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Summary The insulin receptor and the insulin-like 
growth factor I receptor belong to the family of tyro- 
sine kinase receptors. Both receptors appear as a di- 
sulphide-linked dimer; each half of the dimer consist- 
ing of a 130 k M r a-subunit linked to a 90 k M r/3-sub- 
unit. Both halves of the dimer are linked together by 
disulphide bonds to form an (~2  structure. The insu- 
lin receptor functions as an allosteric enzyme in 
which the binding of the hormone to the a-subunit 
leads to a series of conformational changes resulting 
in activation of the/3-subunit tyrosine kinase. Upon 
multisite autophosphorylation the latter becomes 

competent to phosphorylate cellular substrates re- 
sulting in the biological responses of insulin. Recent 
findings have recognized the mitogen activated pro- 
tein kinase cascade as a central signalling circuitry 
linking cell surface receptors, such as the insulin re- 
ceptor, to the nucleus, and playing a role in regula- 
tion of metabolism, growth and differentiation. [Dia- 
betologia (1994) 37 [Suppl 2]: S 125-S 134] 
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Insulin is a key actor in the regulation of metabolism 
with a major role in glucose homeostasis, and impor- 
tant effects on lipid and protein metabolism. Its most 
important target organs are the liver, skeletal muscle 
and fat tissue. Insulin induces its multiple effects by 
interaction with its cell surface receptors, which ap- 
proximately 10 years ago were found to carry tyro- 
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Function tors belonging to this family tyrosine kinase activity 
is necessary for their signalling. With the exception 

dgand binding Of insulin and IGF-I receptors, which have a dimeric 
N-terminal 1-137AA structure, the other family members exist as a mono- 
325-524AA meric structure, in absence of their ligand. However, 

the general rule for monomeric tyrosine kinase re- 
ceptors is that the functionally active receptor has a 
dimeric structure induced by ligand interaction. 
Hence, tyrosine kinase receptors in their activated 
form have a structure similar to that of the insulin re- 

[3 ceptor [6, 7]. 
The insulin receptor gene encodes a polypeptide 

of M r 155 k [8]. This proreceptor undergoes several 
post-translational processing steps including proteo- 
lytic cleavage into a- and fi-subunits, glycosylation, 

Membrane anchor and a fatty acid acylation. The mature insulin recep- 
tor has a M r of 300-350 k and, as already mentioned, Internalization 

substrate binding appears as a disulphide-linked dimer. Each half of 
ATP binding the dimer consists of an a-subunit, M r 130 k, linked 

to a fi-subunit, M r 90 k [8-10]. The two halves of the 
Kinaae regulation dimer are linked together by disulphide bonds be- substrate binding 

tween the two a-subunits to form an a2fi2 structure. 
signal regulation Note that given its subunit composition the insulin re- 

ceptor can also be viewed as a heterotetramer, but 
this makes the comparison with single chain tyrosine 
kinase receptors more difficult. Both subunits are gly- 
coproteins, the a-subunits are entirely extracellular, 
while the /3-subunits are transmembrane glycopro- 
teins [6, 11-13]. Two isoforms of the insulin receptor 
exist, due to alternative splicing of the receptor tran- 
script to include, or not, exon 11 [4, 8]. Expression of 
exon 11 leads to the presence of 12 additional amino 
acids situated at the carboxyterminus of the insulin 
receptor a-subunit. Although the precise physiologi- 
cal role of the two isoforms of the receptor remains 
to be defined, the protein containing the residues en- 
coded by exon 11 has reduced binding affinity[14] 
and receptor downregulation [15], but increased tyro- 
sine kinase activity [16]. 

