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Our proof of Theorem 1 of [3] p. 107 is not correct since the claim (iii) of
Proposition 1 is false. Moreover it is not clear whether the space Cart (2, RY)
in Definition 1 is closed. Because of this, to minimize functionals in Cart (2, RY)
becomes unreasonable.

Our idea was to consider the smallest closed set with respect to weak conver-
gence in ¥ containing the graphs of regular mappings. According to that, the
definition of Cart (2,R"Y) has to be changed into the following

Definition 1. Cart (2, RY) is the smallest sequentially closed set in € (with.
respect to weak convergence of sequences in €) containing the graphs of C* mappings

from Q into RV,

Recalling that T, - T if and only if {T;} has equibounded Cart-norm and

T, — T in the sense of currents, we can say: Cart (2, RV) is the sequential closure
of C' graphs with respect to the convergence of currents with equibounded Cart-
norms; in brief, we shall say that Cart (£2, RV) is the weak sequential closure in @
of C! graphs.

Let M be any subset of € and let w, be the fitst uncountable ordinal. Classically,
compare e.g. [1], [4], one can define by transfinite induction the weak sequential
closure of M as

sw—cl (M) := \) M*“
a<<wy
where
MO =M

and M@, for « == 0, is defined as follows: if « is a limit ordinal, then

M® =) M®;

p<s
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if « =841, then
M® :={Te®|3{T,} C MP with T, = T}
By definition we have
Cart (2, RY) = sw — ¢l (graphs of C! mappings).

The proofs of the properties of cartesian currents in [3] can be now reread as the
first step of the transfinite inductive proof of the same properties for the elements
of our newly defined space Cart (2, R"). Since the second step of the transfinite
induction goes on essentially in the same way, the old proof provides in fact a
complete proof of Theorems 2 and 3, where Cart (2, R") has to be understood
in the sense of Definition 1 above. Of course, @ priori we do not know whether a

current T in Cart (2, RY) can be approximated weakly in ¥ by a sequence of
smooth graphs.

The previous remarks apply to the other spaces defined in [3]: Dif (2, !5),
Dif (2), Cart? (2, RM), Dif?4(Q, ), Dif? (£), Dif?? (). Their definitions should
be modified accordingly by considering the sequential weak closure in the sense of
currents with equibounded relative norms of the respective classes of graphs of
smooth mappings or diffeomorphisms.

“Actually, following our Remark 1, p. 110 of [3] all properties of the elements
of Cart (£, RY), and moreover, of all other spaces, can be recovered by showing
that the same properties are enjoyed by the elements of the analogous spaces with
small initial letters. Since this is not always evident from [3], we shall now supply

a few precise statements and proofs we think are needed.
We recall that

cart (2, RY) := {T€ %, (U) || Tl < + 00, pT=[2], Ty, 20, oT—0}.

The following theorem contains essentially Theorems 1 and 2, Section 3 of [3].

Theorem 1. Let T = 7(#, 0, &) € cart (2, RY).
(i) For ae. x€Q, p~'(x) \ .4, contains exactly one element, denoted by
(x,u(x)), and 0 =14" ae. in M,. .
(i) M ﬂ&(T) 1= 0,puT,.s are measures in Q; w(T) 1= pu(Ty L y’) is absolutely

continuous with respect to Lebesgue measure, u(T) =: uj(x) dx; moreover,
Ur € BV(.Q) and

lerllpey = || Tllzs -
(iii) For all bounded functions ¢(x, y) € CU)

T, (7Gx, 9)) = [ (%, ur(9) uf(x) dx

and u = ur a.. in Q.
(iv) The map T — uy defines a continuous immersion of cart(2,RN) into BV (2,RN)
in the sense that

N
lurlgyon® = 1T lcqony, Y TEcart (2, RY).
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If T T, then up —u in L'(2, RY) and Duy,_— Dur in the sense of
measures.
(V) The class cart (2,RY) is weakly sequentially closed in €; thus

Cart (2, RM) C cart (2, RY).

Proof. We need only to prove (iii) and (v) since the rest has already been proved
in Theorems 2 and 3, Section 3 of [3]. From the area formula we have

T5,(079Cx, ) = [ (x, uir(x)) uf(x) dx Q)

for all ¢¢c CAU). Since [T < + oo, we get 4 llLicey < 4 oo; hence (1)
holds for all continuous and bounded ¢. In particular we deduce

W(T) ($(0)) =: [ $(x) uf(x) dx = [ $(x) #(x) dx

forall ¢ € CYQ), i.c., u = uy. This proves (iii). In order to prove (v) we observe
that

I/s
17,5 = ( [ la@F &,(2) 6(z) M”(Z)) s=1;

¥4
thus

1
| T50@09) | < 2 1Tl

for ¢€Fg:=1{beCoU)||$|<1,sptd C @x(B™\ By)). Let ¢€ COU),
[¢| = 1,p(spt$) CC 2, R>0. We split ¢ into ¢ = ¢, + ¢, with ¢, € CAU),
[¢| =1 and ¢,€ Fg. As

1
sup | T50(b2) | = RSP 1 T llzs »

we conclude that 7, (4) — T;,(4). This proves (iv), since obviously T;, =0,
0T =0, and T€Z,(U) by the Federer-Fleming closure theorem. []

As a consequence of Theorem 1, one easily sees that (except for (i), and with
(ii) replaced by spt T'C 2x £) Theorem 4, p. 114 of [3] holds for T'¢ dif (12, 0),
where

dif (2, Q) :={T€R,(V) | M(T) < + o0, pT = [21, 44T

= [0, &, = 0,£,;,=0,8T = 0}.

