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Summary. We study the distance in variation between probability measures 
defined on a measurable space (f2, ~ )  with right-continuous filtration 
(~)t~0. To every pair of probability measures P and /5 an increasing pre- 
dictable process h =h(P,/5) (called the Hellinger process) is associated. For 
the variation distance IIPr-/sr]] between the restrictions of P and /5 to g r  
(T is a stopping time), lower and upper bounds are obtained in terms of h. 
For example, in the case when Po =/50, 

2(1 - ( E  exp (--hT)) 1/2) <= ][PT -/sT II < 4(EhT) 1/2. 

In the cases where P and /5 are distributions of multivariate point 
processes, diffusion-type processes or semimartingales h are expressed ex- 
plicitly in terms of given predictable characteristics. 

1. Introduction 

In the present paper we study the proximity in variation of probability mea- 
sures defined on a measurable space (~2, ~ )  with a right-continuous filtration F 
=(~)~eo- With every pair of probability measures P and 15 we associate a 
predictable increasing process h=h(P,P) called the Hellinger process, [14], 
[17]. For the variation distance [IPr-/srrl between the restrictions of P and P 
to the a-algebra ~ r  where T is a stopping time, lower and upper bounds are 
obtained in terms of h. For example, in the case when Po = Po, 

2(1 --]/E exp(--hr)) < lIP r --/Srl I <4  E]/Eh r 

(see Corollary 2.1 and Theorems 2.1 and 2.2). 
The criterion for strong convergence is a corollary of the above estimates. 

It asserts (see Theorem 2.3) that P~ converges to Pr(TeR+) in variation if and 
only if the random variables hT(P", P) converge to zero in probability P. 



20 Yu.M. Kabanov et al. 

In the case where P and /5 are the distributions of multivariate point 
processes, diffusion-type processes, processes with independent increments or, 
more generally, semimartingales, the Hellinger process h can be expressed 
explicitly in terms of the given predictable characteristics, (see Sect. 6). 

Thus for the cases mentioned above, the general results lead to efficient 
estimates and criteria. For  example, if P and t5 are the distributions of count- 
ing processes with continuous compensators A and A, then h~/2 is the Hellinger 
distance between A and .A on [0, t] i.e. 

[O,t] ] d~d~--2dee1"  /1 d/-~s ~ d / ~ s \ 2  ht:�89 S (t/~-VdA~) = g ) , a t V ~ - V ~  ) dC~. 

where C = A + A. 
The results presented here have been announced in our note [6]. 
Our setting includes the case of "discrete time" when an increasing se- 

quence of o--algebras is given on (f2, ~ ) .  In this case a version of Theorem 2.3 
has been established by L. Vostrikova [20]. It turns out that an estimate of the 
Hellinger integral of order a (Theorem 4.1) is useful to derive the lower bound 
on IlPT-/srll. We adopted this idea from F. Liese who has obtained two-side 
inequalities for several particular cases, namely for counting processes with 
continuous compensators, Gaussian processes with independent increments and 
for diffusion-type processes, [9]-[11].  For  arbitrary processes with independent 
increments two-side bounds in terms of the Hellinger process (which is de- 
terministic in this case) are given in [17]. 

The inequalities for the variation distance between measures defined on a 
filtered space, different from ours but also based on the Hellinger process are 
obtained in [19]. 

It is possible to give upper bounds for Ilpr-Prll in the general setting (but 
with some additional assumptions) in terms of another increasing process V 
(see our note [6]). These bounds imply the known estimates for multivariate 
point processes and counting processes [4], [7]. 

Note  that the results of the present paper are closely connected with the 
problems of absolute continuity and contiguity of probability measures where 
the Hellinger process plays the fundamental role [5], [12], [14]. 

2. Main Results 

1. At first, we describe the general setting for the considered problem. All 
necessary preliminaries can be found in [2], [5]. 

Let (Q, ~ )  be a measurable space with a right-continuous filtration F 
=(~)t_>_o, Y =  ~ / ~ ,  and probability measures P, /5 and Q=(P+/5)/2. For 

t>O 
convenience of formulations we assume that the space (f2, J~, Q) is complete 
and ~0 contains all Q-null sets fl'om ~- (i.e. the usual conditions with respect 
to Q are satisfied). We identify Q-indistinguishable processes. The relations 
between random variables are understood Q-almost surely. Expectations with 
respect to the probability measures P, 15, Q . . . .  are denoted by E, /~, EQ . . . .  ; 5- 
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(correspondingly 4 )  is the set of all s topping t imes (correspondingly,  the set of 
the predic table  s topping times) with respect  to F, We denote  by PT the 
restr ict ion of P to the a -a lgebra  fiT" 

The  var ia t ion  distance between PT and PT is defined by the following 
formula  

]IPT--PT] I = 2  sup ] P ( / ) - P ( A ) I .  
Ae.~T 

Let x=(~t)t>=o be the density process of the measure  P with respect  to Q. I t  
means  tha t  ~ is the process  with sample  paths  f rom the space of c~tdlS.g 
functions D, and  for any T~9-- 

~r = dPr/dQr. 

