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Summary IDDM is associated with an increase in kid- 
ney size, which is due to cellular hypertrophy and pro- 
gressive matrix accumulation within the glomerulus 
and throughout  the tubulointerstitium. The present 
study addressed the potential role of cysteine and me- 
talloproteinases in renal hypertrophy of short-term 
diabetes. Three weeks after induction of streptozotocin 
diabetes in rats, intraglomerular gelatinase activity 
(streptozotocin: 23 + 4 vs control: 44 + 3 mU/gg DNA)  
and cathepsin L + B activity (streptozotocin: 6.7 + 0.8 
vs control: 9.3 +_ 0.7 U/gg DNA)  were significantly de- 
creased. Insulin t reatment  completely prevented the 
decline in glomerular proteinase activity (gelatinase: 
37 + 6 mU/gg DNA; cathepsin L + B: 9.6 + 0.9 U/gg 
DNA). In isolated proximal tubules a similar pattern of 
enzyme activity could be observed. Three weeks of 
diabetes caused a significant decline in cathepsin L + B 

activity (streptozotocin: 28 + 2 vs control: 37 + 3 U/gg 
DNA).  Insulin t reatment  again prevented the decline 
in these tubular proteinase activities. In parallel, kid- 
ney weight increased by 22% and glomerular pro- 
te in/DNA ratio rose by 17 % in untreated diabetic rats. 
Diabetic rats receiving insulin displayed a normal 
glomerular prote in/DNA ratio and the kidney weight 
was increased by only 5 %. These results show that 
renal hypertrophy of early diabetes is closely associ- 
ated with a decline in both glomerular and tubular pro- 
teinase activity. Adequate  insulin substitution pre- 
vented renal hypertrophy and the reduction in pro- 
teinase activity. [Diabetologia (1994) 37: 567-571] 
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Both in man and animals diabetes mellitus is associated 
with an early increase in kidney size [1-3], which is 
based on cellular hypertrophy [4] and enhanced extra- 
cellular matrix accumulation within the glomerulus 
and throughout  the tubulointerstit ium [5]. In general, 
intra- or extracellular protein accretion may be caused 
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either by enhanced synthesis or reduced breakdown or 
both. Recently, Prigent-Sassy and co-workers [6] ana- 
lysed the c~1 (IV) and 0~2 (IV) collagen mRNAs  ex- 
tracted from the renal cortex of diabetic rats and found 
no increase in collagen synthesis between 1 week and 
6 months  of diabetes despite considerable glomerulo- 
sclerosis. Based on these findings the authors con- 
cluded that the deposition of extracellular matrix under  
these circumstances is not related to increased collagen 
synthesis, but is more likely due to a defect in matrix 
protein catabolism. 

This notion is consistent with earlier observations in 
diabetic animals where reduced renal proteolytic activ- 
ity [7, 8] and lower activities of lysosomal enzymes such 
as cathepsins L and B [9, 10] and cathepsin D [11] have 
been reported. Reduced proteinase activity in turn may 
lead to hypertrophy and matrix accumulation, as it has 
been demonstrated that inhibition of lysosomal pro- 
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teinases does suppress intracellular protein b reakdown 
by up to 70 % [12]. 

In the present  investigation two classes of  renal pro- 
teinases, namely  neutral  metal loproteinases (gelatin- 
ase and collagenase) and cysteine proteinases (cathep- 
sins L + B and H), were studied in a short - term model  
of diabetes. Gelatinase and collagenase are metallo- 
proteinases which are capable of degrading collagens 
and other  matrix components .  In vivo these enzymes 
are secreted extracellularly and are supposed to play an 
important  role in matrix turnover  [13]. The cathepsins 
are cysteine proteinases with an acidic p H  opt imum, 
which are located within lysosomes and are believed to 
be involved in intra- and extracellular protein degrada-  
tion [14]. 

The aim of this study was to relate the activities of 
renal proteinases with the evolution of kidney hyper-  
t rophy in s t reptozotocin- induced diabetes of the rat. 