00 —

Also, dif (2, !3) is closed with respect to the weak convergence of currents with
equibounded masses. As the weak sequential closure of Diff (£, ) with respect
to —~in {T€2,(U)|M(T)< + oo}, denoted by Dif (2, Q), is contained in
dif (2, Q), we also see at once that Theorem 4 holds for T'¢ Dif (22, .Q), too.
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The set of cartesian currents in 2 xXR” satisfying
£ =0, 2

T,5(9(x, ) = [max o(x, ) dy V¢ CAV),$=0 3)
RZ

¥

is denoted by dif (£2). We mention that (2) and (3) essentially appear also in [2].
Proposition 1. Ler T = 7(#, 0,8 c dif () and
Mt i={zc M| £, = 0}

Q) For a.e. y€q( ™) there exists exactly one z€ q~*(y) N\ M+, denoted by
(), y); moreover H"(q(M)\ q(MT)) =0, and 6 =1 on M+ and

M= {(4(), y) | y € (M)}
hold #" a.e.
(i) dif () is closed with respect to the weak %-convergence.

Proof, (i) is trivial. Let us prove (i). From (3) we easily deduce that

T 40 = [¢()dy VéecCUR), $=0,

Ry
while from the area formula we get for ¢ =0

T (0N = [¢() 3 0@dv= [0 dy.
Rn

zeq (N MH+ R;

Thus X, ,ynae+ 0(2) is either O or 1 fora.e. y€Rj; as 6 = 1 on .4, (i) follows.
]

We observe that (3) is obviously satisfied for u € Diff (£2), as it amounts to
f det Du(x) dx < |u(D)|.
2
Consequently, the weak sequential closure in 4 of Diff (2), denoted Dif (£),

is contained in dif (£2).

Let us now discuss the classes cart? (2, RY) and Cart? (2,R"), p> 1.
‘We set

cart? (Q,RY) = {T'€ cart (2,R") || T, < + oo}.
One easily sees that the $”-norm in [3], also denoted || ”cmp(:z RNy is given by

“T“Cartp(Q,RN) = ” T”Lp + ” T”Mp
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where for T= (4, 8, %)

1/p
1T, := (ﬂf 19(2) |7 &,(2) 0(2) dyf”(Z)) .

1/p
IT,, = < ﬂf ELp f(2) d,}i”n(z)) .

The following theorem provides a version of Theorem 1 in [3], p. 120 for T€
cart? (2, RM).

Theorem 2. Let T = (4, 0,&) and {T,} belong to cart? (2,RY), p> I.
Then we have:

() 560 >0 #"-ae.in M, M =M, and 6 =1 #" ae. Also the measures
M ﬁ;(T) := 0, puT,s are absolutely continuous with respect to Lebesgue measure,
and

Top(b(x, ) = 0o [ $(x, ur(x)) M (T) (x) dx C)

Jor all bounded Borel functions ¢(x, y).
(ii) Moreover
Mﬁ;(T) x)=M ﬁ;(DuT(x)) for ae. xe Q2 5)

and

|| T”Cartp(Q,RN) = ”uTHLp(Q) + “M(DuT)“Lp(_Q) . (6)

(i) T, - T if and only if ur, — ur in L” and M ﬁ;(DuTk) -~ M ﬂ;(DuT) weakly
nrr. ¢
(iv) cart? (2,BRN) is closed with respect to the weak convergence in 6.
(v) If sup; “Tk“CartI’(.Q,RN) < +oo and up —w weakly* in L', then there
exists T¢ cart’ (Q, RNy with up=w and T,—T.
@D

Proof. From
[ 87 o7 < oo
A
we get & >0 ae. in A; thus 4, = # and 6 = 1 #"-ae. From the arca
formula, as in Theorem 1, we deduce that for all ¢ ¢ C(U)

Eap(x, ur(x))

E (o) & @

Taﬁ(¢(x= y)) - f ¢(x9 uT(x))
(A )

&.5(x, ur(x))

&50(%s ur(x)) LA,
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we deduce that (7) holds for all bounded Borel functions ¢(x, y), and there-
fore

&,5(x, ur(x))
&5 (2, ur(x))

On the other hand, Theorem 1 yields

6, Mo (T) (%) = #mae. in Q.