The process x is a nonnegat ive  bounded  Q-mart ingale :  0 < ~ < 2 .  Let  ~c be the 
j u m p  measure  of x, t/ be  the Q-compensa to r  (dual predic table  projection) of ~c. 
It is well known,  [2], tha t  x can be represented in the following way:  

where c is a cont inuous  Q-mar t ingale  start ing f rom zero 1. 
Similarly we in t roduce the density process ? of  the probabi l i ty  measure  15 

with respect  to Q and associated objects ~, ~/, ;c. 
No te  that  ~ + 2~=2 and consequent ly  A ~ = - A  2. Recall  that  for a r a n d o m  

process X with sample  paths  f rom D the following nota t ions  are used: X_ 
=(Xt_)t=> o where X o_ = X 0 ,  A X = X - X _ ;  if T a 3 -  then  xT=(Xt^T)t>O . 

2. If R is an a rb i t ra ry  probabi l i ty  measure  domina t ing  P as well as /5 (i.e. 
P ~ R  a n d / 5  ~ R )  then the quant i ty  

H (P, P)=ER(dP/dR)I/2(d/5/dR) z/2 

does not  depend on R. It  is called the Hell inger integral for P a n d / 3  
In part icular ,  

H(PT, f i r ) - ~  1/2-1/2 - -  E'Q ~ T  ~T  " 

We int roduce an increasing process B =B(P, P) with 

B t = ( 1 / 2  ) ((N ~ ) - 2o  <~c>t + (]/1 +x/x_  --]/1 - - X / ~ _ )  2 * tlt), (2.1) 

with 0 / 0 = 0 .  No te  that  A B < I .  
Let 

a ,  = inf (t: xt/x 2, t < 1/n), a = inf(t: x t/x 2 t = 0), (2.2) 

r =  U {0, a~ 
n>l 

Definition. We call a predic table  increasing r ight-cont inuous  process  h with 
A h < 1 the Hel l inger  process  if 

I r o B = I r o h  

(i.e. the processes I r o B and I r o h are Q-indistinguishable).  

Throughout the sequel the symbols o,., �9 denote, correspondingly, integrals with respect to a 
process with bounded variation, a semimartingale and a random measure 
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For the Hellinger process h the Dole~ns-Dade exponential is defined by 

g,( - h) = exp ( - ht) 1-I (1 - A h s) e ~ he. (2.3) 
S~t  

Evidently, g ( - h )  is a nonnegative decreasing process with g o ( - h ) =  1. 
Put 

do= HPo -Po [[, Hr=H(PT,  F'T)" 

Theorem 2.1. For any TEJ,, eel0, 1 [ we have 

[IPT-/svl[ >2(1 - l / H o E g r ( - h ) ) ,  (2.4) 

I[Pr --/STI[ < 31,/2 l /1 - a H o  + 2P(gT( -h )  ==_ 0. (2.5) 

Since g r ( - h ) < e x p ( - h r )  and H 0 < 1 -dg /8  (see (3.1)), (2.4) implies 

Corollary 2.1. For any T ~ Y  

blPr -/srH > 2(1-1/ (1  -dg/8) E exp(--hr)  ). 

We give two other bounds for the variation distance between Pr and /5 r 
which, similarly to the latter estimate, are based only on the value of h in the 
moment T. 

Theorem 2.2. Let Te~-~ e>0.  Then 

IIPT--PTII <do + 4 EI/EI/~r, (2.6) 

IlPr-Pr II < ( 3 / 2 ) d o + 3 l / ~ + 2 P ( h r > O .  (2.7) 

Remark 2.1. Since B(P, P)=B(/5, P), Theorems 2.1 and 2.2 and Corollary 2.1 
are valid after replacing P and E by/5  and/~. 

3. Let P", /~" be probability measures on a filtered space (g2", ~ F" 
=(~")t>_ o) satisfying the usual conditions for Q" =(P~+/5")/2. Put h"= h(P ~, P"). 
Then Corollary 2.1 and (2.7) imply the following criterion for strong con- 
vergence of probability measures: 

Theorem 2.3. Let T6R+. Then the following conditions are equivalent: 
a) lim n ~, IlP~ -P~ll =0, 

n 

b) lira IlPo ~-/5o~11 =0, limP"(h~.>=0=0, Ve>0.  
n n 

3. Hellinger Integrals and Hellinger Processes 

1. For the proof of the lower bound for the variation distance, we need the 
concept of the Hellinger integral and the Hellinger process of order c~. Their 
properties are studied in this section. 
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Let R be a probability measure dominating P and/5. The Hellinger integral 
of order c~ with e~]0, 1[ is defined by 

H (~, P, P) = E~ (dP/dR) ~ (dP/dR) x - ~. 