Schematically one can distinguish the following 
major functional domains in the insulin receptor [8- 
10, 13] (Fig. 1): 

COOH COOH 
Fig.1. Schematic representation of the insulin receptor. The 
black region in the a-subunit corresponds to a region rich in 
cysteine residues, black circles correspond to single cysteine 
residues. Adapted from Ullrich et al. [12] 

sine kinase activity in the receptor/3-subunit [1-3]. 
Nearly 40 years ago the pioneering work of Edwin 
Krebs and Edmond Fischer implicated protein phos- 
phorylation as a means of regulating glycogen phos- 
phorylase activity (4). Protein phosphorylation/de- 
phosphorylation is now recognized as a critical me- 
chanism in signal transduction used by numerous 
growth factors and hormones, including insulin [4, 5]. 
Until recently the link between the insulin-stimula- 
ted (serine/threonine) phosphorylation/dephospho- 
rylation of proteins and the insulin-stimulated recep- 
tor tyrosine kinase has remained elusive. During the 
last couple of years, an explosion of new information 
has allowed the unravelling of the components of the 
network going from the cell surface tyrosine kinase 
receptors to intracellular events and modification of 
gene expression. 

Structure of the insulin receptor 

The insulin receptor and the related IGF-I receptor 
belong to the family of receptors with tyrosine ki- 
nase activity, which have common structural and 
functional properties. Schematically, they have an ex- 
tracellular ligand binding domain, a single transmem- 
brane domain, and a cytoplasmic domain displaying 
the tyrosine kinase activity [6, 7]. For all the recep- 

(i) in the a-subunit: 
a hormone binding domain within the extreme N- 
terminal region comprising amino acids 1-137, and a 
second comprising amino acids 325-524 [17, 18]; 
(ii) in the fi-subunit: 
1. the juxtamembrane region involved in receptor in- 
ternalization and substrate recognition [t0]; 
2. the tyrosine kinase domain with the ATP binding 
site in which lysine 1018 plays a major role, and three 
regulatory autophosphorylation sites tyrosine 1046, 
1050, and 1051 (numbering system published by Ull- 
rich et al. [13]). 
3. the carboxy-terminus containing two autophos- 
phorylation sites, tyrosine 1316 and tyrosine 1322, 
the role of which is not precisely known. In addition 
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Fig. 2. Schematic representation of the insulin receptor activa- 
tion 

the carboxy-terminus also carries several threonine/ 
serine phosphorylation sites, which are thought to 
participate in negative regulation of the receptor 
tyrosine kinase activity. 

Activation of the insulin receptor 

The insulin receptor as an allosteric enzyme .  It is now 
generally accepted that insulin receptor tyrosine ki- 
nase activity is essential for all known early and late 
cellular responses evoked by insulin. In this context 
it is important to understand the molecular mechan- 
ism by which the hormone activates the kinase. Our 
data and those from several other laboratories indi- 
cate that the insulin receptor behaves as an allosteric 
enzyme, where, in the disulphide-linked dimeric re- 
ceptor, hormone binding to the a-subunit activates 
the cytoplasmic tyrosine kinase of the /3-subunit 
through conformational changes (see article by De 
Meyts in this issue). The first suggestion in favour of 
ligand-induced receptor changes was provided by 
Donner and Yonkers [19] and Pilch and Czech [20], 
who showed that insulin binding alters the conforma- 
tion of the c~-subunit and modifies the relative posi- 
tion of the two a-subunits in the ~ 2  receptor. La- 
ter, Herrera and Rosen [21] reported that receptor 
autophosphorylation is associated with a conforma- 
tional change in the vicinity of the major autophos- 
phorylation sites of the receptor. To delineate these 
conformational changes and to establish whether the 
ligand-induced changes were different from those in- 
duced by phosphorylation, we developed a radioim- 
munoassay of the receptor using metabolically label- 
led receptors (native receptors and kinase deficient 
receptors) and antipeptide antibodies directed 

against defined receptor domains. Specifically, anti- 
peptide antibodies to the following sequences of the 
receptor/3-subunit were used: (i) positions 962-972 
in the juxtamembrane domain, (ii) positions 1247- 
1261 at the end of the kinase domain, and (iii) posi- 
tions 1294-1317, and (iv) positions 1309-1326, both 
in the receptor C-terminus. We made the following 
key observations: (i) insulin binding to the a-subunit 
leads to a conformational change in the receptor/3- 
subunit, which appears to be limited to the C-termi- 
nus; (ii) phosphorylation of the receptor results in dif- 
ferent conformational changes, which can be detect- 
ed in at least three regions, the juxtamembrane 
domain, the kinase domain, and the C-terminus [22, 
23]. 

