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Summary. A complete characterisation is given of the class of all doublets 
which determine the rate of convergence in the central l imit theorem. This 
enables a number  of important  properties of convergence determining sets 
to be deduced. In particular, it is shown that no singleton can be con- 
vergence determining, and any set consisting of four or more distinct points 
is convergence determining. Numerical  and analytic methods are used to 
derive the geometry of the class of all convergence determining doublets. 

1. Introduction 

The notion of a "(rate of) convergence determining set" was introduced in [-1]. 
These sets describe properties of rates of convergence in the central limit 
theorem, and may be defined in the following way. Let X ,  X 1 , X  2 . . . .  be 
independent and identically distributed random variables with zero mean and 
unit variance, and set 

~.(s~) =~up x~__<,~ - ~(~), 

where ~b is the standard normal distribution function and Y_~IR. We say that 
Y is convergence determining to order n -+, if the ratio 

{A.(~) + n- ~}/{3.0R) +,~- ~} 

is bounded away from zero and infinity as n ~ o v ,  for all choices of the 
distribution of X. Therefore the rate of convergence on a convergence de- 
termining set is the same as the rate of convergence on the whole real line, up 
to terms of order n -~. (Recall that n -~ is the order of the Berry-Esseen bound, 
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and cannot be surpassed without additional restrictions on the distribution of 
X.) 

The importance of the concept of convergence determining sets is that it 
permits an explicit connection between classical "uniform rates" of conver- 
gence, and rates of convergence on very small sets. For  reasons which are 
partly technical, and which have their roots in the history of the subject, most 
investigators have concentrated on establishing rates of convergence uniformly 
on the whole real line. These are "worst possible" rates, in the sense that they 
describe the largest possible error in the central limit theorem. It is of practical 
as well as theoretical interest to know whether these rates are unduly pessimis- 
tic, in the sense that rates of convergence on much smaller sets might be much 
faster. 

Our principal achievement in this paper is to provide a complete characte- 
risation of the class of all convergence determining doublets; see Theorem 2.1 
and Fig. 3.1. This immediately gives considerable information about conver- 
gence determining sets consisting of one or more elements. For  example, a 
corollary to Theorem 2.1 is that there exists no such thing as a convergence 
determining singleton: 

Theorem 1.1. No singleton {x} can be convergence determining to order n -~. 

All known results on convergence determining sets (see [1, Theorem 1.4, 
p. 12, and Theorem 2.4, p. 463 and [-2]) are trivial consequences of results 
proved here. In particular, it follows from the geometry of the class of con- 
vergence determining doublets that any set consisting of four or more distinct 
points, contains a doublet which is convergence determining, and so is con- 
vergence determining itself. On the other hand, it is possible to have a triplet 
of distinct points {xl, x2, x3} , of which no doublet is convergence determining. 
The class of all convergence determining triplets has a surprisingly complex 
geometry, and will be studied elsewhere. Suffice to say here that there do exist 
triplets which are not convergence determining; an example is given in Theo- 
rem 2.1. Therefore distinct quadruplets represent the smallest sets which can be 
guaranteed to be convergence determining. 

Section 2 presents a simple analytic formula which characterises conver- 
gence determining doublets. The consequences of this formula are described in 
Sect. 3, using a mixture of numerical and analytic methods. All of the theorems 
in this paper are stated in the context of rates of convergence to order n ~, 
although they remain valid for rates of convergence to order n-~; see [2, 
p. 3563 for a definition. The proofs require only minor modification. A slightly 
different definition of convergence determining sets has been given by Heyde 
and Nakata [33. 

By way of notation, we let 4)(x)=(2~)-~e -x2/2 denote the standard normal 
density function, and define 

~(x)= i 4,(y)dy. 
- - o o  
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2. Convergence Determining Doublets and Quadruplets 

It  has been shown by Hal l  [1, Chap.  21 that  

_sup -e(xl oG/+o(n-*t, 

and:  { sup Ig~(x)l+n-*}/(c~n+n -~) is bounded  away f rom zero and infinity 
-- :x) < x <  oo 

as n--* Qo, where the " leading t e r m "  L,(x) is given by 

L d x )  = n E  {e(x - •(x)} -(1/2) 4'(x) 
and 

~. = g {X 21(IX I > n+)} + n - + I E {X a I (IX[ __< n+)}l 

+ n-  1E {X41 (IXI = n~)}. 

Therefore  the convergence determining nature  (to order  n -~) of  any set &o 
depends  only on the behav iour  of L~ on 5C In fact 

A ,(~9 ~) = sup IL~(x)l + o ( @  + 0 (n-  ~). 
XEd; p 

It  follows that  the double t  {xl ,  x2} is convergence determining to order  n -~, if 
and only if, for all r a n d o m  variables  X satisfying E X = O  and E X 2 = I ,  the 
ratio 

(2.1) {Ig , (xl )  I + Ig~(x2) I + n -  4}/6 n 

is bounded  away  f rom zero as n--* oo. 
We shall character ize the class of all convergence determining doublets  in 

terms of the function H, defined by 

(2.2) H (xl , X2, y) = ~b t t (x1 )  G ( . x 2 ,  y )  - ( 1 5 " ( x 2 )  G(x1, y), 

for - oo < y < oo, where 

G(x, y)= ,b(x +y) - ~ ( x )  - y ~b(x) - (1/2) y 2 ~b'(x). 

No te  that  L,(x) = nE {G(x, - X / n ~ ) } .  

Theorem 2.1. (a) The triplet J -  = { - 1 / 3 ,  0,1/3} is not convergence determining. 

