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Summary Insulin-dependent diabetes develops as a 
consequence of the selective destruction of insulin- 
producing cells by an autoimmune reaction. How- 
ever, the precise series of events which trigger anti-is- 
let autoreactive T cells is still being investigated. Ma- 
jor issues will need to be raised before a comprehen- 
sive view of the anti-islet autoimmune reaction can 
be delineated. These include defining the primary 
site of activation of autoreactive lymphocytes and ex- 
ploring hypotheses to explain the chronicity of the 
diabetes process. These issues all relate with the 
more  general di lemma of the actual role of the islets 

of Langerhans in breaking self tolerance to beta-cell 
antigens. By studying non-obese diabetic mice de- 
prived of beta cells following a single injection of a 
high dose of alloxan at 3 weeks of age, we recently 
obtained evidence that the activation of autoreactive 
T cells requires the presence of target islet cells in or- 
der to develop. [Diabetologia (1994) 37 [Suppl 2]: 
$90-$981 
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Insulin-dependent diabetes mellitus ( IDDM) devel- 
ops as a consequence of the selective destruction of 
insulin-producing cells by an autoimmune aggres- 
sion. Autoantibodies associated with the disease pro- 
cess are detected against islet-cell cytoplasmic anti- 
gens [1], insulin [2], G A D  [3], carboxypeptidase H 
[4], peripherin [5], a 37-40 kDa antigen [6], the gam- 
ma-interferon-inducible p69 antigen [7] and ubiqui- 
tous autoantigens [8]. Similarly, T cells which prolif- 
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Table 1. Major steps possibly involved in the development of 
autoimmune diseases 

Genetic background 
T-cell repertoire selection (role of MHC) 
Capacity to present autoantigens (role of MHC) 
Genetic defects 

�9 decreased apoptosis (lpr, gld...) 
�9 nul complement alleles 
�9 target organ anomaly 

Immune regulation 
Biased B- or T-cell repertoire 

�9 lymphoproliferative disorders 
�9 expression of transgenic autoreactive 
B- or T-cell receptor 

�9 transgenic expression of bcl-2 
Cytokine overproduction a 

. interferon, interleukin-2, tumour necrosis factor.�9 
THI/TH2 imbalance a 
Idiotypic network imbalance ~ 
Bypass of T-cell ignorance ~ 

�9 molecular mimicry 
. systemic presentation of "share" epitopes or antigens 

Defective suppression" 
Target organ 

Aberrant expression of class II MHC molecules a 
Quantitatively altered autoantigen expression 
functional alteration ~ 
Delayed autoantigen expression during ontogeny a 
Expression of an abnormal autoantigen a 

a Possible target of environment 

erate in the presence of human insulinoma cells, [9] 
murine [10] or porcine [11] islet cells, a 38 kDa secre- 
tion granule antigen [12-14], or G A D  are detected in 
IDDM [15-17]. However, many islet autoantigens 
defined by B or T-cell recognition are not strictly 
beta-cell specific, and the detection of autoantibo- 
dies and autoreactive T cells does not infer their par- 
ticipation in tissue lesions. In experimental EAE,  the 
activation of T cells specific for different basic mye- 
lin protein epitopes following immunization against 
the immuno-dominant  1-11 peptide indicates the dif- 
ficulty of defining epitopes directly responsible for 
initiating an autoimmune process�9 In animal models, 
the transfer of diabetes by polyclonal T cells from 
diabetic animals or autoreactive T-cell clones in 
naive, irradiated, nude or SCID syngeneic recipients 
brings definitive evidence for autoimmunity to beta 
cells [19-24]. Interleukin-2 activated, Kd-restricted, 
CD8 + T cells from diabetic NOD mice specifically 
lyse normal islet cells in vitro [25]. Class I-restricted 
cytototoxic T cells specific for normal islet cells have 
also been evidenced in mice expressing a gamma-in- 
terferon transgene on beta cells [26]. 