Materials and methods 

Animals 

Male Wistar rats (Ivanovas, Kisslegg, Germany), weighing 200- 
250 g, were used for all experiments. Groups of two animals were 
housed in single cages in a room at constant humidity and tem- 
perature with a controlled 12-h light dark cycle. For measure- 
ments of proteinuria animals were kept in metabolic cages for 
24 h. The animals had free access to tap water and standard rat 
chow (Altromin, Lippe/Westphalia, Germany) throughout the 
study. After a 5-day adaptation period, diabetes was induced by 
intravenous administration of streptozotocin in a dose of 
60 mg/kg body weight. The diabetic animals were divided into 
three groups of 10 animals each. Group i comprised diabetic 
animals which were on insulin therapy. The target serum glucose 
was 8.5-14.0 mmol/1. Group 2 comprised diabetic animals with 
no insulin treatment, with a target serum glucose of more than 
19.5 mmol/1. Group 3 were the non-diabetic animals. 

Insulin (Ultralente, Novo, Copenhagen, Denmark) was given 
subcutaneously once per day. The dose was individually adjusted 
according to biweekly determined blood glucose concentrations 
(2.5-5 IU/24 h). By contrast, rats in group 2 (no insulin treat- 
ment) received only a small daily dose of insulin (0.3 IU/24 h) to 
prevent ketoacidosis. 

Isolation of tubules and glomeruli 

Three weeks after induction of diabetes, animals were anaes- 
thetized with hexobarbital (150 mg/kg) and the kidneys were 
harvested. The organs were dissected longitudinally, the medul- 
la was excised and the remaining cortical tissue was minced. This 
homogenate was passed through stainless steel sieves with pore 
sizes of 250 btm (Linker, Kassel, Germany). The sieved material 
was suspended in ice-cold 0.9% NaC1 and poured on a 50-btm 
nylon sieve (Schweizerische Seidengazefabrik, Zurich, Switzer- 
land), thereby allowing cell debris and small fragments to pass 
through, while glomeruli and tubules were retained. Separation 
of glomeruli from tubules was achieved by using a 150-btm nylon 
sieve which retains tubules and allows glomeruli to pass through. 
Both glomeruli and tubules were suspended in 0.9 % NaC1, gent- 
ly centrifuged at 400 x g and examined by light microscopy. The 
purity of both preparations was between 90-95 %. 

L. Schaefer et al.: Renal proteinases in diabetic rats 

Analytical methods 

Isolated glomeruli (3 x 2 s) and tubules (5 x 2 s) were disrupted 
by sonication at 4 ~ The activities of cathepsins L + B and H 
were assayed as previously described by Barrett [15] and Bar- 
rett and Kirschke [16] using fluorogenic peptidyl substrates 
(Bachem, Heidelberg, Germany): H-Arg-AMC for cathep- 
sin H, and Z-Phe-Arg-AMC for cathepsin B + L. In the case of 
cathepsin H, 0.1 mmol/1 puromycin was used to inhibit non-spe- 
cific degradation of H-Arg-AMC by aryl-amidases. The fluo- 
rescence of free AMC was determined by excitation at 380 nm 
and emission at 460 nm. All activity was expressed per btg 
DNA. 

The activities of collagenase and gelatinase were measured 
fluorometrically according to Tschesche et al. [17] using native 
or denatured rat tail collagen type-1 in the presence or absence 
of EDTA (20 mmol/1). Latent enzyme activity was detected by 
preincubating samples with 0.5 mmol/1 of oxidized glutathione. 
To examine the purity of native collagen, digestion with trypsin 
was measured. Collagenase measurements were carried out at 
25 ~ to prevent denaturation of collagen. The activity of gela- 
tinase was determined in the presence of 4 mmol/1 PMSF for in- 
hibition of serine proteinases. After 18 h of incubation, the di- 
gested collagen fragments were labelled with 2% fluores- 
camine. Fluorescence was measured by excitation at 390 nm 
and emission at 460 nm and was quantitated using a Lumines- 
cence Spectrometer LS 50 from Perkin Elmer (Langen, Ger- 
many). 