(b) I f  {xl ,  x2} is not a subset of J ,  then {xl ,  x2} is convergence determining 
to order n -~ if and only if the only solution in y of the equation 

(2.3) H(x , ,  x2, y ) : 0 ,  

is y = 0 .  

Note  tha t  G(x, 0 ) = 0 ,  and  so H(xl ,  x2, 0 ) = 0  for all x 1, x 2. Since H(x, x, y) 
= 0  for all x and y, then an immedia te  corol lary  of T h e o r e m  2.1 is that  no 
singleton is convergence determining;  see T h e o r e m  1.1. 

The  virtue of  T h e o r e m  2.1 is that  it transfers a p roper ty  tha t  was hi therto 
only expressable in terms of the c u m b e r s o m e  rat io (2.1), into one that  can be 
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represented by an explicit analytic formula. Nevertheless, Eq. (2.3) is not easy 
to interpret. In the next section, we shall use a mixture of analytic and 
numerical methods to construct from (2.3) the geometry of the class of all 
convergence determining doublets. Fortunately, the most important  property of 
H is easy to describe, and so we state it here. 

Theorem 2.2. I f  l < x 2 < x ~ ;  or if x 2 < x l <  - 1 ;  or if - l < x z < x l < l ;  then the 
only solution in y of Eq. (2.3), is y = 0. 

It is known that any doublet containing just one of the points + 1 or - 1 is 
convergence determining [1, Theorem 1.4]. Thus if any set of four distinct 
points includes of the points +1  or - 1  then it is convergence determining, 
and if not then it must contain a subset {xx, x2} satisfying the conditions of 
Theorem 2.2. Therefore we have the following result: 

Theorem 2.3. Any set of four distinct points is convergence determining to order 
n - � 8 9  

We shall prove Theorem 2.2 at the end of Sect. 3, and give the proof of 
Theorem 2.1 below. 

Proof of Theorem 2.1. The counterexample on p. 360 of [2] shows that Y is 
not convergence determining; this proves (a). The proof of (b) is in two parts. 

(i) Assume first that the only solution in y of (2.3), is y = 0. We shall show 
by contradiction that {Xl,X2} is convergence determining. If it is not, then 
there exists a sequence 5 ~ of positive integers diverging to + 0% such that 

(2.4) 

as n ~ o o  through 5 e. Write 

where 

and 

{]L,(x 1)1 + ]Ln(x2)[}/6,~O 

`s n = ~n 2 ~- ~)n3 Ar- `sn4, 

6,2=E{XZI(IXI>n~)},  6,3=n-~IE{X3I([XI<n§ 

6.4 = n -  1 E {X4(IXI __< n~)}. 

By passing to a subsequence of 5 P if necessary, we may assume that 

`5 n 3 / (  CS n 2 + `s n 4)--+ l 

as n--,oo through 5 P, where 0<l_<oo. In the case l=oo,  choose x e { x l , x 2 }  
with O"(x)+O. (Note that the case [x l l=[x2[=l  is excluded by hypothesis.) 
Expanding ~(x +y)  in a Taylor series about x, we obtain: 

]g, (x)l = n IE { G (x, - X/n~)}l 

> n[E {G(x, - X/n@) I(IXI < n~)}l - n Ig { G(x, - X/n�89 I(IXl > n@)}l 

>(1/6)14)"(x)I`5n3-(1/24) sup 14'"(Y)1`5,4 
- - o O < y < ~  

- sup [4'(Y)l`5,z 
- -  oo  < y < o O  

> (1/7)Iq~"(x)1,5.3 

> ( 1 / 8 )  [q~"(x)l `5,, 
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infinitely often as n~oo.  This contradicts (2.4). In consequence 1< o% and so 
for some k > 0, 

(2.5) ka, <,5,2 + c~,4 

for all large n e ~ .  
Define 

@rs hi I~/rs(X1 ' X2) = (~(r) (X 1) q~(s)(x2) -- (l~(r) (X2) (]~(S) ('X; 1)" 

Lemma 2.1. I f  {x l ,x2}  is not a subset of Y ,  and if the only solution of 
H(x 1,x 2,y)=O is at y=O, then ~12023>0. 

Proof. Observe the following asymptotic results: 

(2.6) H(xl ,x2,y)=(y2/2)O12+YOo2+O(1) as lYl--+oe, and 

H(Xl, x 2, y)=(y4/24)Oz3+(yS/120)Oe4 +O(y 6) as y ~ 0 .  

We shall show first that 0 1 2 = 0 2 3 = 0  is impossible. In this case we would 
have 

0 = 01/23 -- 2 I//12 =(X 1 --X2) (]~H (X 1) (yt (X2). 

Since H is not identically zero, the cases x l = x  2 and qS"(xl)=qS"(x2)=0 are 
excluded. But if, say, ~b"(x0=0+qS"(x2) then it follows immediately from 012 
=0  that ~b'(Xl)=0 as well, which is the required contradiction. 

Thus if 012=0 then 023=t=0, so that H takes the same sign as 023 for small 
positive and negative y. If also 0024=0, then H~yO02 as lyl--+oo, so that H 
takes different signs for large positive and large negative y. However H is a 
continuous function of y which is only supposed to cross the horizontal axis at 
y=0 .  This contradiction implies that if 012=0 then 002=0 as well, so that 
{xl, x2} = {1, -1}  and H - 0 .  Therefore r q=0. 

Now suppose that 023=0 so that 0124=0 and H takes the same sign as 0//12 
for large positive and negative y. It follows as before that 024=0. Observe that 

qS~4~(x) + x q~3~(x) + 3 ~"(x) - 0, 
so that 

Solving this equation simultaneously with ~/23 = 0 yields 

(X 1 --X2) (fi't(X 1) (~(3)(X2)= (X 1 --2('2) (,bit (X2) (i~(3)(X 1)= 0. 