Immune effector mechanisms of beta-cell destruc- 
tion are controversial�9 The presence of cytotoxic T 
cells and the immunodetect ion of perforin-expres- 
sing CD8 + T cells in diabetic NOD mice [25, 27], 
the extensive CD8 + T-cell infiltration of syngeneic 
pancreas grafts at the time of diabetes recurrence 
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[28] and the predominance of the CD8 § T cell within 
insulitis at diabetes onset [29] in the human favour 
the role of CD8 § cytotoxic T cells in beta-cell destruc- 
tion. Similarly, CD8 § T cells are required to achieve 
efficient transfer of diabetes in the NOD mouse [19, 
20]. Diabetes occurs in CD8+/CD4 mice expressing 
LCMV proteins on beta cells [30]. However, CD4 + 
T-cell clones initiate islet-cell destruction in the ap- 
parent absence of CD8 + T cells in (CBAxNOD)F1 
recipients [23, 31]. The recurrence of diabetes 
against allogeneic islets deprived of class II-expres- 
sing cells in the BB rat and the NOD mouse [32, 33] 
points to non-MHC-restricted effector mechanisms�9 
Autoantibodies are unlikely to be major effectors of 
beta-cell destruction [34]. The unique sensitivity of 
beta cells to cytokines in vitro [35] has been pro- 
posed to explain the non-MHC-restricted destruc- 
tion of beta cells. However, in vivo exposure of histo- 
compatible islets to cytokines during an allogeneic 
immune reaction does not lead to their destruction 
[36]. Diabetes is prevented in the NOD mouse by 
TNFa  [37, 38]. Transgenic mice expressing TNF on 
beta cells develop insulitis but not diabetes [39, 40]. 

The precise series of events which trigger the anti- 
islet T-cell autoimmune reaction is still hypothetical�9 
Effector mechanisms are under the control of a fine- 
ly tuned immune balance between counteracting T- 
cell subsets [41, 42]. In most models, the immune acti- 
vation traces back to an interaction between antigen 
presenting cells and CD4 + T cells [42]. The trigger- 
ing role of environmental factors [43, 44] has not 
been directly proven in spontaneous forms of dia- 
betes. The alternative hypothesis of a primary im- 
mune defect (i.e. defective T- or B-cell repertoire se- 
lection, abnormal expansion of a lymphocyte clone, 
T-cell regulatory defect) has also not received direct 
experimental support. Moreover,  the association of 
different contributing factors is a reasonable hypo- 
thesis in the light of the polygenic susceptibility to 
diabetes [45]. 

Major issues will need to be raised before a com- 
prehensive view of the anti-beta-cell immune reac- 
tion can be delineated. The primary activation site of 
auto-reactive lymphocytes remains undefined (Ta- 
ble 1). Whether  the first activation of the immune 
system involves the direct recognition of beta-cell au- 
toantigens or that of antigens sharing cross-reactive 
epitopes with islet cell autoantigens is an open issue. 
Whether  the local heterogeneity of beta cells [46] or 
a step-wise activation of autoreactive T cells explain 
the chronicity [42] of the diabetes process is unset- 
tled. Likewise, the long lag-time observed between 
the first detection of islet cell autoantibodies in sub- 
jects at risk for diabetes and first evidence for defec- 
tive insulin secretion, leaves open the shape of the 
curve plotting the beta-cell mass against the duration 
of the autoimmune process following the postulated 
triggering event. These issues all relate to the more  
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general dilemma of the actual role of the islets of 
Langerhans in breaking self tolerance to islet anti- 
gens. 