SDS substrate gels were prepared by including gelatin at a 
final concentration of 1 mg/ml in the standard 7.5 % Laemmli 
acrylamide polymerization mixture. The samples were solu- 
bilized in non-reducing sample buffer and electrophoresed at 
4~ and 100V. After electrophoresis gels were washed for 
30 rain at room temperature in 2.5 % Triton X-100 and then incu- 
bated at 37 ~ over-night in 50 mmol/1 Tris-HC1, 0.1 mol/1NaC1, 
10 mmol/1CaC12, 0.05 % Brij pH 7.6 in the presence and absence 
of 20 mmol/1 EDTA. Gels were stained with coomassie blue 
R250 and destained in 40% methanol/10% acetic acid. As a 
standard a high-molecular mass standard mixture (205 kDa- 
29 kDa Laemmli) from Sigma (Munich, Germany) was used. 

Tissue DNA content was determined according to the 
method of Labarca and Peigen [18]. Briefly, DNA in tissue ho- 
mogenates was labelled with Bisbenzimide (H 33258, Riedel-de- 
Haen, Seelze, Germany) which enhances the natural fluores- 
cence of DNA several fold. The excitation wavelength was 
355 nm and emission was measured at 460 nm. 

Analysis of serum and urine samples for glucose, electro- 
lytes, urea-nitrogen, and creatinine was performed using a Tech- 
nicon autoanalyser (Bayer Diagnostics, Munich, Germany). 
Urinary albumin was measured by nephelometry using a rabbit 
antibody against rat albumin obtained from Organon Technika 
(Eppelheim, Germany). 

Protein content in tissue homogenates was measured accord- 
ing to the method of Smith et al. [19]. Proteins in tissue homoge- 
nates were labelled with bicinochonicinic acid (Pierce, Belier- 
land, The Netherlands) and incubated for 30 rain at 60~ The 
optical density was measured at 562 nm. Bovine serum albumin 
was used as standard in a range from 5-500 btg/ml. 

Statistical analysis 

Results were expressed as means + SEM from 9-10 animals in 
each group. Statistical analysis was performed using the unpaired 
Student's t-test. Significance was accepted at the 5 % level. 
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Table 1. Effect of insulin treatment in diabetic rats on single kid- 
ney weights and glomerular protein/DNA ratios 

Non-diabetic Diabetic rats 
control rats untreated insulin-treated 

Kidney weight (mg) 995 +- 10 

Kidney weight/ 3.5 + 0.3 
body weight x 103 

Glomerular 14.6 +_ 0.8 
protein/DNA 

1210 + 25", b 1 0 4 0  + 10 ~ 

5.5 _+ 0.6 ~, b 3.9 + 0.4 

17.5 +0.6 a'b 15.0+_0.8 

Results are given as means + SEM from 9-10 animals. 
ap < 0.05 for diabetic rats vs healthy controls; 
b p < 0.05 for untreated diabetic rats vs insulin-treated diabetic 
rats 
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Renal hypertrophy 

Three weeks after induction of diabetes kidney weights 
in untreated diabetic rats were significantly higher 
( + 22 %) than in non-diabetic animals. Insulin-treated 
diabetic animals had considerably attenuated renal 
hypertrophy (kidney weight gain: + 5 %, p < 0.05). In 
addition, protein/DNA ratios of isolated glomeruli 
were used as a parameter of glomerular hypertrophy. 
Compared to non-diabetic controls untreated diabetic 
rats displayed higher ratios ( + 20 % ,p < 0.05) suggest- 
ing glomerular hypertrophy, whereas insulin treatment 
kept this ratio within the range of control animals 
(Table 1). 