Now x I =x 2 or qS"(x0=qS"(x2)=0 would give H - 0 ,  and (~(3)(X1)=(~(3)(X2)=0 
is excluded because {xl, x2} is not a subset of ~--. Thus we must have ~b"(x) 
=~b{3)(x)=0 for some x, which is impossible. Therefore 023 =#0. 

To complete the proof of Lemma 2.1 it remains to show that 012 and 023 
are of the same sign; but since H does not cross the axis in y > 0 ,  this follows 
from the asymptotic relations (2.6). 

Continuing the proof of Theorem 2.1, it follows from the above lemma that 
0~2 and 023 are either both strictly positive, or both strictly negative. We shall 
assume for definiteness that they are positive. Then the results (2.6) imply that 

H(xa,x2, Y)>=C(xl,xz)y2min{1, y 2} for all y, 
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where C(x l ,  x2)>0.  Thus 

4)" (xl )  Lo(x2) - ~"  (x2) L n ( x l ) =  n E { f I  ( x l ,  x2,  - X /n~) } 

> C(x l ,  x2) E [ X  2 min {1, (X/n~)2}] 

~-- C ( X 1 ,  X2)((~n2-[-~n4) 
> k C ( x ~ ,  x2) a. 

for all large n e Y, using (2.5). This contradicts (2.4), and so completes the proof 
of part (i) of Theorem 2.1(b). 

(ii) Assume next that for some yo=t=0, H(x~,  x2, yo)=0.  We shall construct 
a random variable X with E ( X ) = 0  and E(X2)=I ,  and a sequence ~ of 
positive integers diverging to + co, such that 

(2.7) {IL.(x01 + IL.(x2)l + n--~}/a.~0 

as n--+co through 5 e. 
It is known that the doublet { + 1, - 1 }  is not convergence determining (see 

[1, Theorem 2.7, p. 63]), and so we may assume that at least one of Ixll, Ix21 - 
say Ixll - is not unity. In this case, qS"(Xl)=t=0, and 

[L,(xl)] + IZ,(x2)] < IqS"(xl)1-1 I(o"(xl)L,,(x2) -~o"(x2) Zn(Xl) [ 

+ {Iq~"(xl)l-1 kb,,(x2) I + 1} IZn(xl) [ 

= [qS,,(xl) I - 1 n IE{H(x l ,  xa, -X /n~)}[  

+ {l~b"(Xl)[- * I~b"(x2)l + 1} [g,(x01. 
Furthermore 

[L.(x,)l + n IE { H ( x , ,  x 2, - X /n~)}[ 

< {1 + [qS"(x2)]} ILn(Xl) [ -k [~b"(xt) I [L.(x2)[. 

Therefore (2.7) is equivalent to 

(2.8) [IL,(xl)l + n IE { H (x 1 , Xz, - X /n~)}[ + n -  k]/~5,--.0 

as n--+ co through 5 a. 
Define Yl e N  by the equation 

(2.9) G(Xl, Yo) + (1/6) (Y 3 -2y~)  q~"(x 1) =0.  

Now construct a discrete-valued random variable X, whose atoms include the 
points 

am= - y o  2m~, of m a s s  pn~=2 - 3'n2+m, 
and 

bm=sgn(y l )2  m~-", of mass qm=lYll 2 - 3~+4m, 

for m_>--mo>l. (If y1=0,  then b~=0  for all m.) We choose too>0 , and two 
additional atoms, in such a way as to ensure that E ( X ) = 0  and E(X2)= 1. Let 
6 ~ denote the subsequence { n = n ( k ) = 2  zk~, k=>l}. We shall prove that (2.8) 
holds for this choice of X and 6 e. 
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Let k o > m  o be so large that  2 -k~ < lyol < 2k~ Then  for k >  ko, 

lakl<n~(k)<lak+ll if lyo]-< 1, 

lak_ll<n~(k)<lakt if lyo[> 1. 

Thus  if k > k  o and lyol< 1, 

2 2 0 2 -k2 5 . 2 =  ~ (a,.P,.+b,.qm)+ ( ) 
m>-k+ 1 

~ 2,-~_mZ+m __ 2 - m 2 +  = tyoZ ~-tyll 2m)+o(2-~2) 
m > _ k + l  

=[yl[2-k:- l  +O(2-~z), 

(2.10) n_~E{X31([Xl<n~)}=2_k21 ~ (amp,.+b.,q.,) 3 "--O~2-k2+k't J 
m<=k 

= ~ (--y32-k2+'+y12-k2+'~)+O(2--k2+k) 
m < k  

= 2 (Yl _y3)  2-k2+k + O(2-k2+k) 

and 
C~n4 ~2-2k2  2 4 4 y~2-k2+k (a,.p,. + b,.qm)~ 

m<=k 

If  lyol > 1, the cor responding  results are 6 .2~y~2  k~+k, 

(2.11) n_~E{Xai ( lXl<n~)}=(2y~ 3,,,-k~+k . . . . .  k2+k, - yo )Z  t o t z  ), 

and 5 .4=[y l12-k~+o(2-k~) .  In  bo th  cases 

(2.12) On=O,Z + On3 q-~Sn4~C 2 -k2+k 

as k--+c~, where c > 0 .  
In t roduce  ~G(x, y)-(y3/6)qY'(x) if lYl _-< 1, 

G*(x, 
Y)=(G(x,  y) if lyl> 1, 

and  note  that  
IG*(x, y)I < Ca(x)y 2 min (1, y2) 

where Cl(X) does not  depend on y. Define 

gk ,~ (X) ~ n Pm G * (x, - a,./n ~) 