Based on our observations [1-3] and on data from 
other laboratories [19-21, 24, 25] we proposed the 
following schematic model for the insulin receptor 
activation [23]. Insulin binding to the receptor c~-sub- 
unit induces a conformational change in the extra- 
cellular domain [19, 20], and a modification in the 
interaction between the two receptor halves [25]. 
These changes are transmitted to the fi-subunit 
down to its C-terminus, leading to a short-lived, 
pre-activated receptor that becomes competent to 
bind ATR The ensuing receptor autophosphoryla- 
tion induces a second conformational change, dis- 
tinct from the first, which affects the major part of 
the cytoplasmic domain. Although the precise role 
of these phenomena remains to be determined, we 
would like to suggest that they could lead to un- 
masking of the receptor catalytic domain and/or of 
binding sites for cellular proteins, allowing enzyme- 
substrate interactions (Fig.2) [23]. 

The physiological relevance of the hormone-in- 
duced conformational change in the receptor was 
first suggested by our observation that it also took 
place in intact cells [23]. More important, our recent 
work on a naturally occurring receptor mutant pro- 
vides compelling evidence in favour of the physiolo- 
gical role of conformational changes in insulin recep- 
tor kinase activation [26]. In brief, a mutation substi- 
tuting a valine for phenylalanine at residue 382 in 
the insulin receptor c~-subunit has been found in two 
sisters with a genetic form of extreme insulin resis- 
tance. This receptor mutation impairs the ability of 
the hormone to activate autophosphorylation of solu- 
bilized receptors and phosphorylation of substrates. 
Hence, it was thought that a defect in the insulin-in- 
duced conformational change might explain the func- 
tional defect of the mutant receptor. This appears to 
be the case, since we were able to demonstrate that 
the mutant receptor is locked in its inactive config- 
uration. However, we found two monoclonal antibo- 
dies directed to the extracellular domain which are 
capable of restoring the mutant receptor kinase activ- 
ity. Accordingly, activation of the mutant receptor 
with these antibodies was accompanied by restora- 
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tion of conformational changes in the/3-subunit C- 
terminus [26]. 

From these data, we have drawn the two following 
conclusions: (i) a causal link exists between receptor 
kinase activation and the occurrence of conforma- 
tional changes; (ii) ligands other than insulin, such as 
antibodies, which perturb the extracellular domain, 
can serve as alternative ways to restore the mutant  in- 
sulin receptor kinase. This might have promising im- 
plications for the design of new drugs to activate the 
insulin receptor kinase. 

Intermolecular insulin receptor phosphorylation. Is 
activation of the a2fi2 insulin receptor due to an intra- 
molecular mechanism or an intermolecular one? This 
is rather difficult to answer since the autophosphory- 
lating receptor is both substrate and enzyme at the 
same time. Classically the order of the phosphoryla- 
tion reaction has been assumed to be indicative of 
the intramolecular (first order) versus intermolecu- 
lar (non-first order) nature of the mechanism in- 
volved, but such analysis is not without potential arti- 
facts. Therefore, we have used a different approach 
which allows us also to investigate the intramolecu- 
lar versus intermolecular nature of receptor phos- 
phorylation in intact cells and with purified receptors. 