The value of H(~, P,/5) does not depend on the choice of R. Clearly, 

O<=H(~,P,P)<=I. 

In agreement with the previous notation we omit the symbol c~= 1/2 in the 
sequel. 

Let us recall some elementary inequalities connecting the Hellinger integral 
with the variation distance. 

Lemma 3.1 (see [8], [163, [183). For any ~c]0, 1[ 

2(1 - H ( ~ ,  P,/3))< lip _/511 <]//C=(1 -H(c~, P,/5)~ (3.1) 

where C a is a constant; for  c~= 1/2 it is possible to choose Ca= 8. 

2. Lemma 3.1 shows that estimates for ]]PT--/STH can be derived from 
estimates for the Hellinger integrals 

H r ( ~  ae-f H (  cz, Pr ,  ~ ' - -  ~ �9 ~ 1 - ~  
- C T } - - L Q N T ~  T �9 

Thus, we must study the structure of the process 

once its additive and then its multiplicative decompositions have been con- 
structed. The latter plays a crucial role in the proof of the inequalities of 
Theorem 2.1. 

The function u~v 1 ~ (known in mathematical economics as the Cobb- 
Douglas function) is concave. So the nonnegative bounded process X(c0(<2) is 
a Q-supermartingale (recall that x and ;~ are Q-martingales). Its Doob-Meyer  
decomposition has the form 

X~(e) = X o (cQ - A,(~) + M, (a) (3.2) 

where A(~) is a predictable increasing process, M(a) is a Q-martingale, A0(~ ) 
=Mo(~)=0 .  

It is easy to see that E Q A ~ ( c ~ ) < E o X o ( a ) < 2  and so 

E• sup [M,(cQ[ __<EQ sup X~(~)+EQAo~(~)<4. 
t t 

Let a, and a be defined by (2.2). By a well-known property of nonnegative 
supermartingales (see, e.g. [2, (6.20)]) we have a = l i m a ,  and X(~)=X~(c0 on 
the set ( a<  oo). Therefore the uniqueness of the Doob-Meyer  decomposition 
implies, in particular, that A~ =A(cz) (and M~(e)=M(c0). 

We note also the following property of A(c0: 

AA~(c0=0 on (X~_(e)=0). (3.3) 
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Indeed, by [1, V-T-10] for any T~Jp we have 

E (I(T < oz) A MT(O 0 [ "~T-) = 0. (3.4) 

The random variables AAT(~ ) and XT_(C~ ) are f i r  -measurable. Hence (3.2) 
implies that for any T ~  e 

I(T<~,XT_(~)=o)AAT(C()=Eo(AXT(O:)I(r<oO,XT_(~)=O)I~T_ ). (3.5) 

But the set (AA(a)=0) is contained in the most countable union of the graphs 
of predictable stopping times. Thus (3.3) follows from (3.5). 

For c~]0, 1[ put 

q)~(u, v)= c~u +(1 -a )  v - u ~ v l - L  (3.6) 

Evidently, (p,(u, v) is a nonnegative convex function. We introduce the predict- 
able increasing process (compare with (2.1)) 

B ( c ~ ) = 2 e ( 1 - c O ( ~ _ 2 ) - 2 o ( ~ ) + q ~ ( l + x / ~ _ ,  1 - x / ~  ) ,~ .  (3.7) 

Note that AB(e)<I .  

Definition. We say that a predictable right-continuous process h(c~) with 
A h(c~) < 1 is the Hellinger process of order c~ if 

I r o h(a) = I r  ~ B(a) (3.8) 

where F = U 1[0, G]I (see (2.2)). 
n>__l 

Following Sect. 2 we omit the symbol c~ = 1/2 in the sequel. 

Lemma 3.2. The process A(c~) from the decomposition (3.2) can be represented as 
follows: 

A (c 0 = X_ (c0 o h(~) (3.9) 

where h(7) is any Hellinger process of order c~. 

The proof is given in [17]. 

Corollary 3.1. Let 0=inf( t :  Bt(e)= oo or ABt(e)= 1). Then 0>a .  

Proof. The representation 

G ( ~ )  = x o ( ~ )  - x (~) o ~(~) ,  + M,(~)  (3.10) 

implies that i n f ( t : B d e ) = m ) > a  and Xo(~)=AMo(e ) on (ABo(e)=I). Clearly, 
0 ~  and (ABo(e)= 1) is a o~0_-measurable set. Hence 

EQ(Xo(cO I(~Bo(~)= 1)1Yo-) = Ee(A Mo(c~) I(~Bo(~)= 1) 1 ~ = 0 

and, therefore, Xo(e)=0 on (dBo(~)= 1), i.e. 0>_-a. 