where n = n(k) = 2 zk~. Tak ing  m = k we obta in  

(2.13) gram (X) = 2 - k2 + k G* (x, Yo) 

while for any k > k o and  m > m o, 

(2.14) Igkm(x)[ =22kz-3m2+m IG*(x, Yo 2m2-k2)[ 

f22k~-3"~+mC,(x)(Yo2"~-k2) 4 if r e < k - - l ,  

<122k2-3"2+"C,(x)(YO2m~-k=) 2 if m > k + l  

<=C,(x)y~max(l ,y~)2 -k~-Ik-'< if m=l=k. 
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Similarly, if we define 

we have 

(2.15) 

g~,.(x) = n qm G* (x, -bm/n}), 

Ig~,.(x)I <4  C~(x)IY,I 2-k2-Ik-"l 

for any k > k o and m > mo. 
Observe next that 
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(2.16) 

whence 

(2.17) 

[ ~ {gk~(X)+g~,.(X)}--2-k2+kG*( x, Yo)l 

< C~(x) y~ 2 -~-L~-'l  
m >=rno 

<2-k~.2.C2(x) ~ 2-m=0(6.), 
m = 0  

the last equality following from (2.12). Therefore 

n E {G* (x, - X/n~)} = 2 -k2+k G* (x, Yo) + 0(6,), 

nE{H(xl, x2, -X/n})} 

= q~"(xl) n e  {6* (x2, -X/n~)}  - ~"(x2) n E {C* (xl, -x /n~) }  

=2-k2+kH(xl ,  X2, yo)+O(5,) 

=o(a,). 

If LYo] < 1 then 

(2.18) E{G(x, -X/n~)} 
=E{G*(x, -X/n~)} -(1/6) O"(x)n- 3/2 E{X3 I(]Xl<n~)} 

= E(G*(x, -X/n~)} -(1/3)(y 1 -y3o) qS"(x) n -~ 2-k2+k + 0(6,), 

the second equality following from (2.10) and (2.12). Thus, 

nE{G(x, -X/n~)} 

= 2-k2+k {G( x, Y0) -- (yg/6) 4~" (x) -- (1/3) (y 1 --yg)qS"(x)} + o(6,) 

= 2-k2+k {G(x, yo)+(1/6)(Yao --2y 0 ~b"(x)} + o(6,,), 

the first equality following from (2.16) and (2.18). If ]yo]>l then 
= G*(-, Yo) whence 

~(', yo) 

nE{G*(x, -X/n})} = ~ {g~,,(x)+g~,,(x)} +O(n -1) 
m ~ m o  

where the term O(n-1) takes care of the extra pair of atoms introduced into 
the distribution of X to ensure that E(X)=0 and E ( X 2 )  = 1. Combining (2.13)- 
(2.15), we see that for a positive constant C2(x ) 
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nE {G(x, - X / n } ) }  = 2 -k2+k G(x, Yo) -(1/6) ~ " ( x ) E  {X 3 I([XI < n~)} + o(6,) 

=2-k2+k{G( x, Yo)+ (1/6)(y~ --2y,) q~"(x)} +o(6,) ,  

the first equality following from (2.16) and the first line of (2.18), and the 
second equality coming from (2.11). Therefore, for a general x 

L . ( x )  = ~, E { C ( x ,  - X /n~) } 

= 2-k2+k {G(x, yo)+(1 /6 ) ( yg - -2y  0 r + o(c5 ). 

Taking X = X l ,  and noting (2.9), we find that 

(2.19) L , ( x O = o ( g , ) .  

The desired result (2.8) follows from (2.12), (2.17) and (2.19). (Note that n ~ 
=2-k~.) 

3. Properties of the Function H 

The Euclidean plane IR 2 may be divided into two parts, the first consisting of 
those ordered pairs (Xl, x2) which are convergence determining, and the second 
of those pairs which are not. Our aim in this section is to describe the 
geometry of this decomposition. Since the convergence determining nature of a 
doublet is described entirely by the function H, defined at (2.2), then our task is 
equivalent to that of deriving certain properties of H. 

Observe that H (xl , x.2, y )=  - H (x2, x l  , y )= - H ( - x l  , - xz ,  - y). Therefore 
by Theorem 2.1, the ordered pairs (x i , x2) ,  (x2, xl) ,  ( - x l , - x 2 )  and ( - x  2, 
-Xl)  are either all convergence determining, or all not convergence determin- 
ing. For this reason, we could confine attention to ordered pairs (xl, x2) in the 
quadrant Ix21 ~ x  1. 

Our preliminary investigation took the form of extensive numerical com- 
putation, leading to Fig. 3.1. Pairs (xl, x2) within the shaded regions, and on 
the curves forming their boundaries, are not convergence determining. All 
other pairs are convergence determining. Of course, the pattern is symmetric 
about the axes xl =x~ and x t = - x  2. 

It follows from Theorem 2.2 and [1, Theorem 1.4, p. 12] that the triangular 
shaped region A in Fig. 3.1 with the exception of points on x 1=x2, and the 
unit square B with the exception of points (0, 0) and (1, - 1), consist entirely of 
convergence determining doublets. Several other aspects of the geometry may 
be deduced from properties of the interior curves represented by dotted lines in 
Fig. 3.1. These curves are the loci of solutions to the equations u(x~, x2)=0 and 
v(x~, x2)=0, where 

u(x~ ,  x 2 ) =  2 ~ ~ x~ x 2 - x  1 - x  2 + 2x~ x 2+3  
and 

D(X1, X 2 ) =  X1X 2 + 1. 

