Errata

H. Grundling and C. A. Hurst: 'A Note on Regular States and Supplementary Conditions', Lett. Math. Phys. 15, 205-212 (1988). (Received: 16 August 1988.)

The following corrections should be made.
(1) The ETCR on p. 206 should read:

$$
\left[q_{i}(x), p_{j}\left(x^{\prime}\right)\right]_{x_{0}-x_{0}^{\prime}}=i g_{i j} \delta^{3}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

(2) The nontriviality condition on p. 208 should read:

$$
\wp_{D} \neq \emptyset \quad \text { iff } \quad B(\mathscr{C}, \mathscr{C})=0 \quad \text { iff } \quad 1 \notin C^{*}\left(\delta_{\mathscr{C}}-\mathbf{1}\right) .
$$

(3) The third line of the proof of Theorem 3.1 should read:

$$
\omega\left(\delta_{F+\lambda C}\right) \exp \frac{i}{2} B(F, \lambda C)=\omega\left(\delta_{F}\right)=\omega\left(\delta_{F+\lambda C}\right) \exp \frac{-i}{2} B(F, \lambda C) .
$$

(4) The proof of Theorem 3.2(ii) has an error, in that the simultaneous eigenvector ξ may not have the same eigenvalue 1 for all operators $\pi\left(\delta_{C}\right), C \in \mathscr{C}$. However, 3.2 (ii) is contained in the following stronger statement:

THEOREM. If $\pi \in \tilde{P}$, then $\nexists C \in \mathbb{Z} \backslash 0$ for which $1 \in P \sigma_{\mathscr{H}_{\pi}}\left(\pi\left(\delta_{C}\right)\right)$.
Proof: Let $\pi \in \widetilde{P}$ be the GNS-representation of a state $\omega \in \wp_{R}$, then from the weak continuity we know that all vector states associated with ω are also in \wp_{R}. Assume $\exists C \in \mathscr{Q} \backslash 0$ such that $1 \in P \sigma_{\mathscr{H}_{\pi}}\left(\pi\left(\delta_{C}\right)\right)$, i.e. $\exists \xi_{C} \in \mathscr{H}_{\pi}$ for which $\pi\left(\delta_{C}\right) \xi_{C}=\xi_{C}$, so for the associated vector state, $\omega_{C}\left(\delta_{C}\right):=\left(\xi_{C}, \pi\left(\delta_{C}\right) \xi_{C}\right)=1$, and indeed $\omega_{C}\left(\delta_{n C}\right)=1 \forall n \in \mathbf{Z}$. Since the symplectic form B is nondegenerate, we know $\exists F \in \mathscr{Q}$ such that $B(F, C) \neq 0$. Using the Cauchy-Schwartz inequality:

$$
\begin{aligned}
\left|\omega_{C}\left(\left(\delta_{C}-1\right) \delta_{\lambda F}\right)\right|^{2} & \leqslant \omega_{C}\left(\left(\delta_{C}-\mathbf{1}\right) *\left(\delta_{C}-\mathbf{1}\right)\right) \omega_{C}\left(\delta_{\lambda F}^{*} \delta_{\lambda F}\right) \\
& =\omega_{C}\left(2-\delta_{C}-\delta_{-C}\right)=0
\end{aligned}
$$

we find $\omega_{C}\left(\left(\delta_{C}-\mathbf{1}\right) \dot{\delta}_{\lambda F}\right)=0 \forall \lambda \in \mathbb{R}$, and similarly that $\omega_{C}\left(\delta_{\lambda F}\left(\delta_{C}-\mathbf{1}\right)\right)=0 \forall \lambda \in \mathbb{R}$. Then $\forall \lambda \in \mathbb{R}$:

$$
\begin{aligned}
& \omega_{C}\left(\delta_{C+\lambda F}\right) \exp \frac{-i}{2} B(C, \lambda F)-\omega_{C}\left(\delta_{\lambda F}\right) \\
& \quad=0=\omega_{C}\left(\delta_{C+\lambda F}\right) \exp \frac{i}{\gamma} B(C, \lambda F)-\omega_{C}\left(\delta_{\lambda F}\right)
\end{aligned}
$$

If for $\lambda \neq 0$ we take $\omega_{C}\left(\delta_{C+\lambda F}\right) \neq 0$, then $B(C, \lambda F)=4 n \pi, n \in \mathbf{Z}, \forall \lambda \in \mathbb{R} \backslash 0$, and since $B(C, F) \neq 0$, this is impossible to satisfy for all $\lambda \in \mathbb{R} \backslash 0$, so we conclude that $\omega_{C}\left(\delta_{C+\lambda F}\right)=0 \quad \forall \lambda \notin 4 \pi \mathbf{Z} / B(F, C)$, hence $\omega_{C}\left(\delta_{\lambda F}\right)=0 \quad \forall \lambda \in(0,4 \pi / B(F, C))$. Since $\omega_{C}\left(\delta_{0}\right)=1$, this means that ω_{C} is not regular, which contradicts $\omega \in \wp_{R}$, and so the assumption $\exists C \in \mathscr{Z} \backslash 0$ such that $1 \in P \sigma_{\mathscr{F}_{\pi}}\left(\pi\left(\delta_{C}\right)\right)$ must be wrong.
M. Puta: 'On the Geometric Prequantization of Poisson Manifolds', Lett. Math. Phys. 15, 187-192 (1988). (Received: 20 September 1988.)

Recently, Professor A. Weinstein has pointed out to me that there is a mistake in my paper. The situation is the following. In Definition 3 (p. 189), condition (ii) implies that the Poisson structure Λ_{0} is a trivial one. Indeed, Γ_{0} is a Lagrangian submanifold of Γ and then for each $f, g \in C^{\infty}\left(\Gamma_{0}\right)$ we have $i^{*} \omega\left(X_{f}, X_{g}\right)=0$, or, equivalent, $\Lambda_{0}(\mathrm{~d} f, \mathrm{~d} g)=0$, where $\Gamma_{0}{ }^{i}{ }^{i} \Gamma$ is the canonical inclusion of Γ_{0} in Γ. It follows that Λ_{0} is trivial, i.e. $\Lambda_{0}=0$.

To avoid this situation, instead of Definition 3, we must consider the following one: A Poisson manifold (Γ_{0}, Λ_{0}) is quantizable if its symplectic realization (Γ, ω) is a quantizable one. Under this definition, our Example (p. 189) remains true and the construction of the Hermitian line bundle ($\left.L^{0}, \pi_{0}, \Gamma_{0}, \dot{\nabla}\right)$ also holds. Having the same motivation as for the symplectic case, we can construct the differential operator δ (p. 191, line 7) and then points (i), (iii), (iv) of Theorem 2 (p. 191) still stand. Unfortunately, point (ii) of the theorem is violated and, therefore, our operator δ is not a true prequantum operator. Theorem 3 (p. 192) also drops.

It is an open problem to decide if we can restrict our considerations to a Poisson subalgebra of $C^{\infty}\left(\Gamma_{0}\right)$ such that the above condition (ii) to satisfied.

For the particular case $\Lambda_{0}=0$. Theorem 2 and 3 are verified and, in this case, δ is a true prequantum operator.

