by vanadate. Interestingly, 
the discrepancy between the total restoration of 
ACC m R N A  and the partial correction of the activ- 
ity of this enzyme in the liver of vanadate-treated 
rats has also been reported after fructose feeding 
[32]. 

Second, a restoration of triiodothyronine levels. T 3 
has been shown to stimulate FAS gene in 3T3-L1 adi- 
pocytes [36] and the expression of several lipogenic 
enzymes in chick embryo or rat hepatocytes [37, 38]. 
Diabetes may be associated with low thyroid hor- 
mone levels [39] and a frank hypothyroidism is usual- 
ly present in the streptozotocin-diabetic rat [40]. T 3 

injection to diabetic rats strongly increased m R N A  
and activity of ACC and FAS in liver, this effect 
being more pronounced than in normal rats [32, 33]. 
In agreement with previous reports [41, 42], we ob- 
served that vanadate treatment partially restored 
plasma T 3 and T 4 levels in diabetic rats. Such a correc- 
tion may thus contribute to the changes in ACC and 
FAS gene expression. 

Third, a decrease in NEFA levels. There exists an 
inverse relationship between hepatic lipogenesis and 
the concentration of plasma NEFA [43]. Since vana- 
date slightly decreased the elevated plasma NEFA 
levels of diabetic rats, this may also contribute to our 
findings. 

Fourth, an alleviation of glucose toxicity. Vanadate 
restores the abnormal expression of genes Coding for 
glycolytic and gluconeogenic enzymes in liver of dia- 
betic rats [12, 13]. Since this restoration is partly re- 
produced by phlorizin treatment, a drug which de- 
creases glycaemia merely by inducing a renal leak of 
glucose, this improvement may result in part from at- 
tenuation of liver glucose toxicity [44]. Whether such 
a mechanism might also play a role in restoring the 
expression of lipogenic enzyme genes has not been 
directly addressed. 

Fifth, an insulin-like action of vanadate on lipoge- 
nesis. Insulin treatment markedly increases the ex- 
pression of several lipogenic enzyme genes in liver 
and adipose tissue of diabetic rats, mainly by stimu- 
lating their transcriptional rates [28, 30, 32, 33]. Insu- 
lin and glucose have also been shown to be synergisti- 
cally involved in ACC and FAS mRNA induction in 
cultured hepatocytes and adipocytes [31, 38]. Like- 
wise, vanadate stimulates fatty acid synthesis by isolat- 
ed hepatocytes and adipocytes from normal rats [45- 
48]. These observations are in agreement with our re- 
sults in liver, but not with those in adipose tissue, 
where vanadate treatment had no effect on lipogenic 
enzyme re-induction in diabetic rats. It must be stres- 

sed, however, that except for studies in primary cul- 
tured hepatocytes [47], these in vitro insulin-like ef- 
fects of vanadate were observed at concentrations of 
the element (0.2-10 mmol/1) [45, 46, 48] much higher 
than the levels (20 ~mol/1) reached in the plasma of 
animals chronically treated with vanadium salts [3]. 
Aside from and independently of these insulin-like 
properties, vanadate also increases the insulin sensi- 
tivity of adipocytes [49, 50] and, at low concentra- 
tions (50 ~mol/1), potentiates the effects of the hor- 
mone on lipogenesis [49]. Differences in residual 
beta-cell function or diabetes severity might there- 
fore account for different responses of lipid metabo- 
lism to vanadium treatment in adipose tissue of strep- 
tozotocin animals. This is supported by the recent ex 
vivo finding that lipolysis was normalized in adipose 
tissue from only a subgroup of vanadyl-treated dia- 
betic rats, those whose insulin secretion was partly 
preserved and which had been made euglycaemic by 
the treatment [10]. One cannot exclude the possibili- 
ty that the lack of effect of vanadate treatment on 
adipose tissue that we have observed is, at least to 
some extent, due to the incomplete correction of hy- 
perglycaemia. On the other hand, there are other ex- 
amples of distinct effects of insulin and vanadate on 
gene expression. Vanadate inhibits PEPCK gene 
transcription by acting on a regulatory element in 
the promoter, which is totally different from that in- 
volved in insulin action [51]. Regulatory regions of 
the FAS gene have not yet been identified. Two dis- 
tinct promoters have been described for the ACC 
gene. An alternative usage of these promoters ap- 
pears to be tissue-specific and sensitive to dietary or 
hormonal conditions that regulate lipogenesis (i.e. in- 
sulin, fat-free diet factor) [52, 53]. One might specu- 
late that vanadate mediates its effects on lipogenic 
genes, through promoter(s) distinct from those in- 
volved in insulin action, thereby producing tissue-se- 
lective responses. Eventually, even in liver, vanadate 
differs from insulin with regard to translation (or 
post-translation) of lipogenic enzymes. Insulin treat- 
ment  totally corrects both ACC mRNA and activity, 
because the hormone affects both transcription and 
translation of lipogenic enzymes [28, 32]. This is ob- 
viously not the case for vanadate, which only partly 
corrected ACC activity in spite of a total restoration 
of ACC mRNA. It is not clear whether this discre- 
pancy is due to the fact that vanadate is only a partial 
mimicker of the hormone or to the incomplete cor- 
rection of high blood glucose levels achieved in our 
study. 

In conclusion, vanadate treatment partially de- 
creases hyperglycaemia and restores the activities of 
two key lipogenic enzymes (ACC and FAS) in liver, 
but not in white adipose tissue of diabetic rats. This 
restoration results from a reversal of impaired pre- 
translational regulatory mechanisms. Striking simila- 
rities between administration of vanadate and fruc- 
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tose to d iabet ic  rats  suggest  tha t  glycolytic in te rmedi -  14. Brichard SM, Pottier AM, Henquin JC (1989) Long term 
ates m a y  p lay  a m a j o r  role  in v a n a d a t e  re - induc t ion  improvement of glucose homeostasis by vanadate in obese 

of  l iver l ipogenic  enzymes ,  a l though  o ther  m e c h a -  
nisms migh t  also cont r ibute .  
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