Note that O 2 3 ( X l , X z ) = ( x l - x 2 ) u ( x l , x 2 ) d P ( x O ~ ( x 2 )  and ~,12(xl,x2)= 
(.X 1 --X2) U(X 1 , X2) ~(X 1) (])(X2). 
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X2 

Fig. 3.1. Convergence determining doublets. Shaded regions (and their boundaries) represent doub- 
lets which are not convergence determining. Dashed lines are asymptotes, dotted lines are loci of 
solutions to u=0, or to v=0, and dot-dashed lines are axes of symmetry. An exception to this 
notation is that the line xl=x 2 is both an axis of symmetry and a set of non-convergence 
determining doublets; see Theorem 1.1 

Theorem 3.1. I f  u(xl ,  x2)v(x 1, X2)<0, then Eq. (2.3) has a solution y tO .  

Points  (xl ,  x2) within the area between the dot ted lines in region C~ w C 2 
of  Fig. 3.1, satisfy U(Xl,X2)<O and v(x l ,x2)>O.  That  por t ion  of region D 
below and to the right of the dot ted lines, satisfies u(x~,x2)>O and 
,(x~, x2) <0. 

There are three impor tan t  asymptotes  in the quadran t  Ix21 < x x :  the lines x 2 
=1 ,  xz=O and x 2 =  - 1 .  In order  to prove that  the line x 2 =  - 1  is an asymp- 
tote for the boundary  of region D, we argue as follows. The boundary  of D 
certainly lies above the curve of loci (x l , x2)  satisfying u(x , , x2 )=O and 
min (x t ,  - x 2 ) > l .  This curve lies below the line x 2 = - 1 ,  and increases to the 
line as x , - -++oo .  Theorem 3.2 below shows that  the boundary  of D must  lie 
beneath  another  curve which decreases to the line x 2 = - 1  as x ; ~ o o .  There- 
fore the bounda ry  of  D must  converge to the asymptote  x 2 =  - 1 ,  as Xl--+ + oo. 

In a like manner ,  Theorem 3.2 may  be used to prove that  the lower 
boundary  of  region C,  lies below and converges towards  the asymptote  x 2 = 0  
as x , ~ + o o .  Similarly, it follows f rom T h e o r e m 2 . 2  and properties of the 
function u that  the upper  bounda ry  of  C~ lies below and converges towards  
the asymptote  x 2 = 1, as xl--+ + o0. 



Convergence Determining Sets 11 

Theorem 3.2. For each 6e(O, 1), there exists Xo((5 ) >0  such that 

H(x, - 1 + c~,y) < 0 

for all X > Xo(6 ) and all y4:0. 

Another salient feature of Fig. 3.1 is the intercept of the upper boundary of 

region C 1 with the xl-axis. Since u(]//3, 0)=0, the intercept does not lie to the 

right of 1/5. It follows from Theorem 3.3 that the intercept equals ]/~. 

Theorem 3.3. For all 0 < x < ] / 3  and y4=O, H(x, O, y)>0.  

Likewise, it may be proved that the "vertex" of the region D is situated at 

(v/3, (See E2].) 
Perhaps the most intriguing property of the geometry of convergence de- 

termining doublets, is the way the regions C~ and C~ appear to meet in a 
single point at (t, -1). (A similar junction occurs at ( - 1 ,  1).) This is confirmed 
by Theorem 3,5, which shows in addition that the upper boundary of region 
C i passes smoothly into the lower boundary of region C 2. Indeed, let el be 
defined as in Theorem 3,4. Then the gradients of the upper boundary of C~ 
and the lower boundary of C 2 at the point (1, -1),  are both equal to l+e~.  
Numerical methods show that el _~ 0.911 l. 

Theorem 3.4. Define functions 

~(y)= ~(1 +y) 
and 

f l (y)=~(l  + y) 

Then the number 

and fl on ( -oo ,  or) by 

- r - y )  - 2 y  ~(1) 

-~b (1)-  y r (1)-  (1/2) 37 ~b'(1). 

e i - in f{e>0 :c~(y)+ef l (y )>0  for all y>0},  

is well-defined and satisfies 0<81 (1. 

Theorem 3.5. Suppose x , l+ l  and Xn2 ~ --1 as n-.+oo, in such a way that 

(x,2 + 1)/(x, 1 - 1)-+1 + eo, 

where -oo  < % <  or. Consider the condition: 

(3.1) for all y4:O, H(x,~, x,2, y)4:0. 

I f  eo>e I or e o < - ~ l / ( l + e l ) ,  then (3.1) holds for all sufficiently large n. I f  
-el / (1 +~1)<eo <e l ,  and e o 4=0, then (3.1) fails for all sufficiently large n. 

The cases to--0, e i or - e i / ( l + e l )  are necessarily excluded from Theo- 
rem 3.5, since in those situations the validity of (3.i) depends on the relative 
rates at which x, i - 1 ~ 0  and (x,2 + 1)/(x, i - 1) - (1  + eo)~0. 

Our last theorem shows that boundaries of the shaded regions in Fig. 3.1 
cannot be convergence determining. 

Theorem 3.6. I f  x , i ~ x  i for i=1,  2, and if each doublet {x,1 , x,2 } is not con- 
vergence determining, then neither is {xi, x2). 
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We conclude this section with outlines of the proofs  of Theo rems  3.1-3.6 
and 2.2. M a n y  of the proofs  depend on sign proper t ies  of certain univar ia te  
functions. These proper t ies  will be stated wi thout  derivation.  In  mos t  cases 
they m a y  be deduced immedia te ly  by examining the first few derivatives of the 
function. 

