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Summary.  Let ho, ~o and Bc be the windows which minimise mean integrated 
square error, integrated square error and the least-squares cross-validatory 
criterion, respectively, for kernel density estimates. It is argued that ~o, not 
h o , should be the benchmark for comparing different data-driven approaches 
to the determination of window size. Asymptotic properties of ho-~o and 
~c-/~o, and of differences between integrated square errors evaluated at these 
windows, are derived. It is shown that in comparison to the benchmark 
~o, the observable window ~c performs as well as the so-called "optimal" 
but unattainable window ho, to both first and second order. 

1. Introduction 

Let X1, ..., Xn be a random sample from a distribution with unknown density 
f on N, and let 

fn (xlh) -- (n h)-i ~ K {(x - X~)/h} 
i=1 

be a nonparametric estimator o f f  based on kernel K and window h. The problem 
of choosing h so as to "minimise error", in some sense, is legion in the theory 
and practice of nonparametric density estimation. Commonly, the criterion used 
to measure loss is mean integrated square error (MISE), 

M(h) =_ SE {f,(xlh)- f(x)} 2 dx. 

See for example Rosenblatt [17]. This approach has its roots in classical theory 
of nonparametric density estimation, where the window h is taken to be non- 
random. Of course, the value ho which minimises M (h) depends on the unknown 
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density f. Any attempt to estimate this "optimal" h must result in a window 
which is a function of the sample values. That is, the value of h must in practice 
be a random variable. Bearing this in mind, it seems to us that one should 
try from the outset to minimise integrated square error (ISE), 

A (h) - ~ {fn (xlh) - f (x )}  2 dx, 

instead of MSE. If ~o (a random variable) minimizes A, and ho (non-random) 
minimizes M, then E {A (ho)} > E {A (/~o)}- In this sense,/~o improves on ho. 

Let ~ be a "data-driven" bandwidth, estimated from the sample in some 
way. Our aim in this paper is to examine the distance between/~ and/~o, and 
the distance between A (~ and A (/~o). Of course, A (h') > A (~o). We ask: how much 
greater than the minimum, A (/~o), is A (h') ? 

There are at least two approaches to constructing ~: the classical argument, 
which essentially tries to estimate ho ; and least-squares cross-validation (Bow- 
man [2, 3]; Rudemo [19]). The cross-validatory window is that value hc which 
minimizes 

CV(h)=-If,2(xlh)dx-Zn - '  ~ f,,(X, lh), 
i=1  

where f,i(xlh)=-{(n-1)h} -1 ~K{(x--Xj)/h} is the kernel density estimate 
j * i  

obtained by leaving out sample value X i. The intuitive appeal of cross-validation 
is that it sidesteps secondary issues such as theoretical properties of MISE, 
and goes straight to the heart of the problem, by minimizing an estimate of 
A(h)-Sf z. (Notice that CV(h) is unbiased for M(h)-Sf2.) We shall show that 
this directness pays dividends. In a range of situations, including the multivariate 
case, the difference between A (~c) and A (~o) is of the same order of magnitude 
as the difference between A (ho) and A (~o), under minimal smoothness conditions 
onf .  (The common order is n-1.) In this sense, the classical "best but unachiev- 
able strategy" of using ho is no better than the achievable strategy of least- 
squares cross-validation. Furthermore, neither ho not ~c consistently outperforms 
the other, since probabilities 

P{A(fi~)> A(ho)}, P{A(fic)<A(ho)} 

both converge to strictly positive limits. 
One class of competitors to /~  consists of two-stage ("plug-in') procedures, 

which aim to estimate the constant Co in the asymptotic formula ho ~ Co n-1/5 
(valid in one dimension). They cannot be expected to perform better than if 
the precise value of ho had been available. They can produce windows ~ for 
which A (h')- A (~o) is of larger order of magnitude than A (ho) - A (/~o), depending 
on their construction and the extent of additional smoothness assumptions. 

We shall close this section by relating our contributions to recent work 
in the area. Theorem 2.3 of Rice [16] is close to our Theorem 2.1, but in the 
context of nonparametric regression. Asymptotic first-order optimality of least- 
squares cross-validation in density estimation has been established by Hall [11, 
13] and Stone [21]; Stone's work assumes minimal conditions on f. Other 
forms of cross-validation in nonparametric density estimation have been consid- 



Integrated Square Error and Cross-Validation 569 

ered by Habbema, Hermans and van den Brock [9], Duin [8], Chow, Geman 
and Wu [5J, Bowman, Hall and Titterington [4] and Matron [14, 15]. The 
last three papers take quite a general view of the principle of cross-validation. 
A recent survey by Titterington [22] sets cross-validation into context as a 
smoothing technique. First- and second-order properties of the difference be- 
tween ISE and MISE have been examined by Bickel and Rosenblatt [1], Rosen- 
blatt [18J, Cs6rg6 and R6v6sz [6] (pp. 228-229) and Hall [10, 12]. Finally, 
we should point out that although L 2 measures of error, such as MISE, are 
very widely accepted, there do exist alternatives - examples include supremum 
measures (Silverman [20J) and L 1 measures (Devroye and Gy6rfi [7]). 

