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Our proof of Theorem 1 of [3] p. 107 is not correct since the claim (iii) of 
Proposition 1 is false. Moreover it is not clear whether the space Cart (/2, R x) 
in Definition 1 is dosed. Because of this, to minimize functionals in Cart (/2, R N) 
becomes unreasonable. 

Our idea was to consider the smallest closed set with respect to weak conver- 
gence in cg containing the graphs of regular mappings. According to that, the 
definition of Cart (/2, R N) has to be changed into the following 

Definition 1. Cart (/2, R N) is the smallest sequentially closed set in ~ (with 
respect to weak convergence of sequences in ~) containing the graphs of C 1 mappings 
from ~ into R N. 

Recalling that Tk -~ T if and only if {Te} has equibounded Cart-norm and 

T k ~ T in thesense of currents, we can say: Cart (/2, R N) is the sequential closure 
of C ~ graphs with respect to the convergence of currents with equibounded Cart- 
norms; in brief, we shall say that Cart (/2, R N) is the weak sequential closure in ~g 
of C 1 graphs. 

Let M be any subset of cg and let co~ be the fiI st uncountable ordinal. Classically, 
compare e.g. [1], [4], one can define by transfinite induction the weak sequential 
closure of M as 

s w - - c l ( M ) : =  k J M (~ 
cr162 1 

where 

M (~ = M 

and M (~), for o~ =4= O, is defined as follows: if o~ is a limit ordinal, then 

M (~) : ~  k J M(~); 
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if o ~ = / 3 + 1 ,  then 

n (~) : =  {TC cg I 3 {Tk} ( M (~) with T e ~- T}. 

By definition we have 

Cart ( / 2 , g N ) =  s w -  cl (graphs of  C 1 mappings). 

The proofs of the properties of cartesian currents in [3] can be now reread as the 
first step of  the transfinite inductive proof  of the same properties for the elements 
of  our newly defined space Cart (/2, RN). Since the second step of the transfinite 
induction goes on essentially in the same way, the old proof  provides in fact a 
complete proof  of  Theorems 2 and 3, where Cart (/2, R N) has to be understood 
in the sense of Definition 1 above. Of course, a priori we do not know whether a 
current T in Cart (/2, R ~) can be approximated weakly in (g by a sequence of 
smooth graphs. 

The previous remarks apply to the other spaces defined in [3]: Dif (f2, ~),  
Dif  (f2), Cart p (/2, RN), DifP,q(/2, s Dif  p (/2), Diff ,q (/2). Their definitions should 
be modified accordingly by considering the sequential weak closure in the sense of 
currents with equibounded relative norms of  the respective classes of graphs of 
smooth mappings or diffeomorphisms. 

Actually, following our Remark 1, p. 110 of [3] all properties of the elements 
of Cart (/2, t~N), and moreover, of all other spaces, can be recovered by showing 
that the same properties are enjoyed by the elements of the analogous spaces with 
small initial letters. Since this is not always evident from [3], we shall now supply 
a few precise statements and proofs we think are needed. 

We recall that 

cart ( /2 ,R N) : =  { T E ~ ,  (U) I lIT[I~ < + ~ , p # T  = ~/2~, T~0 > 0, ~T = 0}. 

The following theorem contains essentially Theorems 1 and 2, Section 3 of [3]. 

Theorem 1. Let T = T(dg, 0, 2) E cart (/2, 1%N). 

O) For a.e. x E/2, p-~(x)f~ d/l+ contains exactly one element, denoted by 
(x, ?t(x)), and 0 -= 1 ~r a.e. in JCl+. 

(ii) M~(T)  : =  ~r~p~T~ are measures in/2; uJ(T) :=  p#(T~o [_ j )  is absolutely 
continuous with respect to Lebesgue measure, uJ(T) = : uJr(x) dx; moreover, 
ur E BV(/2) and 

11 urllL,(m = I[ TILL,. 