3. Lemma 3.3. Let h(c~) be a Hellinger process. Then 

X(c~) = 6~( - h(7)) ~9~ (~) (3.11) 
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where d~ is the Dol~ans-Dade exponential (see (2.3)), ~(c~) is a nonne- 
gative Q-supermartingale with the following properties: 

(i) for any z~J -  such that C;(-h(~))>0,  the process 5e~(a) is a local Q- 
martingale; 

(ii) for any ~ -  such that g~(-h(c~))>c>0, the process 5P;(~) is a bounded 
Q-martingale; 

(iii) if ~ ~c p (i.e. ~ P t ,  V t~R+) then 5e(~) is a local Q-martingale. 

Proof Let g ( -h (~) )  be the Dolhan-Dade exponential. Define 

~(~) = x ( ~ ) s -  1(_ h(c0) 

setting 0/0=0.  The identity (3.11) holds by virtue of Corollary 3.1. Since 
A h(a)< 1, 5P(c~) is a nonnegative process. 

Let z ~ Y  and d~(-h(c0)>0,  Then the process z (~)=d~ on the set 
[0, z~ satisfies the equation 

z(c~) = 1 + z_ (~)(1 - A  h(c~))- 1 o h(c~). (3.12) 

Using the It6 formula for a product and relations (3.10), (3.12) we have 

A ~(c~) = X0(~) + z(~). M(~)~ A~. 

This representation implies (i). Properties (i) and (iii) follow from (i). 
Since the stopping time 0 (see Corollary 3.1) is predictable, there is a 

sequence of 0k~J,, k > l ,  announcing 0. The nonnegative local Q-martingale 
5~176 is a Q-supermartingale. The Fatou lemma implies that the nonnegative 
process 

is a Q-supermartingale. But 5~ ~. Thus 5~ is also a Q-super- 
martingale. The lemma is proved. 

Theorem 3.1. Let 0 < ,  </~ < 1, p = ( 1 -  c~)/(1-~), q = ( 1 -  a)/( f i -  ~), T~J-  and h(c~) 
be a Hellinger process of order ~. 

Then 
H~(/~) __< Ho' / , (~)(~/~(-h(~)))  ~/~. (3.13) 

Proof From the obvious identity Xr(fl)=X~/P(e)z~/~ and the multiplicative 
decomposition of X(e) (Lemma 3.3) we get the following representation 

x ~(~) = se~/~(~)(~ g~/~( -h(~)))l/~ (3.~4) 

where 5~(c~) is a Q-supermartingale with 5~o(C~)=Xo(a). Taking the Q-expec- 
tation of both sides of (3.14) and applying the H61der inequality, we obtain the 
estimate 

/~ (~)  _-<(~ s~ ( . ) ) l / " (~  ~ g~/ '(-h(~)) I/.. 

This implies (3.2) because Ee Sr(e ) < E e So(a ) = Ho(e ). 

Corollary 3.2. The following inequality is valid: 

H r  (3/4) < ] / H o E g r (  -h) .  (3.15) 

For the proof it is sufficient to put in (3.13) ct= 1/2,/3=3/4. 
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Remark 3.1. Similarly to (3.13), it can be shown that  

where r = fl/e, l = fi/(fl - e). 

4. At the end of this section we give some results allowing us to use any 
probabil i ty  measure R dominat ing P and /5 instead of Q in order  to calculate 
the Hellinger process. 

Let  ~R(kR) be the density process of the measure p(/5) with respect to R. 
The  nonnegat ive  R-supermart ingale  XR(CO=(~Ry(7~R) ~-~ has the D o o b - M e y e r  
decomposi t ion  

xR(e) = x o~(e) -AR(e)  + MR(a) 

where AR(e) is a predictable increasing process, MR(a) is a R-martingale.  

L e m m a  3.4. The following representation holds: 

Ae(e)  = X a - (e) o B(e) (R-a.s.) 

Proof. We need to prove that  M(c0=XR(e)--XoR(e)--XR_(e)oB(e) is a local R- 
martingale. In accordance  with [2, (1.20)] it is sufficient to show that  for any 
T e J -  and t~R+ 

ER M, A r(~) = 0. 

Let  p be the local density of Q with respect to R. Then  X R ( e ) = p X ( e ) .  
Making use of L e m m a  3.2 and [2, (1.47)], we have 

ER Mt  ^ T(e) = ER (Xte^ T(e) -- XRO (e) -- X R_ (cOo B (e) t ̂  T) 

= ER P (Xt ^ T ( e )  - -  X o ( e )  - X _ ( e )  o B (e)t ̂  T )  = EO Mt ^ T ( e )  -~- O. 

The L e m m a  is proved. 

Corollary 3.3, Let  

he(a) = (XR (e))- 1 o AR(e) (Q-a.s.). 

Then hR(e) is a Hellinger process of  order ~. 

