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Summary The purpose of the present study was to 
evaluate the role of muscle glycogen synthase activity 
in the reduction of glucose uptake during hypogly- 
caemia. Six healthy young men were examined twice; 
during 120 min of hyperinsulinaemic (1.5 mU �9 kg -1 �9 
min -1) euglycaemia followed by: 1) 240 min of graded 
hypoglycaemia (plasma glucose nadir 2.8 mmol/1) or 
2) 240 min of euglycaemia. At 350-360 min a muscle 
biopsy was taken and indirect calorimetry was per- 
formed at 210-240 and 330-350 rain. Hypoglycaemia 
was associated with markedly increased levels of 
adrenaline, growth hormone and glucagon and also 
with less hyperinsulinaemia. During hypoglycaemia 
the fractional velocity for glycogen synthase was 
markedly reduced; from 29.8 + 2.3 to 6.4 + 0.9 %, 
p < 0.05. Total glucose disposal was decreased during 

hypoglycaemia (5.58 + 0.55 vs 11.01 + 0.75 mg.  kg -1 �9 
min 1 (euglycaemia); p < 0.05); this was primarily 
due to a reduction of non-oxidative glucose disposal 
(2.43 + 0.41 vs 7.15 + 0.7 mg.  kg -1 �9 min -1 (euglycae- 
mia); p < 0.05), whereas oxidative glucose disposal 
was only suppressed to a minor degree. In conclusion 
hypoglycaemia virtually abolishes the effect of insu- 
lin on muscle glycogen synthase activity. This is in 
keeping with the finding of a marked reduction of 
non-oxidative glucose metabolism. [Diabetologia 
(1996) 39: 226-234] 
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Hypoglycaemic episodes represent a major treat- 
ment-induced problem [1-5]. Severe hypoglycaemia 
is more frequent in patients receiving intensive insu- 
lin treatment, and the recent results from the Diabe- 
tes Control and Complications trial (DCCT) [6], 
proving the benefit of strict metabolic control on 
late diabetic complications, may be anticipated to en- 
hance this problem. 
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In studies involving short-term and more pro- 
longed insulin infusion as well as the pituitary-adre- 
nal-pancreatic-clamp technique [7-10] the present 
concept of hypoglycaemic counter-regulation has 
emerged; within minutes of lowering the plasma glu- 
cose level the combined effects of suppressed endog- 
enous insulin secretion, increased secretion of gluca- 
gon and epinephrine, as well as glucose autoregula- 
tion [11], lead to enhanced hepatic glucose produc- 
tion (HGP) and reduced glucose disposal (Rd). With 
more prolonged (2 h) hypoglycaemia, the effects of 
increased growth hormone (GH) and cortisol secre- 
tion also become evident. Increased substrate avail- 
ability, serving as an independent fuel source (non-es- 
terified fatty acids [NEFA], ketones) and as gluco- 
neogenic precursors (lactate, amino acids, glycerol) 
also participate [12-16]. 

HGP is known to be increased both due to in- 
creased glycogenolysis and increased gluconeogene- 
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sis [15-17], whereas  the mechan i sm beh ind  the sup- ~, i 
pressed glucose utilisation, which becomes  m o r e  im- .~ l 
por tan t  with m o r e  p ro longed  hypog lycaemia  [9], is ~ 1 
less well described.  In recen t  studies we and others  -= 
have demons t r a t ed  that  muscle glucose up take  is dra- _~ 5- 
matical ly r educed  during hypoglycaemia  in hea l thy  
man  [18-20]. Howeve r ,  the specific cellular events  in- ~ 4- 
volved in this p h e n o m e n o n  requi re  fu r the r  examina-  
tion. g 0 

To clarify this issue we emp loyed  hyperinsul in-  ~, 3- 
aemia- induced  hypog lycaemia  combined  with mus- 