Proof of Theorem 3.1. The  theorem is immedia te  f rom L e m m a  2.1, except when 
{Xl, X2} ~---~'-, If {xl ,  x2)__c ~-  then ~/23(Xl, X2)=0 , and so either u(x 1, X2)~-0 or 
x I = x  2. The  former  contradicts  u v < 0 ,  and  the latter implies H = 0 .  

Proof of Theorem 3.2. First  we t reat  the case of posit ive y, and  prove  that  for 
each Be(0, 1), there exists x o ( 8 ) > 0  such that  

H ( x , - l + 8 ,  y ) < 0  for all X>Xo(8 ) and all y > 0 .  (3.2) 

Let  
A (x, y) = 2 n exp {x2/2 q- (1 - 8)2/2} (63/63 y) H(x, - 1 + 8, y) 

= - y {(x 2 - 1) (1 - 8) - x c5 (2 - c5)} + (x 2 - 1) (e (* - a)y_ y2/2 _ 1) 

+ a(2  - 8 ) ( e  - xy- '2/2 - 1). 

If  x is so large that  

(3.3) (x 2 - 1 ) ( 1 - 8 )  - x  8 ( 2 - 6 )  > 0 ,  

and if y > 2 ( 1 - 8 )  ( implying that  ( 1 - a )y -y2 /2__<0) ,  then A(x, y ) < 0 .  Therefore  
/-/(x, - 1 + 8 ,  y) is decreasing in y > 2 ( 1 - 8 ) ,  for each x satisfying (3.3). Fur ther -  
more,  as y--+ + co, 

H(x, - 1  +8, y) 
_ ( 4 n ) - a  y2 exp { - x 2 / 2 - ( 1 - 8 ) 2 / 2 }  {(x 2 - 1 ) ( 1 - 8 ) - x 6 ( 2  - 8 ) }  < 0 ,  

p rovided  (3.3) holds, and  also, H(x, - l  +& 0)=0. These three results tell us 
enough abou t  the shape of H ( x , - 1 + 8 , - )  for us to conclude that  (3.2) fails if 
and only if 

(3.4) there exist sequences x , ~  + co and O<y,~ l ,  0 < 1 < 2 ( 1 - 8 ) ,  

such that  A(x,, ,y,)=O and H ( x , , , - l + & y , ) > 0  for all n. 

Suppose  (3.4) holds. Since A(x,,, y , ) = 0 ,  then 

8 (2 - 8) {exp ( - x,  y, - y2/2) - 1 + x,  y,,} 
(3.5) x ,  2 - 1  - 

[1 + ( 1 - 8 ) y  n - e x p  { ( 1 - 6 ) y , -  y2/2}] 

I f  1 > 0, then the right hand  side of  (3.5) is a sympto t ic  to 

(3.6) 8 (2 - 8)x n l/[ 1 + (1 - 8) 1 -- exp {( 1 -- 8) 1 -- I2/2} ] 

as n + c o ,  unless 

(3.7) 1 + ( 1 - 6 )  l - e x p  { ( 1 - 6 ) I - 1 2 / 2 }  = 0 .  
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However ,  the t e rm in (.3.6) cannot  be asympto t ic  to the left hand  side of  (3.5), 
and so (3.7) must  hold. Fur the rmore ,  

1 +(1-6) l -exp {(~ -6) 1-12/2) 
> 1 +(1 - c l ) / - e x p  {(1 - c ~ ) / - ( 1  - 6 )  2/z/2} > 0 ,  

the second inequali ty following f rom the fact that  

(3.8) l+y-exp(y-y2/2)>O for all y > 0 .  

Therefore  (3.7) is false, and  so our  a s sumpt ion  that  l > 0  was wrong.  
I f / = 0  then yn--,0, and  then it follows f rom (3.5) that  

(x, y,)2 ~ 2 { exp ( - x n yn - y2/2) - 1 + x,  y,} 

as n ~ o o .  This entails x,y,~O as n--. oo, and  in that  case it may  be p roved  that  

(3.9) H(x , , -1+6 ,  y , ) ~  3 4 ~ 2 -(~z/12) x,, y,  6(2 - 6 )  exp ~ --x,/2 - ( 1 - 6 ) 2 / 2 }  < 0 

as n ~ o o .  This contradic ts  (3.4), and  so proves  (3.2). 
Next  we show that  for each 6~(0,  1), there exists x o ( 6 ) > 0  such that  

(3.10) H ( x , - l + 6 ,  y ) < 0  for all X>Xo(6 ) and all y < 0 .  

F r o m  an a rgumen t  similar to tha t  leading to (3.4), we see that  (3.10) fails to 
hold  if and  only if 

(3.11) there exist sequences x , ~ + o o  and O>y,,-+l, -oo<l<O, 
such that  A(x,,y,)=O and H(x , , -1+6 ,  y , ) > 0  for all n. 

Again,  x ,  and y,  are connected by (3.5). If  l =  - o% then the right hand  side of 
(3.5) equals 

(1 - 6 ) -  1 6(2 - 6) y~- i {exp ( - x , y ,  -yZ,/2) - 1 + o(1)} + 0 (xn). 

But the factor within braces  cannot  tend to - o o  as n ~ o o ,  and  so the entire 
expression cannot  be asympto t i c  to the left hand  side of (3.5). Therefore  I >  
- o o .  If  / = 0  then it m a y  be p roved  as before that  x,y,---,O and (3.9) holds, 

which contradicts  (3.11). Finally, if - o o  < / < 0  then it m a y  be shown tha t  

2 2 H(x,, - 1  +6 ,  y , ) =  q~"( -1  +6){1  - q~(x, +y,)}  +O{x, e x p ( - x , / 2 ) }  

- 6 (2 - 6) ~b ( - 1 + 6) x~ -1 exp (x, l Y, I - x2/2 - 12/2) 

< 0 ,  

which contradic ts  (3.11). 