In brief, mouse NIH 3T3 fibroblasts were trans- 
fected with two cDNA constructs, the first one cod- 
ing for a kinase deficient human insulin receptor (ki- 
nase deficient due to a mutation of the ATP-binding 
site, i.e. lysine 1018 mutated to alanine), and a sec- 
ond one coding for a chimeric receptor with the ex- 
tracellular and transmembrane domains correspond- 
ing to the human epidermal growth factor (EGF)-re- 
ceptor, and the intracellular domain to the human in- 
sulin receptor [27]. The kinase deficient insulin recep- 
tor has an a~2 structure, while the EGF-insulin chi- 
mera shows a monomeric structure in the absence of 
ligand. These receptors are structurally different and 
can be immunopurified with antibodies to their dis- 
tinct human extracellular domain. Using this model 
system we were able to show that addition of EGF 
will lead to activation of the chimeric receptor, but 
more importantly, will also lead to tyrosine phosphor- 
ylation of both the kinase deficient insulin receptors 
and peptides corresponding to the "normally" occur- 
ring autophosphorylation sites of the insulin recep- 
tor. Using highly purified receptor preparations the 
same phenomena were observed, demonstrating a di- 
rect transphosphorylation of kinase deficient insulin 
receptors by the insulin receptor cytoplasmic domain 
of the chimeric receptors. From these data we con- 
cluded that the autophosphorylation of the insulin 
receptor occurs through an intermolecular model 
rather than an intramolecular one. Recent studies 
show that also within an ~ 2  insulin receptor a trans 
mechanism occurs, in which hormone binding to the 
ct-subunit of one of the c~-/3 dimers appears to lead to 
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the phosphorylation of the fi-subunit of the other a-fl 
dimer i.e. situated in trans [28]. Note that intermole- 
cular phosphorylation appears to be the rule, since it 
has been found for all the tyrosine kinase receptors 
examined so far [7, 29, 30]. Concerning the biological 
implications of such an intermolecular transphos- 
phorylation/transactivation model involving insulin 
receptors we have suggested that it could underlie 
the phenomenon of spare receptors seen in insulin ac- 
tion [27]. Indeed, the fact that the maximal effect of 
insulin for various bioresponses is observed at low 
level of receptor occupancy (e.g. 5-10 % occupancy 
of receptors is needed to see the maximal effect of in- 
sulin on glucose transport in adipocytes) could be due 
to ligand-occupied receptors transphosphorylating 
and by doing so, transactivating unoccupied recep- 
tors resulting in an amplification step at the receptor 
level [27]. 

We next hypothesised that transphosphorylation/ 
transactivation could also occur between heterolo- 
gous but related receptors, such as insulin receptors 
and IGF-I receptors. Our rationale was as follows: In- 
sulin and insulin-like growth factor-I (IGF-I) are 
structurally related polypeptides that elicit a similar 
pattern of biological effects after binding to their re- 
spective cell surface receptors [31]. Like their li- 
gands, insulin receptors and IGF-I receptors are high- 
ly homologous. They are oligomeric glycoproteins 
composed of two extracellular a-subunits and two 
transmembrane fl-subunits, which have a high de- 
gree of homology in most domains. Both receptors 
bind insulin and IGF-I, but each receptor binds its 
cognate ligand with a 100-1000-fold higher affinity 
than the cross-reacting polypeptide. For both recep- 
tors interaction of the ligand with the c~-subunit sti- 
mulates the fl-subunit tyrosine kinase activity lead- 
ing to autophosphorylation of the latter and tyrosine 
phosphorylation of intracellular substrates. Despite 
their homologous structures and their overlapping 
biological effects, the insulin and the IGF-I receptors 
seem to play significantly different physiological 
roles. The main function of insulin consists in the reg- 
ulation of metabolism, while IGF-I is considered to 
be involved chiefly in cellular proliferation and dif- 
ferentiation [32]. Generally speaking, the effects on 
cell growth seen with high concentrations of insulin 
can be accounted for by cross-binding of insulin to 
the IGF-I receptor. However, in some cell lines, 
which express the two receptors (i.e. human skin fi- 
broblasts and CHO-K1 cells), insulin seems to be mi- 
togenic through its own receptor [33, 34]. Additional- 
ly, in fibroblasts overexpressing the human insulin re- 
ceptors [35, 36] and in a murine lymphoid T-cell leu- 
kaemia cell-line totally devoid of IGF-I receptors, it 
has been observed that insulin leads to mitogenesis 
through its own receptor [37, 38]. Based on the pre- 
vailing idea discussed earlier that intermolecular 
transphosphorylation occurs among homologous tyr- 
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osine kinase receptors, we thought that it might also 
take place among heterologous, but related receptor 
tyrosine kinases. Hence, we investigated whether the 
activated insulin receptor kinase could phosphory- 
late and transactivate the IGF-I receptor. Using a 
cell-free phosphorylation assay we were able to de- 
monstrate that hormone-stimulated insulin receptors 
can indeed transphosphorylate, and more important- 
ly, transactivate IGF-I receptors [39]. 