E 
cle biopsies and indirect  ca lo r imet ry  to assess muscle '~ 2- 
g lycogen synthase  activity, in t ramuscular  glucose a_ 
and glucose 6-phosphate  (G  6-P) con ten t  and the 0 
relat ive impor t ance  of oxidat ive-  and non-oxida t ive  
glucose disposal in the de fence  against hypoglycae-  
mia. 
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Fig. l. Study design. I. C., indirect calorimetry; arrow indicates 
muscle biopsy 

Subjects and methods 

Subjects. Six healthy young volunteers participated in the 
study. Mean age was 25 _+ 1.7 years; BMI, 22.2 +0.9 kg/m 2. 
The study protocol was approved by the local ethical commit- 
tee, and all subjects gave informed consent. 

Experimental protocol (Fig. 1) 

Each subject underwent two studies, i.e. hypoglycaemic and 
euglycaemic, with an interval of approximately I month. 

Both studies commenced at 08.00 hours after an overnight 
fast. Two catheters were placed; one in a heated dorsal hand 
vein for sampling of arterialized blood, another in the con- 
tralateral antecubital vein for infusions. Throughout both stud- 
ies, human insulin (Insulin Actrapid human; Novo-Nordisk, 
Copenhagen, Denmark) was infused at a rate of 1.5 mU. 
kg -1. min -1 and (3DH-)glucose (Du Pont New-England Nu- 
clear, Boston, Mass., USA) in a primed (30 ~tCi) continuous 
(0.3 gCi/min) manner, in order to determine glucose turnover. 
3-3H-glucose batches contained no contaminating radiochemi- 
cals as assessed by HPLC. 

Glucose clamp. Glucose (55 and 200 g/l) was infused at vari- 
able rates to obtain the desired plasma glucose level. Through- 
out the control study and during the first 120 min of the hypo- 
glycaemic study plasma glucose was clamped at 5 mmol/1, to al- 
low the isotope to equilibrate (these first 2 study hours are 
hereafter designated the equilibration period). In the hypo- 
glycaemic study, hypogtycaemia was then induced (by reducing 
exogenous glucose administration) aiming at a nadir of 
2.8 mmol/1 (Fig. 1). 

Blood sampling. Plasma glucose was measured every 5 min by 
a glucose analyser (Beckman Instruments, Palo Alto, Calif., 
USA). Blood for determination of glucose, glucose-specific ac- 
tivity, insulin, C-peptide, GH, glucagon, epinephrine, norepi- 
nephrine, NEFA and blood metabolites was drawn as shown 
in Figures 2 and 3. 

Muscle biopsy. At the end of each study (345-360 min) a mus- 
cle biopsy was obtained from the vastus lateralis muscle as pre- 
viously described [21]. 

Indirect calorimetry. Energy expenditure and respiratory ex- 
change ratio were measured at 210-240 and 320-340 rain. 

A computerized, open circuit system was employed to mea- 
sure gas exchange across a 25-1itr canopy (Deltatrac, Datex ln- 
strumentarium Inc., Helsinki, Finland). The monitor deter- 
mines carbon dioxide production and oxygen consumption by 
multiplying dry air flow through the canopy with alterations 
in gas concentration over the canopy. Estimated net glucose 
and lipid oxidation rates were calculated from the above mea- 
surements and protein oxidation rates were estimated from 
the urinary excretion rates of urea [22]. Net non-oxidative glu- 
cose disposal (Rd-nonox) was determined by subtracting oxi- 
dative glucose disposal (Rd-ox) from total Rd, measured iso- 
topically. 

