Skip to main content
Log in

Nitrate reductase activity in Zostera marina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW−1 h−1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 μM NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW−1 h−1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW−1 h−1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 μM) than all other collection sites (0.7 μM). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aslam, M., Rosichan, J. L., Huffaker, R. C. (1987). Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves. Plant Physiol. 83: 579–584

    Google Scholar 

  • Baer, G. R., Collet, G. F. (1981). In vivo determination of parameters of nitrate utilization in wheat (Triticum aestivum L.) seedlings grown with low concentration of nitrate in the nutrient solution. Plant Physiol. 68: 1237–1243

    Google Scholar 

  • Bulthuis, D. A., Woelkerling, W. J. (1981). Effects of in situ nitrogen and phosphorus enrichment of the sediments on the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Australia. J. exp. mar. Biol. Ecol. 53: 193–207

    Google Scholar 

  • Bulthuis, D. A., Woelkerling, W. J. (1983). Biomass accumulation and shading effects of epiphytes on leaves of the seagrass, Heterozostera tasmanica, in Victoria, Australia. Aquat. Bot. 16: 137–148

    Google Scholar 

  • Davison, I. R., Andrews, M., Stewart, W. D. P. (1984). Regulation of growth in Laminaria digitata: use of in vivo nitrate reductase activities as an indicator of nitrogen limitation in field populations of Laminaria spp. Mar. Biol. 84: 207–217

    Google Scholar 

  • Dennison, W. C. (1987). Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot. 27: 15–26

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1986). Photoadaptation and growth of Zostera marina L. (eelgrass) transplants along a depth gradient. J. exp. mar. Biol. Ecol. 98: 265–282

    Google Scholar 

  • Dennison, W. C., Aller, R. C., Alberte, R. S. (1987). Sediment ammonium availability and eelgrass (Zostera marina) growth. Mar. Biol. 94: 469–477

    Google Scholar 

  • Doddema, H., Howari, M. (1983). In vivo nitrate reductase activity in the seagrass Halophila stipulacea from the Gulf of Aqaba (Jordan). Bot. mar. 26: 307–312

    Google Scholar 

  • Doddema, H. Stulen, I., Hofstra, J. J. (1986). The distribution of nitrate reductase activity in tomato (Lycopersicon esculentum) leaves as affected by age. Physiol. Plant. 68: 615–619

    Google Scholar 

  • Gebauer, G., Melzer, A., Rehder, H. (1984). Nitrate content and nitrate reductase activity in Rumex obtusifolius L. I. Differences in organs and diurnal changes. Oecologia 63: 136–142

    Google Scholar 

  • Guerrero, M. G., Vega, J. M., Losada, M. (1981). The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant. Physiol. 32: 169–204

    Google Scholar 

  • Harlin, M. M., Thorne-Miller, B. (1981). Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon. Mar. Biol. 65: 221–229

    Google Scholar 

  • Harper, J. E. (1981). Effect of chlorate, nitrogen source, and light on chlorate toxicity and nitrate reductase activity in soybean leaves. Physiol. Plant. 53: 505–510

    Google Scholar 

  • Kirchman, D. L., Mazzella, L., Alberte, R. S., Mitchell, R. (1984). Epiphytic bacterial production on Zostera marina. Mar. Ecol. Prog. Ser. 15: 117–123

    Google Scholar 

  • Iizumi, H., Hattori, A. (1982). Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12: 245–256

    Google Scholar 

  • Iizumi, H., Hattori, A., McRoy, C. P. (1982). Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds. Mar. Biol. 65: 59–65

    Google Scholar 

  • Johannes, R. E. (1980). The ecological significance of the submarine discharge of groudwater. Mar. Ecol. Prog. Ser. 3: 365–373

    Google Scholar 

  • Kenis, J. D., Trippi, V. S. (1986). Regulation of nitrate reductase in detached oat leaves by light and oxygen. Physiol. Plant 68: 387–390

    Google Scholar 

  • Kenworthy, W. J., Zieman, J. C. Thayer, G. W. (1982). Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54: 152–158

    Google Scholar 

  • Lawrence, J. M., Herrick, H. E. (1982). Media for in vivo nitrate reductase assay of plant tissues. Plant Sci. Lett. 24: 17–26

    Google Scholar 

  • Lewis, J. B. (1987). Measurements of groundwater seepage flux onto a coral reef: Spatial and temporal variations. Limnol. Oceanogr. 32: 1165–1169

    Google Scholar 

  • Mazzella, L., Alberte, R. S. (1986). Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass, Zostera Marina L. J. exp. mar. Biol. Ecol. 100: 165–180

    Google Scholar 

  • McRoy, C. P., McMillan, C. (1977). Production ecology and physiology of seagrasses. In: McRoy, C. P., Helfferich, C. (eds.) Seagrass ecosystems: a scientific perspective. Marcel Dekker, New York, p. 53–87

    Google Scholar 

  • Mendelssohn, I. A. (1979). Nitrogen metabolism in the height forms of Spartina alterniflora in North Carolina. Ecology 60: 574–584

    Google Scholar 

  • Orth, R. J. (1977). Effect of nutrient enrichment on growth of the eelgrass Zostera marina in the Chesapeake Bay, Virginia, USA. Mar. Biol. 44: 187–194

    Google Scholar 

  • Pregnall, A. M. (1986). Seasonal changes in plant growth rate and root glutamine synthetase along a natural depth gradient in an eelgrass (Zostera marina) meadow. Biol. Bull. mar. biol. Lab., Woods Hole 171:484

    Google Scholar 

  • Pregnall, A. M., Smith, R. D., Alberte, R. S. (1987). Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots. J. exp. mar. Biol. Ecol. 106: 211–228

    Google Scholar 

  • Short, F. T. (1983a). The response of interstitial ammonium in eelgrass (Zostera marina L.) beds to environmental perturbations. J. exp. mar. Biol. Ecol. 68: 195–208

    Google Scholar 

  • Short, F. T. (1983b). The seagrass, Zostera marina L.: plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16: 149–161

    Google Scholar 

  • Short, F. T., McRoy, C. P. (1984). Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot. mar. 27: 547–555

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can. 167

  • Thursby, G. B., Harlin, M. M. (1982). Leaf-root interaction in the uptake of ammonia by Zostera marina. Mar. Biol. 72: 109–112

    Google Scholar 

  • Thursby, G. B., Harlin, M. M. (1984). Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar. Biol. 83: 61–67

    Google Scholar 

  • Valiela, I., Teal, J. M., Volkmann, S., Shafer, D., Carpenter, E. J. (1978). Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater. Limnol. Oceanogr. 23: 798–812

    Google Scholar 

  • Vance, C. P., Heichel, G. H. (1981). Nitrate assimilation during vegetative regrowth of alfalfa. Plant Physiol. 68: 1052–1056

    Google Scholar 

  • Wingsle, G., Nasholm, T., Lundmark, T., Ericsson, A. (1987). Induction of nitrate reductase in needles of Scots pine seedlings by NOx and NO 3 . Physiol. Plant. 70:399–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. P. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, N.C., Pregnall, A.M. Nitrate reductase activity in Zostera marina . Mar. Biol. 99, 457–463 (1988). https://doi.org/10.1007/BF00392552

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392552

Keywords

Navigation