Further, recent studies have identified the exis- 
tence of insulin/IGF-I receptor heterodimers in var- 
ious tissues and cell lines, composed of an insulin re- 
ceptor a/3 half-dimer and an IGF-I receptor at3 half- 
dimer [40, 41]. Based on these observations it seems 
reasonable to imagine that transphosphorylation/ 
transactivation reactions between insulin and IGF-I 
receptor/3-subunits also exist within normally occur- 
ring insulin/IGF-I receptor hybrids. While the pre- 
cise physiological significance of transphosphoryla- 
tion and transactivation involving insulin and IGF-I 
receptors remains to be determined, the demonstra- 
tion of such receptor interactions provides us with a 
novel insight into the intricate biological effects 
evoked by the polypeptides binding to these recep- 
tors. We proposed that such phenomena may play a 
role in mediating growth promoting responses of in- 
sulin, and as such explain, at least in part, the pleio- 
tropism of insulin and related growth factors [39]. 

Signalling by insulin and IGF receptors 

IRS-I and Pt Ins-3 kinase. After the discovery that the 
insulin receptor is a tyrosine kinase and knowing that 
several proteins are modified on serine/threonine re- 
sidues (phosphorylated or dephosphorylated), it was 
suggested that some or all of the effects of insulin 
were due to a phosphorylation/dephosphorylation 
cascade with a switch kinase at some level that con- 
verts the phosphotyrosine signal into phosphoserine/ 
phosphothreonine signals. According to this scenario 
it was anticipated that the first, direct receptor sub- 
strate ought to be phosphorylated on tyrosine resi- 
dues [9, 42]. 

Several laboratories, including our own, reported 
on endogenous tyrosine phosphorylated substrates 
with M r values ranging from 15-220 k [43-45]. A ma- 
jor breakthrough was achieved by White et al. [45] 
who identified, and later on cloned and sequenced 
[46] what they have called IRS-I, insulin receptor 
substrate-I. In brief, IRS-I or p185 is a cytoplasmic 
protein containing 34 tyrosines, 14 included in con- 
sensus sequences YMXM or YXXM, which repre- 
sent recognition motives for specific target proteins 
containing SH2 domains [10, 46]. SH2 domains 
(SH---Src homology) are non-catalytic regions of ap- 
proximately 100 amino acids able to bind tyrosine- 
phosphorylated polypeptides. These domains have 