Analytical methods 

Plasma glucose was measured in duplicate immediately after 
sampling (Beckman Instruments). Plasma glucagon was deter- 
mined by radioimmunoassay as previously described with the 
modification that (PEG = poly ethylen glycol) was used for sep- 
aration prior to determination and that plasma was extracted 
with ethanol [23]. Serum insulin was measured using a mono- 
clonal sandwich assay with no cross-reaction with proinsulin 
or major split-products of insulin [24]. Serum C-peptide was as- 
sayed employing a commercial kit (Immunonuclear Corp., 
Stillwater, Minn., USA) while serum GH was measured using 
an immunofluorometric sandwich assay with two monoclonal 
antibodies (Delfia hGH kit; Wallac Oy, ~Ihrku, Finland). Cate- 
cholamines were determined by electrochemical detection fol- 
lowing HPLC [25]. Serum NEFA were determined by a colori- 
metric method employing a commercial kit (Wako Chemicals, 
Neuss, Germany). Blood 3-hydroxybutyrate (3-OHB), glyc- 
erol, lactate and alanine were assayed by automated enzymatic 
fluorometric methods [26]. For determination of tritiated glu- 
cose activity, plasma was deproteinized using 0.3 mol/1 Ba 
(OH)2 and 5 % ZnSo 4 after which the supernatant was evapo- 
rated under vacuum, resuspended in distilled water and count- 
ed by a liquid scintillation counter after the addition of 5 ml 
Aqualuma Plus (Lumbac, Schaesburg, the Netherlands). 

Muscle enzyme analysis. Glycogen synthase activity was mea- 
sured as described previously [27] using 0.13 mmol/1 UDP-U- 
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Fig.2. Plasma glucose, serum epinephrine, plasma glucagon, 
serum GH concentrations during a hyperinsulinaemic, hypo- 
glycaemic- ( �9 ) and euglycaemic clamp (O) in six healthy sub- 
jects 
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Fig. 3. Plasma glucose, serum insulin and C-peptide concentra- 
tions and glucose infusion rates during a hyperinsulinaemic, 
hypoglycaemic- ( �9 ) and euglycaemic clamp (O) in six healthy 
subjects 

a4C-glucose (DuPont-New England Nuclear), 0.67 % (w/v) gly- 
cogen, and 0-6.7 mmol/1 G 6-P (final concentrations). In this 
context, 1 U of glycogen synthase activity equals the incorpo- 
ration of i nmol of UDP-glucose into glycogen per rain. Total 
glycogen synthase activity is defined as the activity in the pres- 
ence of a saturating concentration (6.7 mmol/1) of G 6-E Frac- 
tional velocities were calculated as glycogen synthase activity 
in the presence of a subsaturating concentration of G 6-P 
(0.07 retool/l) divided by glycogen synthase activity in the pres- 
ence of 6.7 retool/1 G 6-R The concentration of G 6-P giving 
half-maximal activity of the glycogen synthase (A0.5 for G 6- 
P), representing a different mode of expressing glycogen syn- 
thase activity, was calculated using a Hill plot [28]. 

G 6-P,, glucose and glycogen determination. G 6-P glucose- and 
glycogen content in the muscle biopsy were estimated accord- 
ing to Lowry and Passonneau [29]. Intramuscular glucose was 
corrected for glucose content in the extracellular space by sub- 
tracting the estimated glucose content in the extracellular 
space (0.31/kg dry weight • plasma glucose) from the total glu- 
cose content [30]. It is recognized that this is an estimate, as the 
exact extent of extracellular water is uncertain, especially dur- 
ing hypoglycaemia. 

Statistical analysis 

The rates of total glucose appearance (Ra) and total Rd were 
determined from tritiated glucose data in samples taken every 
15 min throughout the study. The values were calculated ac- 
cording to the non-steady-state equations of Steele [31] as 
modified by DeBodo et al. [32]. A distribution volume of 
220 ml/kg and a pool fraction of 0.65 was employed. HGP was 

calculated by subtracting the glucose infusion rate (GIR) 
from Ra. 

All values are expressed as mean + SEM. Two-way analysis 
of variance with repeated measures for two factors (time and 
treatment) was employed a priori to test for changes with 
time and between treatments. If this test revealed significant 
differences the Student's t-test for paired data was used to fur- 
ther assess differences between experiments. 