Proof of Theorem 3.3. Let 

A (x, y) = 2 ~ x -  1 exp (x2/2 + y2/2) (0/~ y) H (x, 0, y) 

= x ( 1  -eY~/2)+ yeY~/2 + x-  ~(e -xy - 1 ) .  

We shall p rove  that  if 0 < x < ] / 3 ,  then A(x,y)>O for y > 0  and A(x,y)<O for 
y < 0 .  Since H(x, O, 0 ) = 0 ,  this implies T h e o r e m  3.3. Observe  tha t  
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B(x, y)-~A/c~x= 1 -eYe/2 + x -  2(1 - e  -~y -xye-XY), 

C(x, y) =- c~A/O y = (1 -F y2 _ x y) e y2/2 - e -xy, 
and 

D(x, y) = ~2 A/c~x O y = y(e - x' - er2/2). 

To treat the case y > 0 ,  note that B(x, 0)=0,  and D(x,y)<O for all x > 0  and 
y > 0 .  Thus B(x, y ) < 0  for all x, y > 0 .  So, for each y > 0 ,  A(x, y) is decreasing in 

x, and we need only show that A(]/3, y )>0 .  Now, it may be shown that 

E(y) - e -'212 C(]/3, y )=  y2 _ ] / ~ y  + 1 - e  -'2/2 -r  

is positive for all y > 0 .  However A( I /3 ,0 )=0  , so we have A ( l / ~ , y ) > 0  for all 
y > 0, as required. 

Next we consider the case y < 0 .  We shall show that C(x,y)>O for all 

0 < x < ] / 3  and y < 0 ;  since A(x, 0 )=0  for all x > 0 ,  this implies that A(x,y)<O 
for 0 < x < ] f 3  and y < 0 ,  as required. Now, if y Z / 2 > - x y  then clearly 
C(x,y)>O. Otherwise D(x,y)<O, so for fixed y < 0 ,  C(x,y) is decreasing on 

x c ( - y / 2 ,  oo). The conditions 0 < x < ] / 3  and y 2 / 2 < - x y  imply that 

- 2 ] / ~ < y < 0 .  Thus it only remains to show that C(lf3, y ) > 0  for all y in this 
range; but it is easy to show that E (y )>0  for all such y, so the proof of 
Theorem 3.3 is complete. 

Proof of Theorem 3.4. There exist positive constants c 1 . . . .  , c 4 such that c~(y) 
- c l y  5 and f l ( y )~Czy  4 a s  y-*0, and c~(y )~-c3y  and f l ( y ) ~ c g y  2 a s  y ~o o .  
Therefore for each e>0,  e(y)+ep(y) is positive for both small y and large y. It 
may be proved that e (y )<0  for all y > 0 ,  and /?(y)>0 for all y ~ 0 .  Con- 
sequently, e~ is well-defined and positive. It may be proved that c~(y)+/~(y)>0 
for all y ~ 0 ,  and so e~ <1. We shall show last of all that 

(3.12) ~(y)+el /?(y)=0 for some y > 0 .  

It follows from this that e~ < 1. 
For each e < ~ ,  there exists y~>0 such that c~(y~)+e/~(y~)=0. Choose a 

subsequence of z-values along which y ~ l ,  0<1<_o% as el"e~. The asymptotic 
relations given above for e and /~, imply that 0 < l < o o .  By continuity, 
e(1) + ej/?(l) = 0, proving (3.12). 

Proof of Theorem 3.5. An argument similar to that just above may be used to 
prove that the number 

e 2 - i n f { e > 0 :  e(y)-el3(y)<O for all y<0}  

is well-defined and satisfies 0<5  2 < 1, and that e 2 is the unique number which 
satisfies 

(3.13) c~(y)-e2~(y)<O for all y < 0 ,  and =0  for some y < 0 .  

A little algebra shows that 
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(3.14) ~(y) + el fi(y) = - ( 1  + e 1) { ~ ( - y )  - < (1 + ~ , ) -  ~ fl( - y)} 

for all y. Combining (3.12)-(3.14), we may deduce that z2=e~(1 + q ) - i  
We shall analyse the behaviour of H(xnl, x,2, y,) as n~oo ,  for an arbitrary 

sequence {y,}. To simplify matters we shall look along a subsequence 50, for 
which y,~l, -oo<_l<_oo, as n~oo  through 5 ~. For  ease of notation we shall 
write x~,x 2 and y for x,l,x,2 and y,, with n r  ~, and define c ~ = x , 1 - 1 > 0  and 
z=(x,2+l)/(x, l-1)-l .  Assume that e=e(n)--+eo#0, as n ~ o o  through 5 p. 
Then it may be proved that 

(3.15) H(xl,x2,y)~(2xe)-l%cSy 2, if Ill=oo; 
(3.16) H(x~,x2,y)~(12~e)-leo6y 4, if I=0 ;  

and 

(3.17) H(xl,x2,Y)=(2/~e)~c~{oc(l)+%fl(1)}+o(c~), if 0<I l l<  oo; 

as n--,oo through 5 ~. 
To complete the proof of Theorem 3.5, assume first that %>~1 or % < -e2 .  

If condition (3.1) fails to hold for all sufficiently large n, then we may choose 
y , # 0 ,  and a subsequency ~ such that H(x,~l,xn2,yn)=O for all n E ~  and y,--*l 
as n~ oo  through 5P. It follows from (3.15) and (3.16) that we must have 
0 <  1/1 < oo. However, the sign properties of e and fl given in the first paragraph 
of the proof of Theorem 3.4, and the fact that e is an odd function, imply that 

if e0>el ,  then ~(z)+%fi(z)>O for all z # 0 ;  

if % < - e 2 ,  then ~(z)+%fl(z)<O for all z # 0 .  

