Corrigendum to "Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity"

Archive for Rational Mechanics and Analysis 102, 205-229 (1988)

Alexander Mielke

The mapping $Z: \mathscr{D} \rightarrow \mathscr{D}, w \rightarrow w-\mathscr{R} G(w)$, given on page 211 is not appropriate for the purposes needed below. It is falsely stated that the derivative $D Z(w)$ can be continued to a bounded operator from X_{s} into itself, since the trace mapping $\tau: H^{s}(\Sigma) \rightarrow H^{s-1 / 2}(\partial \Sigma),\left.u \rightarrow u\right|_{\partial \Sigma}$, is only bounded for $s>\frac{1}{2}$ (see [11]), whereas the present context would need $s \in\left(0, \frac{1}{2}\right)$.

I am grateful to Pius Kirrmann for informing me of this serious error.
To close this gap we construct the desired mapping Z by circumvening the use of traces in $H^{s}(\Sigma)$. Therefore we define a function $\tilde{G}: \mathscr{D} \rightarrow\left[H^{s+1}(\Sigma)\right]^{3}$ with $\left.\tilde{G}(w)\right|_{\partial \Sigma}=G(w)$ for all $w \in \mathscr{D}$, such that its derivative $D \tilde{G}(w)$ can be continued to a bounded operator from X_{s} into $\left[H^{s}(\Sigma)\right]^{3}$. Moreover a linear operator $\tilde{\mathscr{R}}$: $\left[H^{s+1}(\Sigma)\right]^{3} \rightarrow \mathscr{D}$ will be constructed which is also bounded from $\left[H^{s}(\Sigma)\right]^{3} \rightarrow X_{s}$. Of course this is done such that $\mathscr{B} \tilde{\mathscr{R}} \tilde{G}(w)=G(w)$ for all $w \in \mathscr{D}$, and hence $\mathscr{B} Z(w)=0$ if and only if $\mathscr{B} w=G(w)$.

Remarkably, the following constructions make the use of non-zero traction boundary conditions in Section 5 superfluous. In particular, Theorem 2.1 can be dropped completely.

To define \tilde{G} we continue the normal vector n from $\partial \Sigma$ into Σ. Call this vector field \tilde{n} and note that it can be chosen in $\mathscr{C}^{2}(\bar{\Sigma})$, since $\partial \Sigma$ is of class \mathscr{C}^{3}. Now let

$$
\tilde{G}(w)=\left(\tilde{S}(E(U))-\lambda\left(u_{1,1}+u_{2,2}+v_{3}\right) I-\mu\left(U+U^{\prime}\right)\right)\left(\begin{array}{c}
\tilde{n}_{1}(x) \\
\tilde{n}_{2}(x) \\
0
\end{array}\right),
$$

then all the aforementioned properties hold.
For the construction of the linear operator $\tilde{\mathscr{R}}$ we rewrite the boundary conditions $\mathscr{B} w=G(w)$ in the form

$$
\begin{equation*}
\mu\left(u_{1,2}+u_{2,1}\right)\left(n_{2}^{2}-n_{1}^{2}\right)+\mu\left(u_{1,1}-u_{2,2}\right) 2 n_{1} n_{2}=\tilde{g}_{t}:=\tilde{G}_{1} \tilde{n}_{2}-\tilde{G}_{2} \tilde{n}_{1} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\lambda\left(u_{1,1}+u_{2,2}+v_{3}\right)+2 \mu\left(u_{1,1} n_{1}^{2}+u_{2,2} n_{2}^{2}\right) & =\tilde{g}_{n}:=\tilde{G}_{1} \tilde{n}_{1}+\tilde{G}_{2} \tilde{n}_{2} \tag{2}\\
\mu\left(u_{3,1}+v_{1}\right) n_{1}+\mu\left(u_{3,2}+v_{2}\right) n_{2} & =\tilde{g}_{3}:=\tilde{G}_{3} \tag{3}
\end{align*}
$$

Note that these relations have only to be satisfied on $\partial \Sigma$; hence there is a lot of freedom for choosing w inside of Σ. As $\mu>0$, equation (3) is easily solved with $\left(u_{3}, v_{1}, v_{2}\right) \in H^{s+2}(\Sigma) \times\left[H^{s+1}(\Sigma)\right]^{2}$ by setting

$$
u_{3}=0, \quad v_{i}=\frac{1}{\mu} \tilde{g}_{3} \tilde{n}_{i} \quad \text { for } i=1,2 .
$$

To solve (1) we take the unique solution $\phi \in H^{s+3}(\Sigma)$ of

$$
\Delta \phi=\frac{1}{\mu} \tilde{g}_{t} \quad \text { in } \Sigma, \quad \phi=0 \quad \text { on } \partial \Sigma,
$$

and define $\left(u_{1}, u_{2}\right)^{t}=A(x) \nabla \phi$. A lengthy but elementary calculation shows that (1) holds whenever $A=A(x)$ satisfies the relations

$$
\begin{gathered}
A(x)=\left(\begin{array}{cc}
2 n_{1} n_{2} & n_{2}^{2}-n_{1}^{2} \\
n_{2}^{2}-n_{1}^{2} & -2 n_{1} n_{2}
\end{array}\right), \quad \frac{\partial A_{i 1}}{\partial n} n_{2}+\frac{\partial A_{i 1}}{\partial t} n_{1}-\frac{\partial A_{i 2}}{\partial n} n_{1}+\frac{\partial A_{i 2}}{\partial t}=0 \\
\quad \text { for } i=1,2
\end{gathered}
$$

on $\partial \Sigma$ (where $\partial /(\partial n)=n_{1} \partial /\left(\partial x_{1}\right)+n_{2} \partial /\left(\partial x_{2}\right)$ and $\partial /(\partial t)=n_{2} \partial /\left(\partial x_{1}\right)-n_{1} \partial /$ $\left(\partial x_{2}\right)$). However, such functions $A_{i j} \in H^{s+2}(\Sigma)$ can be constructed easily. Thus we have defined a linear operator which maps $\tilde{g}_{t} \in H^{s+2}(\Sigma)$ into $\left(u_{1}, u_{2}\right) \in[H(\Sigma)]^{2}$ such that (1) is valid.

Inserting the function $\left(u_{1}, u_{2}\right)$ from above into (2) gives a unique $v_{3} \in H^{s+1}\left(\Sigma^{\prime}\right)$, as $\lambda>0$. Altogether this shows the existence of the desired operator $w=$ $(u, v)=\tilde{\mathscr{R}} \tilde{g}$ from $\left[H^{s+1}(\Sigma)\right]^{3}$ into \mathscr{D}. Obviously, $\tilde{\mathscr{R}}:\left[H^{s}(\Sigma)\right]^{3} \rightarrow X_{s}$ is continuous also.

Mathematisches Institut
Universität Stuttgart