Results 

Glucose and hormones (Figs. 2, 3). Basal p lasma glu- 
cose levels (t = 0) were  similar in the two studies 
(5.1 + 0.2 vs 5.3 + 0.1 mmol/1, euglycaemia  vs hypo-  
glycaemia) .  Likewise plasma glucose levels did not  
differ  during the first 2 h  of the study (t, 0 -  
120 rain = equi l ibra t ion per iod) .  Th ro u g h o u t  the rest  
of the hypoglycaemic  s tudy plasma glucose levels 
were  kept  lower, reaching a m e a n  m in imum of 
2.9 + 0.1 retool/1 af ter  270 rain (Fig. 2). 

Basal  and equi l ibra t ion levels of epinephr ine ,  
norep inephr ine ,  G H  and glucagon were  similar in 
the two studies. Dur ing  euglycaemia  ep inephr ine  lev- 
els r ema ined  stable with a m e a n  value  of  589 +_ 
164 pmol/1 at t 240-360 rain. Dur ing  hypoglycaemia  
levels increased significantly (p < 0.05), reaching a 
m a x i m u m  value of 2123 + 486 pmol/1 at 270 min. 

G H  levels were  stable in the euglycaemic  study 
with a m e a n  value  of 1.5 + 0.5 ~tg/1 at 240-360 rain. 
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Fig.& Concentrations of serum NEFA, blood glycerol, 3- 
OHB, lactate and alanine during a hyperinsulinaemic, hypo- 
glycaemic- ( �9 ) and euglycaemic clamp (O) in six healthy sub- 
jects 
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Fig. 5. Fractional velocities of glycogen synthase at 0.07 mmol/1 
G 6-P in muscle biopsies and corresponding half-maximal acti- 
vation constants (A 0.5) for G 6-P during a hyperinsulinaemic, 
euglycaemic- ([~]) and hypoglycaemic clamp ([]) in six healthy 
subjects. Values are mean _+ SEM. * p < 0.05 

During hypoglycaemia levels increased sharply to 
14.0 -+ 3.8 gg/1 when plasma glucose was lowered to 
3 mmol/1 and stabilized at 21.2 -+ 0.01 ~g/1 during the 
last 2 h (p < 0.05). 

Glucagon levels were reduced to a similar extent 
during the equilibration period. In the euglycaemic 
study levels stabilized thereafter (17 _+ 3 ng/1, at t, 
240-360 rain). During hypoglycaemia glucagon levels 
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Table 1. Individual values of fractional velocity (FV) of glyco- 
gen synthase activity at 0.07 mmol/1 G 6-P in muscle biopsies 
during euglycaemia and hypoglycaemia 

Subject FV (%) FV (%) 
Euglycaemia Hypoglycaemia 

1 25.7 7.3 
2 34.2 5.7 
3 34.5 6.3 
4 23.9 9.8 
5 36.0 3.4 
6 24.3 6.3 

increased significantly reaching a maximum of 
88 + 6 ~tg/1 at 270 min (p < 0.05). 

Basal insulin levels were similar at 37 -+ 4 and 
36 + 4 pmol/1 (euglycaemia vs hypoglycaemia, NS); 
insulin infusion caused levels to increase to a mean 
level of 756 -+ 30 pmol/1 during the last 2 h in the 
euglycaemic study, whereas during hypoglycaemia, 
levels were slightly lower (684 + 60 pmol/1, p < 0.05). 

During insulin infusion an initial reduction in C- 
peptide levels was seen in both studies (0.43 + 
0.03 nmol/1 at basal to 0.26 + 0.03 nmol/1 at 120 rain 
during euglycaemia). Hypoglycaemia caused C-pep- 
tide levels to be further reduced after 240 rain 
(0.13 +0.03 nmol/1), whereas levels were stable in 
the control study (0.3 -+ 0.03 nmol/1, p < 0.05). 