2. Results 

For the sake of clarity and brevity we shall state and prove our main results 
for the case of one-dimensional data, in the context of a positive kernel. Towards 
the end of this section we shall show that the theorems are readily extendible 
to any finite number of dimensions, and to more general kernels which may 
become negative in order to reduce bias. 

We impose the following conditions on K and f :  

(2.1) K is a compactly supported, symmetric function on IR with H61der-contin- 
uous derivative K', and satisfies 

~ K = I ,  IzZK(z)dz=--2k+O. 

(A function g is H61der continuous if I g ( x ) - g ( y ) l < c l x - y l  ~ for some c, e>0 
and all x, y.) 

(2.2) f is bounded and twice differentiable, f '  and f "  are bounded and integr- 
able, and f "  is uniformly continuous. 

Define integrated square error A, mean integrated square error M=__E(A), 
and the cross-validatory criterion C V  as in Sect. 1. Set D - A - M ,  and notice 
that C V= A + 6 - ~ f 2, where 

a -  Li(xo. =Iff.-n-' 
i = l  

Recall that Bo,/it and ho minimize A, C V and M, respectively. Observe that 

M(h) =(nh) -~ I K2 +(1 - n - t ) I  {I K ( z ) f ( x - h z ) d z }  2 dx  

-- 2 I f ( x )  dx  I K ( z ) f ( x -  hz) dz + I f  z. 

We may derive expressions for M'(h) and M"(h) by differentiating under the 
integral signs in this formula. In that way we may deduce that, with C l - I K  2 
and c 2 - k  2 I(f")  2 we have 

M (h) = c 1 (n h ) -  1 + c2 h 4 _~_ o {(n h) - 1 ..~ t/4}, 

M" (h)= 2ct (nh3) -1 + 12c2 h2 + o { (nh3) - ~ +h 2} 
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as h--*0 and n--,oo. Consequently, ho~con  -1/5 where Co=(Ct/4Ca) 1/5, and 
M"(ho) ~ c3 n -a/5 where ca = 2cl co a + 12c2 c 2. Set 

L ( z )  - - z / ( '  ( z ) ,  

o_ 2 _ (2/Co)3 (~f2) ~ [~K(y + z) {K(z)-- L(z)} dz 3 z dy 

+(4kco)2 {~ (f,,)z f _(~ f , ,  f )2 } , 
o 2 = (2/Co) 3 (j ' /z) (J'L2) + (4k Co) z {~( f , , ) z f_  (~/, ,f)2}. 

The structure of our arguments is very simple, and so we shall prove our  
main results here. The lemmas in Sect. 3 supply all the rigour needed, and 
we shall refer to them as required. 

First, we prove a limit theorem for ~ o -  ho. Observe that 

(2.3) O=A'(fio)=M'(fio)+D'(fio)=(fio--ho)M"(h*)+D'(fio), 

where h* lies inbetween ho and ~o. By Lemma 3.3, f io=ho+Op(n -1/5-~) for 
some e>0 ,  and so by Lemma 3.2 (with hi =ho), D'(fio)=D'(ho)+Op(n-7/l~ But 
Lemma 3.4 declares that n7/X~ ~,N(O, a2), and so n"/l~ must have 
the same weak limit. Since h*/ho p , 1, it is easily shown that M"(h*)=c3n -2/5 
+ op(n-2/5). Combining the estimates from (2.3) down, we conclude that 

(2.4) na/~~ ~ ~ N(O, 0"21232). 

Next we prove a limit theorem for ~c--/;o- Notice that 

(2.5) 0 = C V' (~c) = M' (]~) + D' (//c) + 6' (]~c) 

-- (~ -- ho) M" (h*) + D' (]~) q- 6' (h~), 

where on this occasion h* lies inbetween ho and ~c. 
Using Lemmas 3.2 and 3.3 in the same manner as before, we find that D' (fi~) 

+6'(fic)=D'(ho)+6'(ho)+Op(n-7/a~ Lemmas3.4  and 3.5 imply that D'(ho) 
+6'(ho)=Ov(n-V/~~ Since h*/l;[ o P,1, it is easily shown that M"(h*) 
= c3 n-  2/~ + op(n- 2/5). Using these results in (2.5), we find that 

0--- (nec-- ho) ca n -2/5 {1 + op(1)} +Ov(n-7/l~ 

and so ]~c-ho = O;(n-3/io). This means that 

(fic-- ho) M"  (h*) = ( ~ -  ho) Ca n-  215 + o , (n-  7/lo), 

and so we may refine (2.5) as follows: 

0 =(fir ho) ca n-  2/5 + D' (ho) + 6' (ho) + Op (n - v/10). 