Environmental factors 

Epidemiological evidence supports the role of envi- 
ronmental factors in the development of human 
IDDM. Concordance for IDDM in identical twins 
only reaches 30-40 %. An epidemiological relation- 
ship between viral infections and diabetes has been 
documented. Geographical differences in the inci- 
dence of diabetes and recent increase in the inci- 
dence of diabetes in Finland and in Sardinia cannot 
be explained by genetic differences. A modified inci- 
dence of diabetes is seen in migrants from geographi- 
cal areas with a low prevalence to areas with a high 
prevalence of diabetes. Environmental factors modi- 
fy the incidence and prevalence of diabetes in animal 
models. The  incidence of diabetes is decreased in 
NOD mice by raised temperature, by diets contain- 
ing no proteins [47], injection of streptococcal pre- 
parations, by infection with LCMV, lactate dehydro- 
genase, mouse hepatitis virus infections [48, 49]. In 
the BB rat, the prevalence of diabetes is decreased 
by non-protein diets [50], by low essential fatty acid 
diet [51], or by LCMV infection [52]. The occurrence 
of diabetes in the NOD mouse is also influenced by 
the hormonal status. Androgen treatment and oo- 
phorectomy of female NOD mice slows the progres- 
sion to diabetes. The castration of males increases 
the incidence of diabetes [53, 54]. Non-specific inter- 
ference with the immune system following a single in- 
jection of complete Freund's adjuvant (CFA) pre- 
vents the development of diabetes in the NOD 
mouse, while the injection of polyinosinic polycitidi- 
lic acid (poly I:C), an inducer of alpha-interferon, ac- 
celerates diabetes in the BB rat [55]. An outburst of 
diabetes has been observed in diabetes-resistant BB 
rats following Kilham's virus infection [56]. Expo- 
sure of BB rats to viral pathogens has been shown to 
influence the action of poly I:C [57]. The study of the 
T-cell repertoire in the NOD mouse has shown in 
vivo expansion of the V[38.3/CD8 subset which possi- 
bly relates to early exposure to an unidentified endo- 
genous superantigen [58]. 

A major difficulty in studying the epidemiology of 
human diabetes is the long time period, possibly ex- 
tending over several years, between the initiating 
event and the first detection of hyperglycaemia. 
Most studies previously referred to in animals indi- 
cate that environmental factors modulate the occur- 
rence of diabetes on a susceptible genetic back- 
ground but do not identify factors that may directly 
trigger the primary activation of autoreactive T cells, 
with the possible exception of the Kilham's virus. His- 
torical models of organ-specific autoimmunity have 
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relied on immunization against syngeneic tissues, an- 
tigens and more recently peptides, emulsified in 
CFA. Interestingly, there has not been convincing 
evidence that immunization against islet cells or insu- 
lin in CFA can induce beta-cell destruction although 
insulitis has been reported [59]. The only case has 
been the recent induction of diabetes in convention- 
al mouse strains by immunization against heat shock 
protein 60 [60]. Little evidence has been provided in 
animals indicating that viral infections can induce au- 
toimmune diabetes in conventional mouse strains 
carrying a genetic susceptibility background. Insuli- 
tis although not T-cell mediated transfer has been re- 
ported following reovirus infection [61]. Evidence 
that EMC virus infection leads to immune-mediated 
diabetes as conclusively demonstrated by transfer or 
anti-T-cell monoclonal antibody prevention experi- 
ments is controversial. The D-variant of the EMC 
virus induces diabetes in susceptible mice through a 
direct cytolytic effect on beta cells, including in athy- 
mic nude mice [62]. More convincingly, autoimmune 
models of IDDM have been developed in the mouse 
following repeated injections of low-dose streptozo- 
tocin, an agent with selective toxicity to beta cells 
[63]. In susceptible mouse strains, the injection of 
low-dose streptozotocin leads to insulitis and dia- 
betes which can be transferred to syngeneic mice by 
T cells from diabetic animals [64]. Athymic mice are 
resistant to low-dose streptozotocin diabetes [65]. 
Diabetes in this model is prevented by the injection 
of anti-T-cell antibodies [66, 67], suggesting that 
beta-cell destruction is mediated by an autoimmune 
reaction. The break down of immune tolerance fol- 
lowing streptozotocin-induced islet damage is 
thought to relate to changes in islet immunogenicity. 
The role of streptozotocin in inducing class II MHC 
antigens [68] as well as enhanced autoimmune, strep- 
tozotocin-induced diabetes by interferon gamma 
have been reported [69]. The prevention of streptozo- 
tocin-induced diabetes by intrathymic islet grafts 
points to the role of peripheral autoreactive T cells 
in the disease development and its possible preven- 
tion following negative selection in the thymus [70]. 