(iii) For all bounded functions 4~(x, iv) E C~ 

Vso(yJdp(x, y)) = f ~b(x, UT(X)) UYr(X) dx 

and ~t = ur a.e. in /2. 
(iv) The map T---~ ur defines a continuous immersion o f  cart (-Q,R u) into BV (.Q,R N) 

in the sense that 

][ UTI]BV(a,I~N) ~ ][ THcart(a,RU ) V T E cart (/2, Ru) .  
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I f  T k -~ T, then urt~ -+ u in LI(D, R N) and Durg ~ Dur in the sense o f  

measures. 
(v) The class cart (O, R N) is weakly sequentially closed in ~; thus 

Cart (D, R n) C cart (/2, RN). 

Proof.  We need only to prove (iii) and (v) since the rest has already been proved 
in Theorems 2 and 3, Section 3 of [3]. From the area formula we have 

T~o(yJ4(x, y)) = f 4(x, ~(x)) ~(x)  dx (1) 
D 

for all 6E C~ Since IITIIL~ < -4-~, we get II~IIL,(O)< -q-~;  hence (1) 
holds for all continuous and bounded ~b. In particular we deduce 

uJ(T) (4(x)) = : f ~(x) UJT(X) dx = f 4(x) ~J(x) & 

for all ~b E C~ i.e., fi = ur. This proves (iii). In order to prove (v) we observe 
that 

[] TI[L~ ---- ( j  ]q(z)t ~ ~0(z)O(z)d3c~n(z)) lis s ~  1; 

thus 
1 

I T6o(4(x)) I ~ ~ II Tlk, 

for r176 Ilcb[<=I, s p t c b C Q x ( R , \ B R ) } .  Let 4EC~ 
Iq~] ~ 1,p (spt q~) QC D, R > 0. We split 4 into qb = 41 + ~)2 with qhE C~ 
I q 6 ] ~ l  and 42E~R.  As 

1 
sup [ Ti,6o(4~2) [ < sup [1T~ [[z,, 

k ~ ' R  k 

we conclude that Tk60(~b)-+ T60(~ ). This proves (iv), since obviously T60 ' ~ 0, 
O T=  0, and TERn(U) by the Federer-Fleming closure theorem. []  

As a consequence of Theorem 1, one easily sees that (except for 0)1 and with 

(ii) replaced by spt T C D • s Theorem 4, p. 114 of [3] holds for TE dif (D, ~), 
where 

dif (D, ~)  :---- {TE ~,(U) I M(T) < q- oo, p@T ---- [~D1], q#T 

= E~q], ~60 ~ 0, ~06 ~ 0, ~T = 0}. 

Also, dif (D, ~)  is closed with respect to the weak convergence of currents with 
equibounded masses. As the weak sequential closure of Diff (D, ~) with respect 
to ~ in {TE ~n(U)IM(T)<-t-cx~}, denoted by Dif(D, ~), is contained in 

dif(D, ~), we also see at once that Theorem 4 holds for TE Dif(D, ~), too. 
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The set of cartesian currents in g2 •  satisfying 

r ~ o, (2) 

Toa(r y)) <= f max cb(x, y) dy u 4~ E C~ cb ~ 0 (3) 
x~.Q 2~ n 

is denoted by dif (~). We mention that (2) and (3) essentially appear also in [2]. 

Proposition 1. Let T = z(~#, 0, ~) E dif (Q) and 

: z+  :=  {~ ~ ++ I r _>_ 0} 

(i) For a.e. y E q(.//[+) there exists exactly one z E q-l(y)  /% +///[+, denoted by 
(ur(y), y); moreover +Vfn(q(+/g) \ q(J/+)) = 0, and 0 = 1 on d/[ + and 

#/g+ = {(fi(y), y) [y E q(./g+)} 

hold H"  a.e. 
(ii) dif (D) is closed with respect to the weak ~-convergenee. 

Proof. (ii) is trivial. Let us prove (i). From (3) we easily deduce that 

cc(R~), r > 0, To+(4,(y)) <= f dp(y) dy V $ E o , = 
n l~y 

while from the area formula we get for 4> ~ 0 

r06(~bCy)) = f ,(y) ~ O(z) dy ~ f ckCy) dy. 
]~y n z ~ q - 1 ( y ) f ~  + ~ y  n 

Thus Z'~eq-,(y)~g+ O(z) is either 0 or 1 for a.e. y E R~; as 0 ~ 1 on ~/ ,  (i) follows. 
[]  

We observe that (3) is obviously satisfied for u E Diff (~2), as it amounts to 

f det D~(x) dx < I.(~) I. 
Y2 

Consequently, the weak sequential closure in cg of Diff (D), denoted Dif (~),  
is contained in dif (if2). 