been shown to have an important role in activation 
of signal transduction pathways by formation of mul- 
timeric protein complexes [47, 48]. Among the pro- 
teins containing SH2 domains and which have been 
found to directly interact with several tyrosine ki- 
nase receptors is Ptd Ins-3-kinase. Ptd Ins-3-kinase is 
a heterodimeric protein composed of an 85-kDa sub- 
unit (p85) and of a 110 kDa subunit endowed with 
Ptd Ins-kinase activity. The p85 subunit contains one 
SH3 and two SH2 domains and is the regulatory sub- 
unit of the kinase [47, 48]. This enzyme phosphory- 
lates the D-3 position of the inositol ring of the phos- 
phatidylinositol to produce newly identified phos- 
phatidylinositol phosphates: Ptdlns3P, PtdIns(3,4)P 2 
and PtdIns(3,4,5) P3. These phosphoinositiol lipids 
are thought to participate in a recently disclosed 
pathway for transmission of cellular signals including 
those induced by insulin. However, previous work 
had shown an insulin-stimulating effect on Ptd Ins-3- 
kinase only in fibroblasts [49] or CHO cells [50], 
which are not canonical examples of physiological 
target tissues for insulin. Therefore, to study the bio- 
logical relevance of Ptd Ins-3-kinase in mediation of 
insulin metabolic responses, it was critical to show 
the occurrence and regulation of this enzyme in rat 
adipocytes and skeletal muscle, which are major insu- 
lin targets for glucose transport and utilisation. We 
were able to show that in rat adipocytes [51], 3T3L1 
adipocytes [52] and skeletal muscle [53] Ptd Ins-3-ki- 
nase is efficiently and rapidly stimulated by insulin, 
and that this activation appears to be coupled to a re- 
cruitment of the Ptd Ins-3-kinase to the plasma mem- 
brane [51]. We would like to suggest that the shift of 
the Ptd Ins-3-kinase to the membrane could repre- 
sent the necessary event that allows the enzyme to 
encounter and phosphorylate its natural substrates, 
i.e. the inositol phosphates. More recently, using in 
vitro reconstitution experiments, we have shown that 
Ptd Ins-3-kinase associates directly with IRS-I ob- 
tained from insulin or - IGF-I stimulated fibroblasts. 
Importantly, the interaction between Ptd Ins-3-ki- 
nase and tyrosine phosphorylated IRS-I appears to 
be sufficient to activate the Ptd Ins-3-kinase [54]. 
Our data also emphasize the crucial role of IRS-I in 
the mechanism of Ptd Ins-3 kinase activation by 
both insulin and IGF-I receptors. We did not detect 
major differences in the way the insulin receptor 
compared to the IGF-I receptor leads to tyrosine 
phosphorylation of IRS-I and thereafter interacts 
with Ptd Ins-3-kinase [54]. This could suggest that 
the specificity of the cellular programme elicited by 
the two receptors is not likely to be mediated at this 
level. While P.td Ins-3-kinase has been implicated in 
cell growth, the precise role of the inositol 3-phos- 
phates remains to be determined. Our work showing 
an insulin-regulation of Ptd-Ins-3 kinase in major in- 
sulin target tissues (adipocytes and muscle) favours 
the idea that Pt-Ins-3-kinase function is not strictly 
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limited to growth promotion, but rather could also 
operate at the level of metabolic control. In this con- 
text the 110 k Ptd Ins-3-kinase subunit presents 
homology with the yeast protein Vps34p, which 
plays a role in the targetting of proteins to the yeast 
vacuole [55]. By analogy it is tempting to speculate 
that the Ptd Ins-3-kinase is involved in the insulin-in- 
duced glucose transporter translocation in adipo- 
cytes and skeletal muscle [53]. 

The MAP-kinase cascade. The mechanism by which 
cellular signals generated at the plasma membrane 
as modifications in tyrosine phosphorylation result 
in changes in the level of serine/threonine phosphory- 
lation has been a major focus during the last years in 
the research area relating to cell metabolism and mi- 
togenesis in general, and not only in the area of insu- 
lin action. 