The development of transgenic mice has allowed 
the definition of possible links between environmen- 
tal triggering events and breaking of immune toler- 
ance to islet antigens. Transgenic mice expressing a 
LCMV glycoprotein or nucleoprotein on beta cells 
and the c~ the [3 chains of a CD8 + T-cell clone speci- 
fic for the same LCMV glycoprotein as that expres- 
sed by beta cells have been established. The absence 
of insulitis and diabetes in these transgenic mice indi- 
cates that the presence of glycoprotein-specific T 
cells included within a biased T-cell repertoire is not 
sufficient to induce diabetes. However, peripheral T- 
cell ignorance was broken following infection of 
adult transgenic mice by the same LCMV strain as 
that encoding the glycoprotein transgene [43, 44]. 
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Evidence that islet autoantigens, including GAD 
or the p69 antigen, share cross-reactive determinants 
with known pathogens (e.g. coxsackie virus B4) [71] 
or exogenous antigens (bovine serum albumin) raise 
the possibility that common environmental factors 
can be involved in breaking self tolerance. Finally, in 
most cases, the mechanisms by which environmental 
factors modulate or trigger the development of spon- 
taneous forms of autoimmune diabetes remain elu- 
sive. A direct interaction with islet beta cells, as in 
the case of streptozotocin or coxsackie virus B4, may 
alter the antigenicity of islet autoantigens. An anti- 
beta-cell response can be elicited by cross-reactive 
antigens (molecular mimicry) as in the case of viru- 
ses or cow's milk protein. Alternatively, the interac- 
tion with lymphoid or antigen presenting cells as in 
the case of viral infections [48] can be proposed to ex- 
plain disease acceleration or protection possibly con- 
ferred by environmental factors. 

The case for primary immune defects 

Whether mechanisms breaking self tolerance result 
from an intrinsic defect of the immune system or 
from a primary anomaly of target cells or organs re- 
mains an open issue in most human autoimmune dis- 
eases. Autoimmune reactions observed in lympho- 
proliferative disorders directly result from primary 
immune defects but do not make a general case in 
most forms of spontaneous autoimmune diseases. 
Nul complement alleles in human lupus and related 
disorders are more likely to be contributive ele- 
ments to a genetic susceptibility background than di- 
rectly responsible for primary triggering of autoreac- 
tive B- or T-cell clones. Enforcing a biased T- or B- 
cell repertoire following the expression of a trans- 
genic T-cell receptor, IgM or IgG carrying anti-mye- 
lin basic protein, anti-erythrocyte, or anti-DNA spe- 
cificity, respectively, has been shown to allow the de- 
velopment of autoimmunity [72-74], but still depend 
on the environment as in EAE in which transgenic 
mice only develop autoimmune lesions in a non-spe- 
cific pathogen free environment [72]. Similarly, the 
expression of an expanded B-cell pool in mice carry- 
ing a bcl-2 transgene [75] drives a lupus syndrome, 
but a comparable situation in lupus-prone mice car- 
rying the lpr or the gld mutations [76] indicates that 
such mutations bring acceleration factors on pre-ex- 
isting susceptibility backgrounds. Thymic selection 
of peripheral autoreactive T cells is a perequisite for 
the development of autoimmune diseases as evi- 
denced in collagen-induced arthritis in the mouse 
[77] but there is no experimental evidence that a thy- 
mic selection defect is a primary event responsible 
for pathologic autoimmunity. At the target cell lev- 
el, a polymorphism of genes encoding autoantigens 
such as basic myelin protein in multiple sclerosis 
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and the acetylcholine receptor in myasthenia gravis 
is controversial. 