M;(T) (x) = Duf(x),
thus (5) follows since T is rectifiable (compare [3], p. 122). Finally,
f 5{1)0—;; as" = f &5 (% ur(x)) 77 dx = f | M(Duy) |? dx,
W4 2 2

and so we have proved (i) and (ii). The claims (iii), (iv), (v) follow from (4) and
Theorem 1 (compare also [3], pp. 122-123). []J -

If we now redefine Cart? (2 ,RY), p > 1, as the weak sequential closure in
%* of C! graphs, we see at once that Theorem 1, p. 120 of {3] is correct. In fact
Cart? (2, R") is then a sequentially closed subset of cart? (22, RY), thus Theorem 2
above holds in Cart? (2, RY), too. Again, the approximation property by smooth
graphs cannot be in general deduced; hence Remark 1, p. 123 of [3] is not correct.

Finally let us reconsider the class of weak diffeomorphisms. It is easily seen
that Theorem 2 of [3], p. 125 holds for T in

dif (Q, ) 1= {Tedif (2, Q) Tl gpg < 4 o0}

provided we replace the spaces in the statement with the same spaces with small
initial letters. Obviously dif?? (£, .(5) is closed with respect to weak convergence
in 974, Consequently, Theorem 2 also holds in Dif"9 (£2, ) defined as the weak
sequential closure of Diff (22, [}) in 27, We finally observe that for T' = ©(.#, 0, £)

- g
”T”‘@p’q - ” T”Cartl’(,{z,Rn) + (j{[ f(l)gqa dﬂ")

Now, for p,g> 1, set
di? () 1= {T€ dif (D | 1Tl qurrepm < +
dif? (Q) := {Te dif () TNl gp.g < + o0}
By definition, these spaces are sequentially. weakly closed respectively for e

and — - According to the above, we redefine Dif? (£2) and Dif?? () as the weak
GPs

sequential closure of Diff (£2) respectively for weak convergence in dif (¢2) N
Cart? (2,R”) and in 2#9. Then we clearly have

Dif? (2) C dif? (2),

. . (3
Dif?? (2) C dif? (2).
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The two following theorems are a slightly stronger version of Theorems 3 and 4
of [3] Section 4, and, because of (8), they hold respectively in Dif? (£2) and
Dif?? (£} too.

Theorem 3. Let T = ©(#, 0,&) and {T;} belong to dif? ({2).
(i) Set u () := g(AH). Then we have
quT = Tur ()]
and for all bounded Borel functions §(y) in R;
[ 60 dy = [ d(ur() det Dur(x) .

up(£2)

(i) |ur(D| = 2" | T
(iii) If T, ~ T, then

Cart?(2,R")°

H ”(uTk('Q) A u(2) =0
where A /\ B denotes the symmetric difference of A and B.

Proof. Using the area formula and Proposition 1, we have

[ ¥ dy = Jﬂf+ ¢ &5(x, ¥) dA™(x, )

up(2)
&6 )

—f¢() E )

&5, (x, ) do"(x, y) = f $(ur(x)) det Duy(x) dx.

Hence (i) follows.
~(ii)- Using the Hélder inequality, we get

78 1 1
|1 ()| = f goédyfn<< f & dy/n) ( f = d%pn)p |2 1T cprepio nm -
H

(iii) From Theorem 2 we have ¢, 7;($) = g4 T(¢) for all continuous and
bounded ¢; as ¢4 T = [uy(£2)] we can conclude

f () Xug, () dy — f ) Lupey v VY ¢€ C°(R}), ¢ bounded.

Using this for ¢ = 1, weget |up, (2)]— |ur(£2)|. Because | Yupa e = |ur(92)|
and that Yz (9 = Xug(@) in L2, (iii) follows at once. []

Theorem 4, Let T = (4, 0,&) and T, belong to dif*? (), p,q > 1.
() We have £;> 0 ae. in 4. Also

H"(ur (D) = #"(Q) | T ),

(ii) Let uy be the function defined in Propositon 1. For a.e. y € up(2) we define
the derivatives Duy by

3 ,;(ﬁ:r()’), »)

D) =5 o
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Then we have iy, Diiy € L9(Qp).
(ii)) Finally

Dur(ur{(x)) Dur(x) = 1|y,  Dur(itr(y)) Ditr(y) = 1,

M- (Dur(ir(y))
Du = P
ocﬁ ( Ur (y )) d t DllT (uT (y))

Jor ae. ycup(), and
Top($) =05 [ $(ur(y), y) M (Ditr(y)) dy
uy(2)

holds for all bounded Borel functions in U,

Proof. From

[ &l520 don < o
M

we deduce that ;>0 ae. in M. As 6 =1 ae. in A

& ljg
2] = fsood,%ﬂ"<(f§ dyf") < %dyf”)
v 00

= I”T(Q) {I/q [ T”gp,q’

The proof can now be completed as in Theorem 2. []

With the new definitions of the spaces given in this erratum, all statements and
proofs of [3], Sections 5, 6, 7 hold true with the same proofs.
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