Gluconeogenic precursors and lipid intermediates 
(Fig. 4). From a baseline level of 774 _+ 115 vs 642 + 
108 ~mol/1 (euglycaemia vs hypoglycaemia, NS) insu- 
lin infusion suppressed NEFA levels equally (43 + 1 
vs 68 + 18 ~tmol/1, euglycaemia vs hypoglycaemia, 
NS). 

Insulin infusion caused a similar initial suppres- 
sion of glycerol levels to 8 + 4 vs 12 + 4 ~mol/1 (NS). 
In the euglycaemic study values then stabilized 
(8 + 3 Bmol/1, during the last 2 study hours), whereas 
during hypoglycaemia there was a small break- 
through in glycerol concentration (26_+5 ~tmol/1, 
p < 0.05). 

Insulin infusion totally suppressed 3-OHB levels 
in both studies. 

During hyperinsulinaemic euglycaemia, blood lac- 
tate concentrations increased slightly but signifi- 
cantly with time from a basal level of 873 _+ 106 to 
1243 + 129 ~mol/1 during the last 2 h (p < 0.05). Dur- 
ing the last 2 h of hypoglycaemia, a more pronounced 
increase occurred (1675 -+ 220 ~mol/1, p < 0.05). 

In both studies alanine levels fell slightly with time 
and levels did not differ between the two studies. 

Muscle enzymes (Fig. 5, Table 1). Total activities of 
glycogen synthase (measured at saturating levels of 
G 6-P and physiologic levels of UDP-glucose) were 
similar (44.8 + 3.2 vs 49.5 + 4.2 U/mg protein, hypo- 
glycaemia vs euglycaemia). 
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Fig. 7. Rates of oxidative glucose disposal (Rd-ox), non-oxida- 
tive glucose disposal (Rd-nonOx) and lipid oxidation (lipid- 
ox) during a hyperinsulinaemic, euglycaemic- (D) or hypo- 
glycaemic clamp (~) in six healthy subjects. Values are 
mean + SEM. * p < 0.05 

Hypoglycaemia inhibited the fractional velocity 
(at 0.07 mmol/1 G 6-P) by 80 % from 29.8.+ 2.3 to 
6.4 + 0.9 % (p < 0.05). Likewise the sensitivity of 
the glycogen synthase to G 6-P was reduced by hy- 
poglycaemia as shown by an increase in A0.5 for 
G 6-P from 0.16+0.02 to 0.8+0.15mmol/1 (p< 
0.01). 
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G 6-P, glucose and glycogen. The muscle content of G 
6-P tended to be higher during hypoglycaemia; 0.68 _+ 
0.12 vs 0.29+_0.09 mmol/kg dry weight (p = 0.06). 
Due to technical problems, it was only possible to de- 
termine G 6-P in five patients. The difference in cal- 
culated intramuscular glucose content (1.49 _+ 0.32 vs 
1.16_+0.39 mmol/kg dry weight, hypoglycaemia vs 
euglycaemia, p = 0.14) did not reach statistical signif- 
icance. Likewise it was not possible to detect any dif- 
ference in glycogen content (567_+32 vs 535+ 
50 mmol/kg dry weight, hypoglycaemia vs euglycae- 
mia; p = NS). 

Glucose kinetics (Fig. 6). The glucose infusion rate 
was significantly lower throughout the hypoglyca- 
emic period, reaching a minimum at 240-270 rain 
(4.85+_1.15 vs 12 .99+0 .97mg .kg  -1 .min  -1, p <  
0.001; hypoglycaemia vs euglycaemia). 

Rd increased from a level of 8.70 + 0.91 mg.  kg -1 �9 
min -1 during the last 30 min of the equilibration pe- 
riod and stabilized at a level of 11.01+0.75 rag. 
kg -1 - min -1 during the last 2 h of euglycaemia. During 
hypoglycaemia Rd was inhibited to a mean of 5.58 + 
0.55 mg- kg -1 �9 min -t during the last 2 h (p < 0.05). 