The hypothesis that autoimmune diseases primar- 
ily result from an immune regulatory defect has not 
received definitive experimental support. The case 
has been made for the local production of interferon 
gamma [26] or interteukin-2 [78] by beta cells in 
transgenic mice expressing a cytokine transgene. In 
the human, autoimmune reactions have been report- 
ed in patients treated with interferon alpha. Other 
immune defects resulting from an imbalance be- 
tween regulatory T-cell subsets have been hypothe- 
sized to be predisposing factors. In the BB rat such 
imbalance is indicated by the depletion of T cells ex- 
pressing the RT6 antigen, a marker on a subset of 
CD4 + and CD8 + T cells. Treatment of diabetes-resis- 
tant BB sublines with anti-RT6 monoclonal antibo- 
dies induces acute diabetes while diabetes-prone sub- 
lines are protected from diabetes by transfer of RT6 
cells from diabetes resistant animals [79, 80]. In the 
NOD mouse, CD4 + suppressive T cells have been 
evidenced by cotransfer experiments in which irradi- 
ated adult recipients were protected from the diabe- 
togenic effect of purified T cells derived from diabet- 
ic donors by coinjection of CD4 + T cells from non- 
diabetic mice [81]. The detection of protective T 
cells in this model depends on the thymus. Thymect- 
omy at 3 weeks accelerates the development of dia- 
betes in female mice. The detection of protective 
cells in diabetes prone animals (i.e. 8-week-old fe- 
male NOD mice) suggests that they may appear as a 
transient protective barrier secondary to the pre- 
sence or activation of autoreactive T cells responsi- 
ble for islet-beta-cell damage. Evidence has been ob- 
tained that diabetes transfer can be achieved in the 
NOD mouse following the injection of spleen cells 
from diabetic mice into non-irradiated thymecto- 
mized adult recipients depleted of CD4 + T cells by 
the injection of anti-CD4 monoclonal antibodies. 
The development of diabetes in the NOD mouse is 
also prevented by the injection of autologous spleen 
cells exposed in vitro to cyclosporin and interleukin- 
2 [82]. In normal mice, thymectomy within 2 days fol- 
lowing birth induces a lymphocytic infiltration of the 
thyroid, the gastric wall and the ovary, suggesting 
that regulatory T cells participate in maintaining self 
tolerance in the physiological state. Suppressor cells 
down regulating antithyroid autoimmunity have 
been evidenced in the rat following fetal thyroidect- 
omy [83]. In the rat, the combination of thymectomy 
and sublethal irradiation or the transfer of normal 
spleen cells in athymic rats lead to the development 
of insulitis and diabetes [84, 85]. As in the BB rat, 
the development of autoimmunity in thymectomized 
and irradiated rats is prevented by the injection of 
normal syngeneic RT6 + T cells. 

An imbalance between TH1 and TH2 CD4 + T cells 
is an attractive hypothesis which could explain most 
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of the observations on suppressor cells. TH1 cells se- 
crete interleukin-2 and interferon gamma. TH2 cells 
show a predominant secretion of interleukin 4, 5, 6 
and 10. A wasting disease sharing many features 
with graft vs host disease is induced in rat by the de- 
pletion of Ox-22 cells which targets THlcells. The in- 
duction of diabetes in thymectomized, irradiated rats 
is dependent  on CD4 + T cells which carry the CD45 
RC antigen, a putative marker of TH1 cells in the rat 
[84]. The thymic defect of interleukin 4 secretion 
[86] and the delay in diabetes onset following injec- 
tion of interleukin 4 [41] have made a strong case for 
a TH1/TH2 imbalance in the NOD model. Similarly, 
the observation of a high interferon gamma/interleu- 
kin 4 ratio in invasive insulitis [87] and a correspond- 
ing imbalance between CD45 R A v s  CD45 RO 
CD4 § T cells in NOD lymph nodes and within the is- 
let lymphocytic infiltrate after 1 month of age have 
been reported [88]. Other models involving a possi- 
ble TH1/TH2 imbalance include mercuric chloride- 
induced autoimmunity in mice and rats [89]. 