Indeed, by L e m m a  3.4 we have 

I r I(p_ > o)( XR- (e))- 1 o A R (e) = I r l(p_ > o) ~ B (e) (Q-a.s.) 

and one needs to note  only that  Q( in fp~>0)=  1, [5, L e m m a  3]. 
t 

Let  R , c  be the cont inuous  mart ingale par t  of xR, Ke be the jump  measure 
of R ,  t/~ be the R-compensa tor  of ~c ~. The  notat ions  ~R, ~, ~ n  qn are evident. 

Let  a,R = in f ( t :  ~t R A ,~t R __< l/n), o-R = in f ( t :  ~t R A 7~tn = 0). Put  

M~, , ,= ( ._ )_I  R,c ~ / ~ . . = ( ~ ) _ ~ - R ~  
gtR, n =  ~ R R ~R ~R e=(~/~_, ~/~_). 

s ~ t  AffRn 
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It is easy to check that 

~0~(u, v) __< K(a)(lu -v l  A lu -v l  2) 

where K(a) is a constant depending on a only. 
It follows that 

A gR, "(a) < 2g(a)  n2 ((IA zRI + IA keD A (JA ~RI2 + IA ;R]2). 

The processes z R and 2R are uniformly integrable R-martingales. Thus, the last 
estimate implies that gR,,(a) is a right-continuous locally R-integrable process 
(in fact, E R gff;,}k(a) < oo for T k = inf(t: ~ff A 2~/x gff, ">= k)). 

Denote the R-compensator of gR,,(a) by G R'"(a). 

Theorem 3.2. Let ha(a) be a right-continuous predictable increasing process with 
A hR(~) < 1 such that for any n 

ha(a)=(1~2) a ( 1 - c 0 ( M  R'" -MR'" )  +GR, n(cO on [0, a~]] 

(P- and P-a.s.). 
Then ha(a) is the HelIinger process of order a for P and t 5. 

Proof. It is easy to see that we only need to establish the equality B(a)=hR(a) 
on the sets 1[0, a NR/x a~ ,  n>  1. For this reason as well as for notational con- 

R venience we shall consider all the processes as stopped at a~/x a,  and omit the 
g superscript a~ A %. 

At first we prove that 

( M  R _ M R )  = ( M  - M ) .  (3.16) 

(the symbol Q is omitted). 
Since Q ~ R ,  a R-semimartingale Y is a Q-semimartingale and the "brack- 

ets" (Y~) of the continuous martingale parts of Y with respect to R and Q are 
Q-indistinguishable (see [2, Chap. 7]). The same holds for the stochastic inte- 
grals H" Y. 

By the above remark, the process ( M  R _ M e )  which is the "bracket"  of the 
continuous part of R-semimartingales z=(zR) - j .  n (2R_)-~.2R can be calcu- 
lated as the "bracket"  of the continuous part of the Q-semimartingale z. The 
continuous martingale parts of zR=.~p and ?,R=; O with respect to Q are z_-Pc 
+ p .  z~ and 2_.  S + p _ ' 2 r  correspondingly, where y is the continuous Q- 
martingale part of p. It follows that the continuous Q-martingale part of z with 
respect to Q has the form 

z~ = ( ~ ) -  ' z . p~ + ( z ~ ) -  ' p .  z~ _(;~_)- ~ ~_.  ,,~ -(2~_)- ~ p_-  ~ 

and (3.16) is established. 
Now we prove the equality 

G~(a) = G(a). (3.17) 
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Due to the uniqueness of the compensator we only need to show that 

E o f  o GR(cOoo = E Q f  o G(~)~ o 

for any positive predictable process f 
Note that g(c~)=p_p-~l(p>o)ogR(e)  (Q-a.s.) and I(p=o)ogR(c0=0. By [2, 

(1.47)], omitting the symbol a for brevity, we have 

E Q f  o G~ = E ( 2 f  o g~ = E o f  p_ p--~ I(p> 0) o g~ 

= ER P oo ( f P _  P-~ I(p > o) O g~) = E R f p _  p p - 1  I(p > o) O gR 
R = E R f p _  I(p > o) o gR = ER f p _  o goo 

= E R f P _  R _ o Go~ -- ER Poo ( f ~  GR) = EQ f o  G R. 

Thus, (3.17) holds. 
The assertion follows from (3.16) and (3.17) because 

(1/2) ~(1 - c 0 ( M  - ~ / >  + G(a)= B(a). 

4. Preliminary Lemmas 

This section contains some technical results. 

1. Lemma 4.1. For any T e J -  

LIPT--PT[I <d0 + 2 1 / E a ( ~ > r  

where do= IlPo -ffoH. 

Proof. Using the identity z + k = 2 we have 

I~r-~rl < I*o -~ol + I(~r-~o)-(~,r-~o)l--I% -2ol + 2 I~r-~ol. 