We already know from the previous paragraph that 

0 = (~0 -- ho) c3 n-  2/5 + O' (ho) + Op (n- 7/10). 

Subtracting: 

0 = (~r c3 n-2/5 + 6' (ho) + op (n- 7/10). 
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This result and Lemma 3.5 entail 

(2.6) na/l~ ~, N(0, o-c2 c3-2). 

We pause to combine (2.4) and (2.6) into a theorem. 

Theorem 2.1. Under conditions (2.1) and (2.2), 

n3/l~ ) ~,N(O, a2c~ 2) and n3/l~ ~,N(O, a2c;2). 

Having derived these formula, it is only a short step to describe the amount  
by which ho and ~ fail to minimize integrated square error. For  that purpose 
we impose an additional condition on K:  

(2.7) K has a second derivative on IR, and K" is H61der continuous. 

Let h denote either ho or ~c, and notice that 

A (h) - A (~o) = 1( h -- ~o) 2 A" (h*), 

where h* lies inbetween h and ~o. In view of Lemma 3.6 and the fact that 
h*/ho v-K+ t, A"(h*)=M"(h*)+op(n-2/5). But M"(h*)-=can -2/5 +op(n-2/5), and 
so, since h-/Zo = Or(n- 3/lO), 

A (h ) -  A (~o) = �89  ~o) 2 c 3 n-2/s + or(n- 1). 

Our next result is now immediate from Theorem 2.1. 

Theorem 2.2. Under conditions (2.1), (2.2) and (2.7), 

n{A(ho)--zJ(f io)  } "@ ?,1G2 c31Z2 and n{A(~e)--A(fio)  } "@ , �89 C31Z 2. 

Remarks 

2.1. Higher Dimensions. The proofs of Theorems 2.1 and 2.2 work for higher 
dimensional data, although with more elaborate notation. In the case ofp  dimen- 
sions we should define L by 

P 
L(z)=_ _ p -  1 ~ z(i) Ki(z), 

i=1 

where z=(z (1) . . . .  , z (;)) and Ki(z)=(~/3z (i)) K(z). We assume p-dimensional ver- 
sions of (2.1), (2.2) and (2.7), and define 2 k - ~ z  (~ K(z)dz (not depending on 

K ~ - k 2 ~ ( v Z f )  2, Co i), Cl =-~ -, C2 =(pCl/4C2) 1/(p+4), c3--p(p+ 1) ca Co (p+2) 
+ 12C2Co 2 , 

ao 2 -= 8 p2 Co ' -  2 (~f2) ~ [I K(y + z) {K(z)-- L(z)} dz] 2 dy 
+ (4kco) 2 {~f(V2f) 2 - ( f f  V2f)2}, 

2 _ 8 p2 c2 p- 2 (~ f2)(~ L z) + (4 k Co) 2 {~f (V2f) z - (~f V2f)z}. G c 
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Theorem 2.2 holds as before, and the only change to Theorem 2.1 is that the 
factor n 3/1~ should be replaced by n (p+ 2)/~z(p+4)). 

2.2. General Kernels. The forms of Theorems 2.1 and 2.2 remain unchanged 
if we admit more general kernels. To illustrate this, we shall confine attention 
to the case p = 1. Higher dimensions may be treated similarly. 

I f K  is chosen so that S K =  1 and for some integer t>2 ,  

~zJK(z)dz=O for l < j < t - 1 ,  ~z tK(z)dz+O,  

then the kernel L also enjoys these properties. A version of Theorem 2.1 holds 
in which n 3/~~ is replaced by n 3/{2(2t+ 1)}, and Theorem 2.2 holds as before. 

2.3. Joint Limit Theorems. Both Theorems 2.1 and 2.2 can be expressed in the 
form of joint limit theorems for 

(n ( t o -  ho), n 
and 

(n (d (ho) - A n {A A 

respectively. In the former case the limit is bivariate normal with zero means, 
variances as in Theorem 2.1, and covariance 

(2.8) - 8 c ~  z [-Co 3 (~f 2) ~(K--L){K * ( K -  L)} + 2 k Z c ~ { ~ ( f " ) z f - ( ~ f " f ) z } ] ,  

where �9 denotes convolution and k is as in (2.1). The bivariate limit is more 
complex in the case of Theorem 2.2. 