Ra increased to a similar extent during the equili- 
bration period. During euglycaemia levels then sta- 
bilized with a mean of 11.03 _+0.8 m g - k g  -1. rain -1 
during the last 2 h whereas during hypoglycaemia a 
minimum was reached at 320 min (5.48 _+ 0.47 vs 
11.99 + 0.75 mg.  kg -1- min -1, hypoglycaemia vs eu- 
glycaemia), whereafter  levels increased slightly 
(6.32 + 0.61 mg.  kg -1 - min -1 at 340-360 min) 
p < 0.05). 

HGP was suppressed to negative values in both 
studies. Equilibration levels (90-120 min) were simi- 
lar (-2.57.+ 0.62 vs -2.16.+ 0.39 rag. kg -1 �9 rain -1) 
During euglycaemia HGP continued to be exces- 
sively suppressed, whereas HGP was stimulated by 
hypoglycaemia (-0.56 .+ 0.36 vs -2.73 _+ 0.44 mg- 
kg -1- min -1 (320-340 min); p < 0.05). 

Indirect calorimetry (Fig. 7). Energy expenditure as 
calculated from oxygen consumption was similar in 
the two studies (72.3_+2.4 vs 76.9+2.4cal/h; 
p > 0.05). 

Non-protein respiratory exchange ratio was slight- 
ly but significantly lower during early - as well as late 
- p h a s e  hypoglycaemia (0.9 _+ 0.01 vs 0.99 _+ 0.01; 210- 
240 min; p < 0.05) and did not change with time in the 
two studies. 

Calculated glucose oxidation was slightly lower 
during hypoglycaemia (3.2+ 0.1 vs 3.9 + 0.2 rag. 
kg -1 �9 min-% p < 0.05, at 320-340 rain) and levels re- 
mained stable during the separate studies. However, 
calculated Rd-nonox was found to be profoundly in- 
hibited by hypoglycaemia, and this was even more 
pronounced in the later phase (3.36 + 0.54 vs 6.62 + 
0.67 mg �9 kg -a �9 min-1; p < 0.001, 210-240 rain and 
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2.43 + 0.41 vs 7.15 + 0.7 mg- kg -1 - min-1; p < 0.001, 
320-340 min). 

Protein oxidation was similar and averaged 
0.8 mg. kg -1 �9 min-< Insulin infusion suppressed lipid 
oxidation to a greater extent during euglycaemia 
when compared to hypoglycaemia (0.11+0.05 vs 
0.30 + 0.07 mg. kg -1 . rain-l; p < 0.05; 320-340 min). 

Discussion 

This study focuses on the role of glycogen synthase 
activity in the reduction of glucose uptake during hy- 
poglycaemia. We found total Rd to be reduced to 
about 50 % of euglycaemic values. The activity of gly- 
cogen synthase in skeletal muscle was reduced by 
80 % during hypoglycaemia, i.e. to a level compara- 
ble to that found in the basal state [21], and Rd-nonox 
was substantially suppressed. Due to the limitations 
of the isotope dilution technique in its present form, 
"physiologically impossible" negative values for 
HGP occur. Therefore, these data should be inter- 
preted qualitatively rather than quantitatively. Bear- 
ing this in mind, hypoglycaemia seemed to exert a 
stimulating effect on HGP. 

Under conditions of euglycaemic hyperinsulin- 
aemia, muscle has been shown to account for up to 
85 % of the amount of glucose to be metabolized 
[33]. In recent studies, we and others [18, 19] have 
shown forearm glucose uptake to be dramatically re- 
duced during hyperinsulinaemia-induced hypo- 
glycaemia, and the present study implicates a pivotal 
role for the profoundly reduced muscle glycogen syn- 
thase activity in this condition. 