Let us now discuss the classes cart p ( D , R  u) and CartP(-Q, RN), p > 1. 
We set 

cart v ((2, R N) = {TE cart (D, R N) [1 [I Tll~fp < -~- ~ } .  

One easily sees that the ~P-norm in [3], also denoted II IIC,~tp(a,aN ), is given by 

II Tl[cartP(x2,1~N ) : =  II T[ILp @ I1TIIM, 
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where for  T = ~(d[,  0, ~) 

( f f  \l/p 
l[ ZllLp : =  [q(z) i p 8bo(Z ) O(z) dYfn(z)) , 

Il TllM, := ( f f  ~o" O(z) dYe"(z) f/p. 

The following theorem provides a version of  Theorem 1 in [3], p. 120 for  TE 
carff  (D, t~N). 

Theorem 2. Let T = v(.~, O, ~) and {Tk} belong to cart p (s RN), p > 1. 
Then we have: 

(i) ~50 > 0 ~r in all, d g =  ~g+ and 0 = 1 ~fn a.e. Also the measures 
M~(T)  : =  ~ p#T~r are absolutely continuous with respect to Lebesgue measure, 

and 

T~a(eo(x, y)) = ~ f 4,(x, u~(x)) M~;(T) (x) dx (4) 
~2 

for all bounded Borel functions ep(x, y). 
(ii) Moreover 

and 

M~7~(T) (x) = Ma7,(Dur(x) ) for a.e. x E .62 

II Tllc~rtp( o,g N ) : I[ UT[IL P( ~) + ][ M( Dur) I[L p(,o) �9 

(5) 

(iii) Tk ~ T i f  and only i f  Urk -+ u r in L p and M~i,(Durk ) ~ MF,(Dur) weakly 
in L p. ~P 

(iv) carff  (D, R N) is closed with respect to the weak convergence in cgp. 
(v) I f  SUpk JI Tk I[cartP(e,au ) < + cx~ and Urk ~ W weakly* in L 1, then there 

exists T E c a r f f ( D , R  N) with u r = w  and T k ~ T .  
cgp 

As 

Proof .  F rom 

f S~o" dge- < + 
dY 

we get ~0  > 0 a.e. in rig; thus J~+ = d/I and 0 = 1 2C"-a.e. F r o m  the area 

formula,  as in Theorem 1, we deduce that  for  all .~ E C~ 

T~a(ck(x, y)) = p#(;+) oh(x, ur(x)) 8~r ur(x)) dx. (7) 
~o(x, :u~(x)) 

~a(x, u~.(x)) L~(~), 
r uAx)) 

(6) 
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we deduce that (7) holds for all bounded Borel functions ~b(x, y), and there- 
fore 

~:~(x, ur(x)) n e 
a~Ma~(r ) (x) ~5o(X, ur(x)) • - a . .  in s 

On the other hand, Theorem 1 yields 

~,(r) (x) = O,u~(x), 

thus (5) follows since T is rectifiable (compare [3], p. 122). Finally, 

f e~g. d~"---- f ~ao(X, UT(X))-. ax= f IM(Dur)lPdx, 
d l  ~ Q 

and so we have proved ( i )and  (ii). The claims (riO, (iv), (v) follow from (4) and 
Theorem 1 (compare also [3], pp. 122-123). [ ]  

If  we now redefine Cart" (I2 ,RN), p > 1, as the weak sequential closure in 
cgp of C 1 graphs, we see at once that Theorem 1, p. 120 of [3] is correct. In fact 
Cart" ([2, R N) is then a sequentially closed subset of cart p (s RN), thus Theorem 2 
above holds in Cart p (s RN), too. Again, the approximation property by smooth 
graphs cannot be in general deduced; hence Remark 1, p. 123 of [3] is not correct. 

