Corrigendum to "Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity"

Archive for Rational Mechanics and Analysis 102, 205-229 (1988)

Alexander Mielke

The mapping $Z: \mathcal{D} \to \mathcal{D}, w \to w - \mathcal{R}G(w)$, given on page 211 is not appropriate for the purposes needed below. It is falsely stated that the derivative DZ(w) can be continued to a bounded operator from X_s into itself, since the trace mapping $\tau: H^s(\Sigma) \to H^{s-1/2}(\partial \Sigma), u \to u|_{\partial \Sigma}$, is only bounded for $s > \frac{1}{2}$ (see [11]), whereas the present context would need $s \in (0, \frac{1}{2})$.

I am grateful to PIUS KIRRMANN for informing me of this serious error.

To close this gap we construct the desired mapping Z by circumvening the use of traces in $H^{s}(\Sigma)$. Therefore we define a function $\tilde{G}: \mathcal{D} \to [H^{s+1}(\Sigma)]^{3}$ with $\tilde{G}(w)|_{\partial\Sigma} = G(w)$ for all $w \in \mathcal{D}$, such that its derivative $D\tilde{G}(w)$ can be continued to a bounded operator from X_{s} into $[H^{s}(\Sigma)]^{3}$. Moreover a linear operator $\tilde{\mathcal{R}}$: $[H^{s+1}(\Sigma)]^{3} \to \mathcal{D}$ will be constructed which is also bounded from $[H^{s}(\Sigma)]^{3} \to X_{s}$. Of course this is done such that $\mathscr{R}\tilde{\mathcal{R}}\tilde{G}(w) = G(w)$ for all $w \in \mathcal{D}$, and hence $\mathscr{R}Z(w) = 0$ if and only if $\mathscr{R}w = G(w)$.

Remarkably, the following constructions make the use of non-zero traction boundary conditions in Section 5 superfluous. In particular, Theorem 2.1 can be dropped completely.

To define \tilde{G} we continue the normal vector *n* from $\partial \Sigma$ into Σ . Call this vector field \tilde{n} and note that it can be chosen in $\mathscr{C}^2(\overline{\Sigma})$, since $\partial \Sigma$ is of class \mathscr{C}^3 . Now let

$$\tilde{G}(w) = (\tilde{S}(E(U)) - \lambda(u_{1,1} + u_{2,2} + v_3) I - \mu(U + U')) \begin{pmatrix} \tilde{n}_1(x) \\ \tilde{n}_2(x) \\ 0 \end{pmatrix},$$

then all the aforementioned properties hold.

For the construction of the linear operator $\tilde{\mathscr{R}}$ we rewrite the boundary conditions $\mathscr{B}w = G(w)$ in the form

$$\mu(u_{1,2}+u_{2,1})\left(n_{2}^{2}-n_{1}^{2}\right)+\mu(u_{1,1}-u_{2,2})2n_{1}n_{2}=\tilde{g}_{t}:=\tilde{G}_{1}\tilde{n}_{2}-\tilde{G}_{2}\tilde{n}_{1},\qquad(1)$$

A. MIELKE

$$\lambda(u_{1,1}+u_{2,2}+v_3)+2\mu(u_{1,1}n_1^2+u_{2,2}n_2^2)=\tilde{g}_n:=\tilde{G}_1\tilde{n}_1+\tilde{G}_2\tilde{n}_2,\qquad(2)$$

$$\mu(u_{3,1}+v_1) n_1 + \mu(u_{3,2}+v_2) n_2 = \tilde{g}_3 := \tilde{G}_3.$$
(3)

Note that these relations have only to be satisfied on $\partial \Sigma$; hence there is a lot of freedom for choosing w inside of Σ . As $\mu > 0$, equation (3) is easily solved with $(u_3, v_1, v_2) \in H^{s+2}(\Sigma) \times [H^{s+1}(\Sigma)]^2$ by setting

$$u_3 = 0, \quad v_i = \frac{1}{\mu} \tilde{g}_3 \tilde{n}_i \quad \text{for } i = 1, 2.$$

To solve (1) we take the unique solution $\phi \in H^{s+3}(\Sigma)$ of

$$\Delta \phi = \frac{1}{\mu} \tilde{g}_t$$
 in Σ , $\phi = 0$ on $\partial \Sigma$,

and define $(u_1, u_2)^t = A(x) \nabla \phi$. A lengthy but elementary calculation shows that (1) holds whenever A = A(x) satisfies the relations

$$A(x) = \begin{pmatrix} 2n_1n_2 & n_2^2 - n_1^2 \\ n_2^2 - n_1^2 & -2n_1n_2 \end{pmatrix}, \qquad \frac{\partial A_{i1}}{\partial n}n_2 + \frac{\partial A_{i1}}{\partial t}n_1 - \frac{\partial A_{i2}}{\partial n}n_1 + \frac{\partial A_{i2}}{\partial t} = 0,$$

for $i = 1, 2,$

on $\partial \Sigma$ (where $\partial/(\partial n) = n_1 \partial/(\partial x_1) + n_2 \partial/(\partial x_2)$ and $\partial/(\partial t) = n_2 \partial/(\partial x_1) - n_1 \partial/(\partial x_2)$). However, such functions $A_{ij} \in H^{s+2}(\Sigma)$ can be constructed easily. Thus we have defined a linear operator which maps $\tilde{g}_t \in H^{s+2}(\Sigma)$ into $(u_1, u_2) \in [H(\Sigma)]^2$ such that (1) is valid.

Inserting the function (u_1, u_2) from above into (2) gives a unique $v_3 \in H^{s+1}(\Sigma)$, as $\lambda > 0$. Altogether this shows the existence of the desired operator $w = (u, v) = \tilde{\mathscr{R}}\tilde{g}$ from $[H^{s+1}(\Sigma)]^3$ into \mathscr{D} . Obviously, $\tilde{\mathscr{R}} : [H^s(\Sigma)]^3 \to X_s$ is continuous also.

> Mathematisches Institut Universität Stuttgart

(Received June 26, 1989)