Thus, 
IIPT - FT][ = EO Ixr - 7 @  <d o + 2El2 Ix r -%1  

d o "Jr- 2 / E Q ( N  T - -  ~r 2 ~- d o -}- 2 ]/~Q (~> T- 

Remark 4.t. It is possible to derive the following lower bound for the variation 
distance between Pr and fir: 

IhPr-/5r1[ > 2 ( 1 - 1 / 1  - d 2 / 4 - E e ( ~ ) r ) .  
Indeed, 

][Vr - ffrJ[ > Eo(l'/77r - l ~ r )  2= 2(1 -l/E-- e " r  kr) 

and the result follows from the relations 

E e z r k r = 2 - E Q z 2 - E ( ~ ( ~ ) r  and d 2 < 4 ( E e ~ 2 - 1 ) .  

2. Recall the following 

Definition. An increasing process A 1 strictly dominates an increasing process 
A 2 if A~ > A~ and the difference forms an increasing process. 
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Lemma 4.2. Both processes 2B and 4~ o B strictly dominate the process (~ ) .  

Proof. For ~_ >0, ~_ >0  and - z  _<x_<2 put 

and note that 

4x 2 
W(,~_, ~_, x)=  

W ( ~ ,  ~_, x) : (1 /1  +x~Z ~ - V 1  - x k 2 _  x)2. 

From this and the definition of B we have 

2 B = ( x  ~ _ ) - 2 o ( ~ ) + W ( x  , Z _ , x ) * r l ,  

4z oB--2~ ; - 2 o ( ; ~ c ) - k 2 ~  W(x ,2  ,x)*t / .  

Comparing these expressions with ( ~ ) = @ ~ ) + x  2 , t /  and making use the in- 
equalities ~ 2 <_ 1, ~_ < 2, 

we obtain easily the desired assertions. 

5. Proofs of  the Main Results 

I. Proof  o f  Theorem 2.1. The estimate (2.4) follows from the left inequality (3.1) 
with ~= 3/4 and (3.15) (see Corollary 3.2). 

It is sufficient to prove the inequality (2.5) for finite T only. We use the 
multiplicative decomposition of the process X = X ( 1 / 2 )  (Lemma 3.3, c~=1/2). 
Put 

z = i n f ( t :  #,( h)<z) ,  ee]0,1[.  

Let (%) be a sequence annoucing the predictable stopping time z. By Lemma 
3.3 

and the process ~9 ~ is a bounded Q-martingale. 
Thus, 

H r  A ~ = Eo X r ^ ~ > e E e J r  ^ ~k = eEq X o = e H o 

and by virtue of the right inequality (3.1) with c~= 1/2 we have 

]lPr ̂  ~ - P r  ^ :~H N 2]/2(1 -eHo)  1/2. 

The above inequality and Lemma 4.3 imply that 

lIP T --/ST/[ ___ 31/2(1 --eHo) 1/2 + 2P(z k < T). 

To prove (2.5) we note that for finite T we have 

lim P (% < T) __< P (z ~ T) = P(# r ( - h) < 0. 
k 
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2. Proof of Theorem 2.2. According to Lemma 4.2 and [2, Proposition (1.47)J 

E 0 (x)  T < 4Eo x_ o B T -=- 4E a :~T B T = 4EBT" 

Hence (2.6) follows from Lemma 4.1 (note that any Hellinger process h strictly 
dominates B). 

It is sufficient to prove the inequality (2.7) only for the finite stopping time 
T. 

Put 0=inf( t :  (x)t__>2e). Then 0efp .  Let (Ok) be an announcing sequence of 
stopping times for 0. For the finite T we have P(O< T)=P((~)T>=2g ). Lemma 
4.2 implies that P((~T)>=2g)<P(Br>=e). By virtue of Lemmas 4.3 and 4.1 we 
have 

[IPr--/swl[ <(3/2) IIPT^o~-- /ST,,O~[I +2P(Ok < T) 

< (3/2)d 0 + 3]/2e + 2 n(O k < T). 

Since lira P(O k < T)<P(O < T), (2.7) follows from this relations because h r > B T. 
k 

6. Examples 

1. We give an expression for the Hellinger process h=h(P,/5) in the case when 
P and/5 are the distributions of the (weak) solutions of the stochastic differen- 
tial equations 

dYt=a(t, Y)dt +dW t, Yo=O, 

d~=a(t, Y)dt+dWt, Yo=0 

where a and a are nonanticipating functionals on the space (C, c~) of con- 
tinuous functions x=(xt)t>__ o. In other words, P (or 15) is a measure on (C, c~) 
such that 

x t -  S a(s,x) ds (o rx  t -  ~ a(s,x) ds) 
[0,  t] [0,  tl 

is the Wiener process with respect to P (or/5). 
In considering the case ~?= C, F=(~t) ,~0 is the minimal filtration satisfying 

the usual conditions with respect to (2 and such that ~tt~_%=a(xs, s<t) for 
any t. 