Finally let us reconsider the class of  weak diffeomorphisms. It is easily seen 
that Theorem 2 of [3], p. 125 holds for T in 

dif p,q (~2, D) : =  {TE dif (O, g)) I IiTll~.,q < + oo} 

provided we replace the spaces in the statement with the same spaces with small 
initial letters. Obviously dif p'q (O, ~)  is closed with respect t o  weak convergence 

in N'q.  Consequently, Theorem 2 also holds in Dif "a (/2, ~)  defined as the weak 
sequentialclosure ofDi f f  (~2, ~)) in NP'L We finally observe that for T - .  z(dl, O, ~) 

�9 , \ l l q  I 

Now, for p, q >  1, set 

dif. (o) := {re dif (O) [ [I Tlic.r:(a,a.) < + oo}, 

dif m (/2) : = { T E  dif (/2) I IlZll~... < § 00}. 

By definition, these spaces are sequentially weakly closed respectively for 

and ~ .  According to the above, we redefine Dif p (O) and Dif ",q (s as the weak 
NP,q 

sequential closure of  Diff (~)) respectively for weak convergence in dif (~ ) /~  
Cart" (f2, R ~) and in ~"'q. Then we clearly have 

Diff (D) < dif" (I2), 

Dif .,q (Y2) Ci dif ",q (O). (8) 
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The two following theorems are a slightly stronger version of Theorems 3 and 4 
of  [3] Section 4, and, because of (8), they hold respectively in Diff (/2) and 
Diff 'q ( ~ )  too. 

Theorem 3. L e t  T = v ( J I ,  O, ~) and {Tg} belong to diff (~). 
(i) Set ur($2 ) : =  q(J[). Then we have 

q~T = Wur(~)]] 

and for all bounded Borel functions de(y) in F~y 

de(y) dy = f de(um(x)) det Dur(x) dx. 
u T ) .f2 

(ii) lug(O) I __< I O I "  II Tllc~.(~,g.r 
(iii) I f  TI, ~ T, then 

ae~(u~(o)  A u~(~)) = o 

where A /~  B denotes the symmetric difference o f  A and B. 

Proof.  Using the area formula and Proposition 1, we have 

f de(y) dy = j de(y) ~06(x, y) d, gf"(x, y) 
UT( ~ )  

~o~(X, y) 
= j de(y) ~ ~5o(X, y) d~"(x,  y) = f de(UT(X)) det Dur(x) dx. 

Hence (i) follows. 
(ii) Using the H61der inequality, we get 

(:,o)'(s ' 
l u . ( O ) l  = f~o~d:r o dad"  ~7 . -. < IO[~;llr[lcartp(-,~") " 

(iii) From Theorem 2 we have q~Tk(de)--> q~T(de) for all continuous and 
bounded de; as q#T = [EuT(Q)~ we can conclude 

f de(y) Z~Tk(O) dy -+ f de(y) gUT(O ) dy u de E C~ ~ bounded. 

Using this for de = l, weget  [Urk(f2)l---~ lur(/2)l. Because [IZUT(O) I[L~ = lur(s 
and that Z~rg(o ) ~ ZurCa) in L 2, (iii) follows at once. [ ]  

Theorem 4. Let T : r  0, ~) and T k belong to diff ,q (~), p, q > 1. 
(i) We have ~o6> 0 a.e. in ~g. Also 

a~.(u~(~)) >= :r162 II TIl~.,q.- ' 

(ii) Let ur be the funetion defined in Propositon 1. For a.e. y E UT(~) we define 
the derivatives Dur by 

~,/;,~o,), y) 
Dj~.(y) : =  ~05(~T(y), y) .  
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Then we have @, D@ E Lq(~r). 
(iii) Finally 

3@(UT(X)) DUT(X) = ~ l~,' 

m~(D~r(y)) = ~ 

for a.e. y E ur(D), and 

DUT(~T(y)) D~r(y ) =]t[~. 

M~;(DuT(uT(y))) 

det Dur(~T(y)) 

T~a(r = a s f r Y) M~(D~T(Y)) dy 
UT( ~2) 

holds for all bounded Borel functions in U. 

Proof. From 

f ~log,0 d ~ "  < + oo 
df 

we deduce that ~o5 > 0  a.e. i n ' Jd .  As O =  1 a.e. i n d g  

m_ | J ~ q - I  dJ f"  
~g \ ~  05 

The proof  can now be completed as in Theorem 2. [ ]  

With the new definitions of  the spaces given in this erratum, all statements and 
proofs of  [3], Sections 5, 6, 7 hold true with the same proofs. 
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