In the mid 1980's we painstakingly started to pu- 
rify tyrosine phosphorylated enzymes with serine/ 
threonine kinase activity, which were stimulated by 
insulin [56]. In 1987 Ray and Sturgill [57] identified a 
mitogen-activated protein kinase [named MAP-ki- 
nase, or also more recently, extracellular signal regu- 
lated kinase (ERK)], a serine/threonine kinase that 
phosphorylated and partially reactivated dephos- 
phorylated 90 k $6 protein kinase II (referred to as 
the pp 90 rSk or RSK for ribosomal $6 kinase). More 
important, in 1990 the same authors showed that 
MAP kinases have to be tyrosine and serine/threo- 
nine phosphorylated to be active [58]. Another  ma- 
jor breakthrough came in 1991 when two MAP-kina- 
ses p42 mapk (ERK-2) and p44 mapk (ERK-1) were 
cloned and sequenced, and found to belong to the fa- 
mily of kinases which are involved in regulating the 
cell cycle in eukaryotes as diverse as man and yeast 
[59]. Taking advantage of the published amino acid 
sequences of ERK1 we produced an antipeptide anti- 
body to ERK1 and showed that the insulin-stimulat- 
ed serine/threonine kinase activity that we were at- 
tempting to isolate earlier corresponded, at least in 
part, to the MAP-kinase, ERK1 [60]. We were able 
to demonstrate that ERK1 is a dual kinase as far as 
its autophosphorylation is concerned, although the 
exact role of the phenomenon in activation of the en- 
zyme remains to be determined [60]. Assuming that 
ERK1 was part of a phosphorylation/dephosphory- 
ation cascade, we decided to use the antipeptides to 
ERK1 to isolate upstream and/or downstream com- 
ponents of the cascade. In doing so, we were able to 
isolate a functional complex consisting in ERK1 and 
the 90 k $6 kinase II, the formation of which was fa- 
voured by insulin (in fibroblasts) or nerve growth fac- 
tor (in PC12 cells) [61, 62]. The essence of the whole 
concept of a kinase cascade triggered by a ligand-acti- 
vated receptor kinase such as the insulin receptor - 
and involving MAP kinase and $6 kinase was based 
for the major part on clever reconstitution experi- 

ments, Our data showing the existence of ligand- 
regulated functional enzymic complexes in intact 
cells provided a solid argument in favour of an impor- 
tant physiological role of these two kinases in the sig- 
nalling pathway used by growth factors and hor- 
mones. While the precise role of the RSK in $6 phos- 
phorylation remains to be determined, data from 
Dent et al. [63] and Gomez et al. [64] puts the MAP- 
kinase cascade in a hot spot of insulin action. In- 
deed, the authors demonstrated that ISPK1 (insulin 
stimulated protein kinase-1), is closely related, if not 
identical, to the frog $6 kinase II, and plays a major 
role in glycogen metabolism since it phosphorylates 
the G subunit of phosphatase 1, that in turn leads to 
(i) dephosphorylation and activation of glycogen syn- 
thase and, (ii) dephosphorylation and inactivation of 
phosphorylase kinase. Together these data demon- 
strate that, besides its potential effect on protein 
synthesis via the $6 kinase II/S6 protein pathway, 
MAP kinase appears as a key kinase in the regula- 
tion of major metabolic responses such as glycogen 
synthesis. In addition, preliminary data from our 
laboratory indicate that MAP-kinase might be in- 
volved in regulation of glucose transport [65]. In 
fact, the MAP-kinases are likely to subserve a broad 
range of cellular functions as a growing list of sub- 
strates is appearing [for review see 66, 67]. In brief, 
at least the following cytoplasmic substrates, have 
been identified; p90 rsk, ISPK, MAPKAP-kinase 2 
(MAPK-activated protein kinase 2), and phospho- 
lipase A2. Further, a key nuclear function is sus- 
pected, given the fact that a series of transcription 
factors are substrates such as c-Myc, c-Myb, p62 TcF 
and SRF. Finally, tyrosine kinase receptors such as 
the EGF receptor also appear to be substrates for 
the MAP-kinases. 