Fig.1. Zymogram of glomerular gelatinases (95 and 120 kDa 
forms) from healthy and diabetic rats both in the presence and 
absence of 20 mmol/1 EDTA. Lane 1, non-diabetic rats; lane 2, 
non-diabetic rats + EDTA; lane 3, diabetic rats, lane 4, diabetic 
rats + EDTA 

Results 

Manifestation of diabetes meIlitus 

Three days after the injection of streptozotocin, the 
rats developed significant hyperglycaemia (18.1 + 0.4 
vs 5.1 + 0.1 mmol/1) compared with control animals. 
Throughout the 3-week experimental period untreated 
diabetic rats displayed 4-6 times higher serum glucose 
levels compared to non-diabetic controls. Near nor- 
moglycaemia was achieved in diabetic rats receiving in- 
sulin. Polyuria developed early in the course of dia- 
betes and overnight urine volume was 65 • 11 ml/24 h 
in untreated and 27 + 7 ml/24 h in treated diabetic ani- 
mals. By contrast, non-diabetic controls had mean uri- 
nary volumes of 18 + 2 ml/24 h. Albuminuria was sig- 
nificantly enhanced in diabetic animals (untreated: 
810 + 150 Bg/24 h, treated: 671 + 100 Bg/ 24 h) com- 
pared to normal rats (340 +_ 40 ~tg/24 h). 

Glornerular proteinases 

Collagenase and gelatinase activities were measured in 
freshly isolated glomeruli. Collagense activity was not 
statistically different between diabetic and non- 
diabetic animals. On the other hand, gelatinase ac- 
tivities were significantly lower in untreated diabetic 
rats. Compared to healthy animals (43.5 + 3.3 mU/~tg 
DNA)  untreated diabetic animals had markedly lower 
gelatinase activity (23.1 + 3.5 mU/gg DNA, p < 0.05), 
whereas insulin treatment partially prevented the de- 
cline in enzyme activity (36.6 + 6.4 mU/gg DNA, p < 
0.05). 

Using zymography, a 95 kDa and a 120 kDa gelatin- 
ase could be identified in glomeruli of both healthy and 
diabetic animals. In agreement with the fluorometric 
analysis, diabetic rats displayed lower gelatinase activ- 
ity as compared with healthy controls (Fig. 1, lane 3 vs 
1). Semi-quantitative measurement of the enzyme ac- 
tivity was achieved by adjusting each sample to the 
same D N A  concentration. The metalloproteinase 
character of this enzyme activity was proven by inhibi- 
tion with EDTA (Fig. 1, lane 2 and 4). 

A similar pattern was observed with glomerular cys- 
teine proteinases. There was a significant fall in enzyme 
activity in untreated diabetes compared to healthy con- 
trols (cathepsin L + B: 6.7 + 0.8 vs 9.3 + 0.7 U/Bg; ca- 
thepsin H: 1.3 + 0.2 vs 1.9 + 0.2 U/p~g DNA,  p < 0.05). 
Insulin treatment completely prevented the decline in 
cathepsin activity (cathepsin L + B: 9.6 + 0.9 U/gg; ca- 
thepsin H: 1.7 ___ 0.2 U/p~g D N A , p  < 0.05). 

Tubular cysteine proteinases 

The activities of c a theps in sL+B and H were 
measured in isolated proximal tubules. Compared to 
non-diabetic rats, there was a profound decrease in ca- 
thepsin activity (cathepsin L + B: 37.0 + 2.6 vs 28.2 _+ 
1.7 U/gg, p < 0.05; cathepsin H: 8.1+ 0.5 vs 6.7 + 
0.3 U/~tg DNA,  p < 0.05) in untreated diabetic animals. 
This decline in enzyme activity could be complete- 
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ly prevented by insulin treatment (cathepsinL+ B: 
36.4 + 2.4 U/gg, p < 0.05; cathepsin H: 7.6 + 0.4 U/gg 
DNA, p < 0.05). 