From this fact and (3.17), it follows that H(x,1, x,2, y,) is nonzero for all large 
n. This contradiction proves the result. 

Finally, assume that - e  2 <% <e l ,  and % # 0. For  definiteness, assume that 
0 < e o < e  1. By definition of el, there exists y * > 0  such that e(y*)+%fi(y*)<O. 
But ~(y)+%fi(y)~eofi(y)>O as y ~ 0 ,  and so there exists y**~(0, y*) such that 
c~(y**)+%B(y**)>0. We may now deduce from (3.17) that for all sufficiently 
large n, there exists y***= y***(n)~(y**, y*), such that H(xl,x2,y***)=O. 
Therefore condition (3.1) fails to hold for large n, as had to be proved. 

Proof of Theorem3.6. Choose y , # 0  such that H(x,l,x,2,y,)=O. We may 
assume without loss of gererality that y,~l, where -oo_<l_<oo, as n~oo .  
Asymptotic considerations such as those in the proof of Theorem 3.5, allow us 
to conclude that 0 < ]/[ < oo. In that case, 

0 = H ( x , 1 ,  x,2, y,)--+ H(xl, x2, l), 

and so {x 1, x2} cannot be convergence determining. 

Proof of Theorem 2.2. Let I denote the interval (1, oo) or ( - 0% - 1) or ( - 1, 1), 
and J the interval (0, oo) or ( - oo, 0). Observe that 

(3.18) (0/c9y) H(xl, x2, Y) = q~"(x 0 qS"(x2) {A(x2, Y) -A(xl ,  y)}, 
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where 
A(x, y) = (x 2 - 1)- 1 (e-y2/2-xy _ 1 + xy). 

We shall p rove  that  for all pairs (I, J), 

(3.19) ~A/~?x is of the one sign for all x~I  and yeJ.  

Then  it will follow f iom (3.18) that  c~H/c?y is of  the one sign for all xl ,x2~I  
with x l > x  2 and all yEJ, and hence that  H is of the one sign for all such 
x t ,  x 2 and  y, since H(xl, x2, 0 ) = 0 .  

Condi t ion  (3.19) will follow if we p rove  that  for all xEI and ycJ, 

B(x, y) =- (x 2 - 1)  2 c~A/c~x = (x 2 - 1) y(1 - e  -y2/2 - x y )  _ 2 x ( e  - y 2 / 2  - x y  _ 1 + x y )  

is of the one sign. I t  m a y  be p roved  tha t  

< 0  for all y > 0  
(3.20) B(1, y ) =  - B ( - 1 ,  - y )  > 0  for all y < 0 ;  

the second inequali ty follows f rom (3.8). Fur the rmore ,  B(x,y)~sgn(-y)oo as 
]x]~oo,  for fixed y4=0. These  sign proper t ies  imply that  if B(x, Yo) changes sign 
in x s I, for some  Yo ~ J,  then there mus t  exist x o E I with 

(3.21) 0~-xB(xo,yo)=0 and sgn{B(xo, Yo)}=sgn(yo). 

Put  C(x, y)= c~B/c~x, and observe tha t  

C(x, y)=e-Y~/2-xY{(x 2 - 1 ) y  2 - 2 }  +2 (1  - x  y) = 0 

only if 

{2 - ( x  2 - 1 ) y  2 } e - ' 2 / 2 -  ~ '  =- 2 (1 - x  y).  

In  this case, subst i tut ion back into the formula  for B produces  

{2 - ( x  2 - 1)y2} B(x, y ) =  (x 2 - 1)(x 2 + 1)y 3, 

and  so if (3.21) is to hold, we must  have 

sgn {2 - ( x  2 - 1) y2o} = ,, z s~,n (x o - 1). 

This is clearly impossible  if x~ < 1, and  so we m a y  assume that  x 2 > 1. 
N o w  let 

D (x, y) = e x2/2 + ~y C (x, y) = ( x  2 - 1 )  y2 _ 2 + 2 (1 -- X y) e y2/2 + xy. 

No te  that  D(x,y)~sgn(-xy)oo as [x[--,oo, for fixed y4=0. F u r t h e r m o r e  D 
always has the same sign as C, and C(1, y )=C(-1 , -y )=B(1 ,  y). Thus  it 
follows f rom the inequalit ies (3.20) tha t  D(x, Yo) has the same sign for x near  
each end of L 

But D(x o, y o ) = 0 ,  so there mus t  exist x~ EI  with 

a~xD (x~,yo)=0 and sgn {C(xl,yo)}=sgn(xlyo) or (3.22) 0. 
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Observe  tha t  ~D/Ox=2xy2(1-eY2/2+xY), so 

(3.23) y~/2 + x ~ yo = 0. 

This is c lear ly imposs ib le  if x 1 y o > 0 .  F u r t h e r m o r e ,  (3.23) implies  tha t  C(xl, Yo) 
= ( X l y o ) 2 > 0 ,  which con t rad ic t s  (3.22) if x l y 0 < 0 .  It follows tha t  B(x, yo) can- 
no t  change  sign in x E I, and  the t heo rem is proved.  

References 

1. Hall, P.: Rates of convergence in the central limit theorem. London: Pitman 1982 
2. Hall, P.: Sets which determine the rate of convergence in the central limit theorem. Ann. 

Probab. 11, 355-361 (1983) 
3. Heyde, C.C., Nakata, T.: On the asymptotic equivalence of Lp metrics for convergence to 

normality. To appear 

Received May 25, 1984 