The case for a target-cell anomaly 

The indication that target cells and autoantigens are 
directly involved in the pathogenesis of autoimmune 
diseases was first obtained from the study of idioty- 
pic markers carried by autoantibodies, the direct se- 
quencing of autoantibody and the demonstration of 
target organ dysfunction in some autoimmune situa- 
tions. The role of autoantigens in autoimmunity may 
be at different levels. The expression of autoantigens 
in abnormal forms, their delayed expression during 
ontogeny, or their quantitatively abnormal expres- 
sion, possibly relating with target organ dysfunction, 
may directly trigger an autoimmune reaction. These 
may result from intrinsic as well as extrinsic defects 
possibly resulting from the action of virus or toxic 
agents on target cells. Alternatively, the physiologi- 
cal expression and presentation of autoantigens by 
MHC antigens may be a simple prerequisite to the 
activation of autoreactive lymphocytes, resulting in 
an antigen-driven immune response. The persistence 
of antigens has been shown to be required for main- 
taining immune tolerance in many experimental de- 
signs. 

In autoimmune models characterized by polyclo- 
nal B-cell activation and a major role of autoanti- 
bodies, the preferential usage of V gene families or 
cross-reactive idiotypes by a significant proportion 
of autoantibodies with anti-DNA, anti-histone or 
rheumatoid factor activity and sequencing data show- 
ing a high rate of somatic mutations responsible for 
aminoacid changes on autoantibodies point to anti- 
gen-driven immune responses [90]. The clustering of 
autoantibodies specific of antigens localized in a sub- 
cellular particle in a given disease also points to anti- 
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gen driven responses [91]. In lupus-prone MRL mice 
in situ hybridization shows a large variation in the ex- 
tent of V~; gene family usage by in vivo activated 
spleen B cells among individual mice, and a progres- 
sive restriction in the families used with disease de- 
velopment [92]. More direct evidence for the role of 
target cells in modulating the activation of autoreac- 
tive cells has been obtained in the obese strain (OS) 
chicken which shows increased iodine uptake and or- 
ganification prior to any lymphocytic infiltration of 
the thyroid and decreased thyroid epithelial cell pro- 
liferation in vitro [93]. Diet supplementation with io- 
dine increases the development of thyroiditis and 
treatments which inhibit iodine transport (KCLO4) 
or increase thyroid iodine release reduce thyroiditis 
development in the OS chicken [94]. The direct role 
of the presence of thyroid target cells in the activa- 
tion of autoreactive B lymphocytes has been evi- 
denced in thyroidectomized OS chicken which show 
decreased anti-thyroglobulin autoantibody levels 
[951. 