The role of decreased mass action of glucose [34] 
also demands consideration. Hyperglycaemia (glu- 
cose per se) has been suggested to stimulate Rd-non- 
ox and to a lesser extent Rd-ox [35], whereas no such 
stimulating effect has been demonstrated on glyco- 
gen synthase activity [36]. Even though these results 
cannot be directly extrapolated to the hypo- 
glycaemic setting of the present study, the fact that 
Rd decreased even before any significant counter- 
regulatory hormonal release was evident (at a plas- 
ma glucose level of 4 mmol/1) point towards an inde- 
pendent effect of a reduction in the plasma glucose 
level to reduce glucose uptake. This is supported in 
a recent study by Capaldo et al. [19] demonstrating 
a reduced glucose mass effect in forearm experi- 
ments. 

Non-oxidative glucose metabolism has several 
possible pathways: 1) formation of glycogen, 2) 
anaerobic glycolysis and subsequent lactate forma- 
tion, 3) conversion into lipids. The amount of lactate 
released from muscle in response to insulin is small, 
even during moderate hypoglycaemia [18, 19, 33], 
and presumably only small amounts of glucose are 
converted into lipids [37], and the major fate for glu- 
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cose taken up into muscle has been ascribed to glyco- 
gen synthesis. In support of this, a positive correlation 
has been found between glycogen synthase activity 
and Rd-nonox [38, 39] and by using nuclear magnetic 
resonance spectroscopy. Shulman et al. [40] have 
shown that under conditions of euglycaemic hyperin- 
sulinaemia glycogen synthesis represents the primary 
pathway for Rd-nonox. 

Several of the participants in the counter-regula- 
tory set-up could be responsible for the inhibitory ef- 
fect of hypoglycaemia on glycogen synthase activity 
and Rd-nonox. 

Epinephrine acts in defence against short-term as 
well as long-term hypoglycaemia and has been dem- 
onstrated to antagonize insulin action on muscular 
tissue [41]. 

Insulin stimulation of phosphatase-1 (PP-1) which 
activates glycogen synthase has been shown to be a 
result of a phosphorylation at site-1 of the glycogen- 
binding G-subunit of PP-1 [42]. In contrast, the cyclic 
AMP-dependent kinase (activated by e.g. catechol- 
amines) phosphorylates both sites-1 and -2 of the G- 
subunit, and activates the specific inhibitor of PP-1, 
thereby inactivating PP-1 [42, 43]. It is in agreement 
with this observation to hypothesize that insulin stim- 
ulation of muscle glycogen synthase may be blocked 
by elevated plasma epinephrine levels during hypo- 
glycaemia. 

In a study where epinephrine was infused during 
euglycaemic hyperinsulinaemia Raz et al. [44] found 
that epinephrine inhibits insulin-mediated glycogene- 
sis. This was associated with an inactivation of glyco- 
gen synthase and activation of glycogenolysis, which 
is in agreement with our results. They found an in- 
crease in G 6-R which inhibits hexokinase and there- 
by glucose uptake, and enhances glycolysis. 

In the present study the G 6-P content was also in- 
creased during hypoglycaemia and even though the 
difference in calculated intracellular glucose content 
did not reach statistical significance, this fits well 
with the inhibition of glycogen synthase activity and 
non-oxidative glucose metabolism. We could not 
demonstrate increased glycolysis when measuring 
Rd-ox; whether this could be explained by the hypo- 
glycaemia-associated impairment of glucose mass ac- 
tion and subsequent lack of oxidation is unclear. 
Studies on isolated intact rat muscle support the role 
of epinephrine in inhibition of insulin-mediated gly- 
cogen synthesis and activation of glycogenolysis 
through activation of glycogen phosphorylase [45, 
46]. 

In a model of prolonged (8-h) hypoglyeaemia and 
relatively low-close insulin infusion (0.4 mU.  kg -I- 
rain-l), Fanelli et al. [47] have demonstrated that a 
significant part of the catecholamine-induced sup- 
pression of Rd may be due to increased lipolysis, 
leading to increased levels of NEFA and glycerol. In 
the present study the higher insulin infusion rate 
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leading to suppression of NEFA levels presumably 
prevented indirect mediation [48, 49] from playing 
any major role (a notion supported by the very mod- 
est elevation of lipid-oxidation during hypoglycae- 
mia). 