Discussion 

In the present study, 3 weeks of streptozotocin-in- 
duced diabetes in the rat caused a significant decline in 
the activities of lysosomal cathepsins and neutral me- 
talloproteinases both in the glomeruli as well as the 
proximal tubules, which was accompanied by a 22 % 
increase in kidney weight. These observations are in 
good agreement with earlier reports that GFR and 
kidney weight are increased in the streptozotocin- 
diabetic rat in poor metabolic control but without 
ketonuria [20]. These renal alterations are similar with 
those observed in human IDDM [1, 2]. For these rea- 
sons, Jensen et al. [21] have suggested that the strepto- 
zotocin-diabetic rat may be considered a useful ex- 
perimental model for studying the early renal alter- 
ations in human IDDM. 

There are three major concerns about measuring 
renal proteinases in this specific animal model: 

1. does streptozotocin itself exert any effects on renal 
proteinases? Our observations indicate that insulin 
prevented the fall in proteinase activity, thus it is un- 
likely that streptozotocin influenced proteinase activ- 
ity in this model. 

2. Normally enzyme activity in tissues are expressed as 
activity per mg protein content. However, this cannot 
be done in the presence of tissue hypertrophy, as pro- 
tein content is no longer constant, but increasing. For 
these reasons, we related all proteinase activity to gg 
DNA, since only minimal cell proliferation in the 
glomerulus or the tubulointerstitium occurs in the kid- 
ney 6 weeks after streptozotocin administration [22]. 

3. It also could be argued that proteinuria may have in- 
fluenced the enzyme activity in this short-term model 
of diabetes. However, in a study by Olbricht et al. [23] 
proteinuria stimulated tubular proteinases. Therefore, 
it seems unlikely that reduced activity in this model was 
due to enhanced urinary protein excretion. 

The crucial question of this study is whether reduced 
renal proteinase activities indeed reflect decreased 
intra- and extracellular protein degradation. While we 
do not have direct experimental evidence, several ob- 
servations suggest a close relationship. Inhibition of 
lysosomal cathepsins may reduce intracellular protein 
breakdown by up to 70 % [24-26], whereas protein de- 
gradation has been shown to be paralleled by enhanced 
cathepsin activity [27-30]. These findings support the 
view that lysosomal proteinases are related to intracel- 
lular protein turnover, such that reduced activity would 
favour protein accumulation. It is also conceivable that 
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a similar relation exists for extracellular matrix turn- 
over, where enhanced matrix deposition could be facili- 
tated by reduced activity of metalloproteinases. 

Finally, accumulating evidence implicates TGF-fl as 
a cytokine relevant in enhanced renal matrix deposi- 
tion in diabetes [31]. In general, TGF-fl stimulates the 
synthesis of various matrix components, such as fibro- 
nectin, collagens, and proteoglycans [32-34]. It simul- 
taneously attenuates matrix degradation by reducing 
the synthesis of serine, cysteine-, and metalloprotein- 
ases [35] and by increasing the levels of their specific in- 
hibitors, such as cystatin C and TIMP [35, 36]. 

In diabetes, Border and Ruoslahti [31] showed that 
TGF-fl mRNA increased with time in glomeruli from 
streptozotocin-diabetic rats and that this increment 
could be reduced by insulin treatment. Immunohisto- 
chemically TGF-flprotein has been demonstrated to be 
increased in the diabetic kidney. These findings are 
consistent with our observations of reduced renal cys- 
teine- and metalloproteinase activities in kidneys from 
diabetic rats, suggesting that this decline in renal pro- 
teinase activity may be mediated by enhanced tissue 
concentrations of TGF-/3. 

Our findings reported here provide additional evi- 
dence that renal hypertrophy in diabetic rats is associ- 
ated with a significant decline in the activities of renal 
cysteine and metalloproteinases. Further support is 
provided by the fact that adequate insulin treatment al- 
most completely prevented renal hypertrophy as well 
as the decline in glomerular and tubular proteinase ac- 
tivities. 
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