During the last couple of years an amazing flurry 
of reports have appeared addressing the sequence of 
events which link cell-surface receptor tyrosine kina- 
ses to gene expression. Together these reports en- 
able us to build a kinase cascade going from the cell- 
surface to the nucleus - as shown in Figures 3 and 4. 
It is impossible in such a short review to cite all the 
scientists who have contributed to this research area, 
but the work of the two pioneers E. Fischer and E. 
Krebs, 1992 Nobel Prize Laureates in Physiology or 
Medicine, has had a decisive impact in the conceptua- 
lisation of a phosphorylation/dephosphorylation cas- 
cade. While it is clear that the depicted pathway is 
an over-simplified model, it clearly reflects the im- 
pressive progress which has been made in under- 
standing signalling by tyrosine kinase receptors such 
as the insulin and IGF-I receptor. The complete sig- 
nalling circuitry is certainly not linear, but very likely 
extremely complex and intricate as the different kina- 
ses involved have several substrates, and evidence al- 
ready exists for negative feedback loops. One extre- 
mely urgent issue to be addressed relates to the speci- 
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ficity of signalling as this MAP-kinase cascade is trig- 
gered not only by several tyrosine kinase receptors, 
but also by G protein coupled receptors; all of these 
receptors having clearly distinct final effects on cell 
metabolism and destiny. Classically it is believed that 
different tyrosine kinase receptors generate their spe- 
cific cellular programme by interacting with a parti- 
cular signalling pathway or with a particular combi- 
nation of signalling molecules. However, we have 
gathered data indicating that - at least in some cell 
systems - specificity might also be generated by the 
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Fig. 5. Role of phosphatases in the MAP-kinase cascade 

way receptor tyrosine kinases "talk" to signalling mo- 
lecules [62, 69]. Thus, we would like to suggest that a 
particular cellular programme can result from the 
same signalling events, but which have a vigor and 
duration specific for a tyrosine kinase receptor chief- 
ly involved in regulation of metabolism, or for a re- 
ceptor mainly participating in the control of cell 
growth and differentiation. 

Another important factor which could create spe- 
cificity relates to the cellular localization of the sig- 
nalling molecules involved. For example, the MAP- 
kinase, ERK1, will translocate to the nucleus under 
certain conditions [62, 67]. It is clear that the poten- 
tial substrates in cytoplasmic versus nuclear compart- 
ments are different, and hence the occurrence or ab- 
sence of the nuclear translocation event will partici- 
pate in generation of specific signals. 

Finally, phosphatase activities leading to modula- 
tion or termination of the signalling molecules are 
also potentially important actors in the generation of 
biological specificity (Fig,5). Again, limiting our- 
selves to the MAP kinase cascade we have evidence 
showing that phosphatase activities dephosphorylat- 
ing MAP kinase are regulated differently depending 
on the agent used to stimulate the kinase cascade, 
and this certainly could participate in fine tuning of 
the signalling, and hence of the final bioresponses 
[70, 71]. 

Conclusion 

While the progress made during the last couple of 
years in our understanding of the mode of action of 
tyrosine kinase receptors, including the insulin and 
IGF-I receptor, is impressive, our current view is cer- 
tainly fragmented. In this context the MAP kinase 
signal transduction cascade appears as an important 
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p a t h w a y  used  by  severa l  cell act ivators ,  bu t  it is un-  
l ikely to be  the  on ly  one  t r iggered  by  insulin. G i v e n  
the  exp los ion  of  new in fo rma t ion ,  which  we have  wit- 
nessed  recently,  one  can  be  conf iden t  tha t  r ap id  p ro-  
gress will con t inue  to be  achieved.  A l r e a d y  the  re-  
cent ly  d i s cove red  mo lecu l e s  pa r t i c ipa t ing  in insulin 
ac t ion  m a y  r e p r e s e n t  poss ib le  n e w  avenues  of  re-  
sea rch  for  p r e v e n t i o n  and  t r e a t m e n t  of  insulin resis- 
t ance  and  diabetes ,  which  is our  u l t ima te  goal.  
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