In the case of autoimmune diabetes, the role of tar- 
get islet cells has only received indirect experimental 
support. Both exogenous insulin treatment and glu- 
cose injections modulate the development of insuli- 
tis and diabetes in the BB rat and/or the NOD mouse 
[96-98]. A 50 % reduction of diabetes incidence has 
been obtained by prophylactic insulin treatment of 
BB rats. In the NOD mouse, treatment with prota- 
mine zinc pork insulin at the maximum tolerated 
dose from 4 to 26 weeks of age (0.25 IU/day up to 
weeks. 0.50 IU/day up to 10 weeks and 0.75 fU/day 
from then on) was shown to decrease the cumulated 
frequency of diabetes down to less than 10 %. Insulin 
treatment concommitantly resulted in significant re- 
duction of islet inflammation and damage. The trans- 
fer of diabetes by spleen cells from diabetic NOD 
mice in irradiated male recipients is slightly delayed 
by prophylactic insulin treatment [99]. Similar evi- 
dence has been obtained in the BB rat [100]. In hu- 
man IDDM. it has been suggested that intensive in- 
travenous insulin therapy during 15 days from clini- 
cal onset of diabetes is beneficial by improving endo- 
genous insulin secretion during the initial 12 months 
of disease [101]. Prevention of diabetes in normogly- 
caemic subjects at risk for developing diabetes, treat- 
ed by insulin, has similarly been reported [102]. Sev- 
eral hypotheses could explain the beneficial effect of 
insulin on the development of diabetes. Insulin may 
modulate T cells through the activated T-lymphocyte 
insulin receptor. The insulin receptor is synthesized 
early on T cells, prior to the appearance of the inter- 
leukin-2 receptor, following antigen stimulation. In- 
sulin has been shown to modulate cytotoxic T-cell 
functions and the regulatory role of T cells in provid- 
ing help for B-cell insulin receptor synthesis, and to 
control intermediary metabolic functions and sub- 
strate oxidation in activated T cells; The reduction in 
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the synthesis of insulin receptors following hyperin-  
sul inaemia during a glucose clamp is associated with 
a reduct ion in insulin-driven cytotoxic T-cell func- 
tions [103]. Other  hypotheses  postulate  that  insulin 
therapy  directly modifies islet cells by decreasing the 
expression of beta-cell  antigens or by "rest ing" beta  
cells. Evidence  has been obta ined  in vivo in the rat  
for decreased ant igen expression following the im- 
planta t ion of insulin-secreting tumours.  Glucose 
modula tes  the expression of autoant igens  such as 
GAD.  Lastly, the injection of glucose in the neonata l  
per iod decreases the incidence of diabetes in the 
N O D  mouse,  possibly th rough  the modif icat ion of 
matur ing be ta  cells by increased exposure to glucose 
[104-106]. 

We directly tested the role of ant igen expression in 
the pr imary activation of the anti-islet immune  re- 
sponse in the N O D  mouse  by evaluat ing the activa- 
t ion of autoreact ive T cells in beta-cell  deprived ani- 
mals. Beta-cell  deprived N O D  mice were obta ined 
following a single injection of a toxic dose of al loxan 
and ul t imately  studied at 6 months  of age. The capaci- 
ty of spleen cells obta ined  f rom such mice to transfer 
diabetes in irradiated,  8-week-old, male  recipients 
was lost, indicating the role of a low immune  activa- 
t ion level against islet cells. The deve lopment  of siali- 
tis was not  affected in these mice. 

These data  extend at the T-cell level those report-  
ed in the OS chicken in showing the role of target  
cells in eliciting organ-specific au to immune  reac- 
tions. They indicate that  the expression of autoanti-  
gen(s) is required  to allow the activation of autoreac-  
t i re  T cells. They bring strong evidence that  autoim- 
muni ty  is unlikely to result  only f rom a pr imary  im- 
m u n e  defect  but  ra ther  develop as a mult ifactorial  
process involving immune ,  envi ronmenta l  and target  
organ events. In transgenic mice expressing the Si- 
mian  virus (SV) 40 T ant igen on be ta  cells, evidence 
has been obta ined that  late expression of the T anti- 
gen is sufficient to elicit an immune  react ion against 
be ta  cells [107]. Whe the r  autoant igens  involved in 
spontaneous  diabetes in the N O D  mouse  relate with 
pathological  au toant igen  expression or simply re- 
quire the physiological expression of autoant igens  re- 
mains an open issue of possible impor tance  in the 
perspective of designing new therapeut ic  strategies 
to block the au to immune  process. 
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