Theorem 5.1. I f  for any teR+ 

a2(s,x)ds< oo P-a.s., ~ a2(s,x)ds< oo /5-a.s. 
[0,  t] [0 ,  t] 

then the process 

h,=(1/8) j" (a(s, x)--a(s, x)) 2 ds 
to ,  t] 

is the Hellinger process for P and/5. 
loc ~ loc 

Proof By [15], Theorem 7.5 P ~ R, P ~ R where R is the measure on (C, c~) 
with respect to which of the coordinate process x=(xt)te o is the Wiener 
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process. Let R and kR be the density processes of P and /5 with respect to R. 
It is known (see, e.g. [15, Chap. 7]) that 

~R= l + ~n a. x, 2a= l + 2R gt. x (R-a.s.). 

Let o-,R-inf(t:- ~ A k ~ < l / n ) .  It follows easily from the Ito formula that 

X~^ ~ = 1 - (1/8) X R - (a - g02 o (x ) t  ~ ~ + (1/2) XR (a + a)- x, ~ %~. 

Since zero is an absorbing state for X R we have 

A ~ =(1 /8 )  X~_(a-a) ~ o ( x )  

and the desired assertion holds by Lemma 3.4 (note that ( x ) t - t  R-a.s.). 
2. Now we calculate the Hellinger process for the distributions of multi- 

variate point processes. 
Let (~2, J~, F) be a filtered space, (E, g) be a Lusin space (i.e. a Borel subset 

of a compact metric space), A be an extra point, ~ be the o--algebra of 
predictable sets on • x R + ,  ~ = ~ |  be the ~-algebra on f 2 x R + x E ,  E A 
= E • A ,  E~ = ~(~, {A}). 

According to [3] and [2, Chap. 3], a multivariate point process is a 
sequence/7 = (T,, X,),_>_ 1 such that 

a) T, eJ, ,  0 <  T,(co)__<T,+l(m ) and T,(co)< T,+ 1((~ ) if T,(co)< c~; 
b) random variables X,  with values (E a, g~) is ~-r -measurable and X,(co) 

= A if and only if T,(co)= oo. 
The integer-valued measure #=#(dt, dx) is associated with H by the for- 

mula 
/~([0, t] x F )=  ~ I(T<=t)I(x~r). 

n > l  

Let ~ u = a ( # ( [ 0 ,  t] xF) ,  s<t, Feg). 
Suppose that F=FU=(~u)t>_o. Let P and/5  be the probability measures on 

(f~, ~ )  such that the random measure # has as its compensators the predictable 
random measures v and ~, respectively. 

Put A = v +  9, at=v({t}, E), ~t=~({t}, E), 

p{(v, 9)= (1/2)(1/2-1//~)2. At 

where 2 = 2(t, x) and 2 = 2 (t, x) are g-measurable functions such that 

v=;tA, 9=2A. 

It is clear that the value pt(v, 9)((~)) is the Hellinger distance between the 
restrictions of v(co,.) and 9(o),-) to ~to,tl| I is the Borel a-algebra on 
[0, t]). 

Theorem 6.2. The process h defined by the formula 

ht=p2(v, 9 ) + � 8 9  s - ] / 1 - ~ s )  z 
s < t  

is the Hellinger process for P and/5. 
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Proof We need several simple auxiliary statements which we formulate as 
lemmas. 

Lemma 6.1. The compensator v ~ of the random measure # with respect to Q =(P 
+/5)/2 is given by 

v Q = (z_ v + 2_ ~)/2 

where ~ and 7: are the density processes of P and P with respect to Q. 

Proof Using [2, (1.47)], for any nonmegative ~-measurable function f we 
have: 

2eQf, ~ =M* #~ +Ef* ~ =M* v~ +/~f, % 
=EQ x ~ ( f *  v~)+ E Q 2 ~ ( f  * ~ )  

= E Q f x _  * v~ + EQf~_  �9 ~oo = E Q f *  (x_ v + k_ ~)~. 

The desired result follows now from the uniqueness of the compensator. 
According to [3], there exist ~-measurable functions Y and Y" such that 

v = Y v  e P-a.s., ~=Yv e P-a.s. (6.3) 

In general, it is not true that the equalities (6.3) hold Q-a.s. Nevertheless, we 
have the following 

Lemma 6.2. Let F = (x_ > 0),/~ = (k_ > 0). Then 

I r v = I r Y v Q ,  I r ~ = I ~ Y v  Q Q-a.s. (6.4) 

Proof For any ~-measurable function f > 0 we have 

E f I  r �9 v~o = E e ~ ( f i  r �9 voo) = Eo ~_ f Ir  * v~. 

