Errata

H. Grundling and C. A. Hurst: 'A Note on Regular States and Supplementary Conditions', Lett. Math. Phys. 15, 205–212 (1988). (Received: 16 August 1988.)

The following corrections should be made.

(1) The ETCR on p. 206 should read:

$$[q_i(x), p_i(x')]_{x_0 = x'_0} = ig_{ij} \,\delta^3(\mathbf{x} - \mathbf{x}') \,.$$

(2) The nontriviality condition on p. 208 should read:

$$\wp_D \neq \emptyset$$
 iff $B(\mathscr{C}, \mathscr{C}) = 0$ iff $1 \notin C^*(\delta_{\mathscr{C}} - 1)$.

(3) The third line of the proof of Theorem 3.1 should read:

$$\omega(\delta_{F+\lambda C}) \exp \frac{i}{2} B(F, \lambda C) = \omega(\delta_F) = \omega(\delta_{F+\lambda C}) \exp \frac{-i}{2} B(F, \lambda C).$$

(4) The proof of Theorem 3.2(ii) has an error, in that the simultaneous eigenvector ξ may not have the same eigenvalue 1 for all operators $\pi(\delta_C)$, $C \in \mathscr{C}$. However, 3.2(ii) is contained in the following stronger statement:

THEOREM. If $\pi \in \tilde{P}$, then $\nexists C \in \mathcal{D} \setminus 0$ for which $1 \in P\sigma_{\mathcal{H}}(\pi(\delta_C))$.

Proof: Let $\pi \in \widetilde{P}$ be the GNS-representation of a state $\omega \in \wp_R$, then from the weak continuity we know that all vector states associated with ω are also in \wp_R . Assume $\exists C \in \mathscr{Q} \setminus 0$ such that $1 \in P\sigma_{\mathscr{H}_n}(\pi(\delta_C))$, i.e. $\exists \xi_C \in \mathscr{H}_n$ for which $\pi(\delta_C)\xi_C = \xi_C$, so for the associated vector state, $\omega_C(\delta_C) := (\xi_C, \pi(\delta_C)\xi_C) = 1$, and indeed $\omega_C(\delta_{nC}) = 1 \forall n \in \mathbb{Z}$. Since the symplectic form *B* is nondegenerate, we know $\exists F \in \mathscr{Q}$ such that $B(F, C) \neq 0$. Using the Cauchy–Schwartz inequality:

$$|\omega_C((\delta_C - 1)\delta_{\lambda F})|^2 \leq \omega_C((\delta_C - 1)^*(\delta_C - 1))\omega_C(\delta_{\lambda F}^*\delta_{\lambda F})$$
$$= \omega_C(2 - \delta_C - \delta_{-C}) = 0$$

we find $\omega_C((\delta_C - 1)\delta_{\lambda F}) = 0 \ \forall \lambda \in \mathbb{R}$, and similarly that $\omega_C(\delta_{\lambda F}(\delta_C - 1)) = 0 \ \forall \lambda \in \mathbb{R}$. Then $\forall \lambda \in \mathbb{R}$:

$$\omega_C(\delta_{C+\lambda F}) \exp \frac{-i}{2} B(C, \lambda F) - \omega_C(\delta_{\lambda F})$$
$$= 0 = \omega_C(\delta_{C+\lambda F}) \exp \frac{i}{2} B(C, \lambda F) - \omega_C(\delta_{\lambda F})$$

If for $\lambda \neq 0$ we take $\omega_C(\delta_{C+\lambda F}) \neq 0$, then $B(C, \lambda F) = 4n\pi$, $n \in \mathbb{Z}$, $\forall \lambda \in \mathbb{R} \setminus 0$, and since $B(C, F) \neq 0$, this is impossible to satisfy for all $\lambda \in \mathbb{R} \setminus 0$, so we conclude that $\omega_C(\delta_{C+\lambda F}) = 0 \quad \forall \lambda \notin 4\pi\mathbb{Z}/B(F, C)$, hence $\omega_C(\delta_{\lambda F}) = 0 \quad \forall \lambda \in (0, 4\pi/B(F, C))$. Since $\omega_C(\delta_0) = 1$, this means that ω_C is not regular, which contradicts $\omega \in \wp_R$, and so the assumption $\exists C \in \mathbb{Z} \setminus 0$ such that $1 \in P\sigma_{\mathscr{H}_n}(\pi(\delta_C))$ must be wrong.

M. Puta: 'On the Geometric Prequantization of Poisson Manifolds', *Lett. Math. Phys.* 15, 187–192 (1988). (Received: 20 September 1988.)

Recently, Professor A. Weinstein has pointed out to me that there is a mistake in my paper. The situation is the following. In Definition 3 (p. 189), condition (ii) implies that the Poisson structure Λ_0 is a trivial one. Indeed, Γ_0 is a Lagrangian submanifold of Γ and then for each $f, g \in C^{\infty}(\Gamma_0)$ we have $i^*\omega(X_f, X_g) = 0$, or, equivalent, $\Lambda_0(df, dg) = 0$, where $\Gamma_0 \stackrel{\cup}{\hookrightarrow} \Gamma$ is the canonical inclusion of Γ_0 in Γ . It follows that Λ_0 is trivial, i.e. $\Lambda_0 = 0$.

To avoid this situation, instead of Definition 3, we must consider the following one: A Poisson manifold (Γ_0 , Λ_0) is quantizable if its symplectic realization (Γ , ω) is a quantizable one. Under this definition, our Example (p. 189) remains true and the construction of the Hermitian line bundle (L^0 , π_0 , Γ_0 , $\dot{\nabla}$) also holds. Having the same motivation as for the symplectic case, we can construct the differential operator δ (p. 191, line 7) and then points (i), (iii), (iv) of Theorem 2 (p. 191) still stand. Unfortunately, point (ii) of the theorem is violated and, therefore, our operator δ is not a true prequantum operator. Theorem 3 (p. 192) also drops.

It is an open problem to decide if we can restrict our considerations to a Poisson subalgebra of $C^{\infty}(\Gamma_0)$ such that the above condition (ii) to satisfied.

For the particular case $\Lambda_0 = 0$. Theorem 2 and 3 are verified and, in this case, δ is a true prequantum operator.