Concerning the role of GH and cortisol, GH has 
been found to inhibit insulin-mediated activation of 
glycogen synthase in skeletal muscle [21] and, also in 
agreement with the findings in the present study, to 
inhibit glucose oxidation in favour of lipid oxidation. 
The effect of GH on muscle has been shown to be de- 
layed by approximately 2 h and part of its effect has 
been suggested to be direct, rather than dependent  
on lipolysis [50]. 

Previously cortisol was thought to play only a mi- 
nor role in short-term counter-regulation. However, 
in a study of prolonged hypoglycaemia, De Feo et al. 
[5i] demonstrated a significant cortisol-induced stim- 
ulation of HGP after 3 h and a significant inhibition 
of glucose utilisation after 4 h. Some of these effects 
might be secondary to stimulation of lipolysis. Apart  
from the indirectly mediated effects, cortisol has 
been shown to reduce the speed by which insulin acti- 
vates glucose transporters and also to mediate the ef- 
fect of insulin at a post-binding level [52, 53]. In vitro 
studies have shown long-term dexamethasone treat- 
ment  (14 days) to be associated with an inhibition of 
insulin-stimulated glycogen synthesis and a decrease 
in glycogen synthase activity in muscle. The reduction 
in glycogen synthesis was associated with increased 
NEFA levels [54]. 

Calculation of glucose-, lipid- and protein-oxida- 
tion from indirect calorimetry data is based on a num- 
ber of assumptions, and in particular ongoing lipo- 
genesis and gluconeogenesis may influence results 
[22], necessitating cautious interpretation. In a dose- 
response study on the relationship between plasma 
insulin concentration and total Rd, Rd-ox and Rd- 
nonox [55], Rd-nonox was found to represent the ma- 
jor route of glucose disposal during euglycaemic hy- 
perinsulinaemia, and glucose oxidation was saturated 
at lower plasma insulin concentrations than glucose 
storage. In the present study hypoglycaemia espe- 
cially compromised the route of Rd-nonox, a fact 
which seems logical, considering that insulin exerts 
its major influence here. 

Recently, Shamoon et al. [56] demonstrated mus- 
cle glycogen synthase activity to be suppressed and 
G 6-P content to be increased in non-insulin-depen- 
dent diabetic subjects during insulin-induced hypo- 
glycaemia, placing skeletal muscle in a key position 
in counter-regulation in these subjects. In the control 
subjects, however, only a minor increase in G 6-P 
content was found and glycogen synthase activity 
was unsuppressed. This apparent discrepancy be- 
tween both our results is probably explained by the 
presence of higher insulin levels in the study by Sha- 
moon et al. [56] and also it cannot be excluded that 

some suppression of glycogen synthase activity would 
have been unmasked if a constant euglycaemic con- 
trol situation had been present. Our results are in 
agreement with those of a very recent study by Co- 
hen et al. [20], demonstrating decreased glycogen 
synthesis in skeletal muscle during mild hypoglycae- 
mia and physiological hyperinsulinaemia in healthy 
subjects. 

The small difference in insulin levels (684 + 60 vs 
756 _+ 30 pmol/1; p < 0.05) in our study cannot account 
for the pronounced suppression of glycogen synthase 
activity and non-oxidative glucose disposal [36, 55]. 
However, the difference was slightly greater than 
would have been expected from suppression of en- 
dogenous insulin production, and could possibly re- 
flect an elevated clearance of insulin during hypogly- 
caemia, even though this to our knowledge has not 
previously been described. 

In conclusion, in accordance with the finding of a 
prominent reduction of Rd-nonox our data suggest 
that hypoglycaemia virtually abolishes the effect of 
supraphysiological insulin exposure on muscle glyco- 
gen synthase activity. 
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