On the other hand, 

E f I  r �9 v ~o = E f l r  Y* v~ = E o ~_ f i  r Y ,  v Q. 
Thus, 

E Q f l r ,  v ~ = E o f l r Y ,  v~ 

and the first equality in (6.4) holds by the uniqueness of the compensator. The 
proof of the second equality in (6.4) is similar. 

Put a~=ve({ t}  x E) and note that by the above lemmas a e = ( a ~  + ~ ;  )/2 
and 

According to the known results on the structure of the density process for 
multivariate point processes (see, e.g. [3], [5, w 12]) we have 

z = l + x _  "L 
where 

L t = ( Y - I + ( Y - a Q ) / ( 1  - a e ) ) , ( # - v e ) , ,  t<o-, 

Yt = ~ Y(t, x) vQ({t} x dx) 
E 
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and a is defined by (2.2). A similar representation holds for ~. It follows from 
(2.1) that B "~ (% is defined by (2.2)) is a Q-compensator of the increasing 
process b r where 

b~'-=(1/2) Z (1/ i  + AL ,  -I /~I  + A L ~ ) 2 = ( 1 / 2 ) ( l f l Y - I  f ~ ) 2  * /at,,,,, 
S<=t A~n 

a/- 

Thus, 

B ~ " = ( 1 / 2 ) ( ( V ~ Y - I / ~ ) 2 * v ~ , ,  + 2 I ( o f > o ) ( ~ - l / 1 - a * )  2)' 
~ A G n  

With the help of Lemmas 6.1 and 6.2 we can represent B ~'' in the following 
form: 

.... E 
s = < t  A o-n 

The assertion of Theorem 6.2 follows from the definition of the Hellinger 
process. 

Remark 6.1. Let a be a point outside E, Ea=Evo& Ea=o-(< {c~}). Consider the 
random measure v ~ on (R+ x E a, ~ 0 ,  00[| Ca) with 

v ~ dx) = I E v(dt, dx)  + I(~> o) ea(dx) 

where aa(dx ) is the Dirac measure. The random measure t ~ is defined similarly. 
- -  - 2 / 1 , 0  Then h~-ia t t , ~o). This relation of h with the Hellinger distance justifies the 

name "Hellinger process". 

Remark 6.2. The Hellinger process h defined by Theorem 6.2 is constructed 
directly from the predictable characteristics of multivariate point processes 
(namely, the compensators). In particular, if the compensators are deterministic 
then h is also a deterministic process while B is random (it is stopped in the 
random moment o 9. Thus, in a certain sense, h is the simplest Hellinger 
process. 

3. Let f 2 = D , , ~  be the completion of cr(G,s>O ) with respect to Q = ( P  
+ ff)/2, F be the minimal filtration satisfying the usual conditions with respect 
to Q and majorizing the filtration generated by coordinate maps in D. 

Assume that under P (corr. under/3) the coordinate process x=(x,),>_o is a 
semimartingale with the triplet of predictable characteristics T=(B, C, v) (corr. 
T=(/3, C, ~)), see [2, Chap. 3], [5, w 2]. Thus, under P we have the representa- 
tion 

x t = x o + B~ + ul(i,i > 1) * t~ + x~ + uI(M < ~) * (# - v)t 

where # is the jump measure of x, x~=(x~)~>o is the continuous P-martingale 
part of x with (x  r = C. The similar representation for x holds under /3  
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Put 
V~ = Vart (B -/~) + lul I~l.l< 1~ * Var(v -v)t ,  

= inf(t: V t = oe). 

Define the predictable increasing process A in the following way: 

Let 

A t =  

0 if z=O 

Bt-Bt -u l t l , l<=~)*(v -~ , )  t if t<z ,  

lira A~ if t > r > O .  

ht : (1/8)IdA/dCl oVart (A)+p2(v ,  ~)+�89 ~ (1/1 -a~ - 1 / 1  -fis) 2 
s_<t 

where d A / d C  is the N-measurable version of the Radon-Nikodym derivative of 
the absolute continuous part of A with respect to C. 

at= v({t}, Ro) , fit = ~({t}, R0) , R 0 = R \  {0}. 

Following [2, Chap. 12], we shall say that P has the local uniqueness 
property if for any 0EY- and any measure P on (Q, ~,~) for which x is the 
semimartingale with the triplet of the predictable characteristics T ~  (B ~ C ~ v ~ 
(where v ~ = I~o" o~ v) the restrictions of P and P on ~0-  coincide. 

Theorem 6.3 ([13]). Assume that C =  C and at least one of  the measures P or 
has the local uniqueness property. 

Then h is a Hellinger process for P and ft. 

Remark 6.3. For the case where P and/5 are the distributions of processes with 
independent increments (i.e. the triplets T and T are deterministic), the local 
uniqueness property holds [2, (13.2)]. The Hellinger process h is deterministic 
here, H r = g T ( - h  ) for TeR+ and estimates for IIPT--/STI I follows directly from 
Lemma 2.1 (see [17]). 
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