Many commonly-used kernels K have Fourier transforms which are nonneg- 
ative. In this circumstance it follows from (2.8) via Parseval's inequality (for 
the first term within square brackets) and the Cauchy-Schwarz inequality (for 
the second term) that the asymptotic correlation between / /o-ho and ]~c-~o 
is negative. This means that ho and ~c tend to error on the same side of the 
optimal window,/~o- 

2.4. Comparing Different Bandwidths. For the sake of simplicity we shall confine 
attention to the case of positive kernels and one-dimensional data. We shall 
adhere to our convention, discussed in Sect. 1, that "bet ter"  windows h are 
those which give smaller integrated square error. 

Let ~ be a window satisfying fl/ho v > 1. Assume conditions (2.1), (2.2) and 
(2.7). Using the argument leading to Theorem 2.2, we obtain: 

(2.9) O< A(f i ) -  A(fio)= l( f i - f io)  z c3 n-2/5 {1 + op(1)}. 

We shall consider various possibilities for/~. 
(i) We might explicitly estimate the constant Co in the asymptotic formula 

ho ~-, Co n-1/5, and take ~ to be the resulting window. This requires estimation 
of S(f") 2, perhaps by integrating the square of a kernel estimate of f " .  Such 
an approach is really a global version of Woodroofe's [23] two-stage procedure. 
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Under the smoothness assumption (2.2), the rate of convergence of such an 
estimator can be slower than n -~ for any given e >0. In consequence, the error 
(~-Bo) 2 may converge to zero in probability at a rate slower than n -2/5-2e, 
and by (2.9), A(h')--A([io) may be no smaller than order n -4/5-2e. On the other 
hand, if ~ is the cross-validatory window ~c then A (h')-A (Bo) is as small as 
n-  1 under the minimal condition (2.2). 

(ii) The procedure outlined in (i) is motivated by a desire to estimate ho. 
Following that philosophy, we would be doing extremely well if we actually 
knew the value of ho. But according to Theorem 2.2, even if we took ~=  ho 
we would hardly do any better than using the cross-validatory window ~c, 
since in both cases the distance of integrated square error from the minimum 
would be order n-1. 

2 This follows from the Cauchy- (iii) I f  K is a positive kernel then az<ac .  
Schwarz inequality, (Sgh) 2 <(SgZ)qh2), applied with g(z)=_ {K(y+z)}  ~ and h(z) 
- -  ~- ' 2 2 �9 - = { K ( y + z ) }  { K ( z ) - L ( z ) } .  Notice that ~L = ~ ( W - L ) .  (The result is true in 
any dimension.) In this sense, t ak ing / /=  ho does result in a marginal improve- 
ment over cross-validation. However, the improvement is not available with 
probability one. It is noted in Remark 2.3 that 

(nZ/l~ n 3 / 1 0  ( ~ c - -  ~ 0 ) )  N : ~ ( Z l ,  Z 2 )  

say, where (Zt,  Z2) has a joint normal distribution with P(I/~I > 1221)>0. Conse- 
quently, the limit 

lim P {A (ho) > A (/~c)} 

exists, and is strictly positive. 

3. Lemmas 

The lemmas below were required for the proofs of Theorems 2.1 and 2.2. In 
Lemmas 3.1-3.5, we assume conditions (2.1) and (2.2). The symbols C, C1 and 
C2 denote generic positive constants. 

Lemma 3.1. For each 0 < a < b < o~ and all positive integers l, 

(3.1) sup E[n 7/1~ D'(n-  1/5 t)12/~ C l ( a  ' b, I), 
n;a<=t<=b 

(3.2) sup ElnT/l~ 6'(n t/st)12l<Cl(a, b, l). 
n;a<_t<~b 

Furthermore, there exists ex > 0 such that 

( 3 . 3 )  ElnV/a~ b, l ) t s - t l  ~1~, 

(3.4) E ln 7/1~ {6'(n- i/5 s ) - f i '  (n- i/s t)}121 < C2(a, b, l ) l s -  t] ~Iz 

whenever a <- s < t <- b. 
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Proof. We begin by decompos ing  D' and 6'. Let  g.(xlh)-(nh)-l~,L{(x-X~)/h}, 
and observe that  i 

- ( h / Z )  A'(h) = ~ ( f .  - f ) ( f .  - g . )  

= ~ (f .  - Ef . )  2 - ~ ( f .  - EL)  (g. - E g.) 

+ S ( f .  -- EL) (2  E f .  -- E g. -- f )  + ~ (g. - E g . ) ( f -  Ef . )  

+~(Ef.- f)(Ef .--Eg.) .  

Put  K,(x)= K { ( x -  Xi)/h}- EK { ( x - X i ) / h } ,  and define Li similarly. By expand-  
ing ~(fn--Efn) 2 a s  a sum of  integrals of squares plus a sum of integrals of 
products ,  and expanding ~ ( f . -  E f . ) ( g . - - E  g.) in a similar way, we conclude that  

(3.5) D t (h) = - (h/2) D' (h) = St (h) + $2 (h) + $3 (h), 

where $1-S l l -S12 ,  Sz ~$21-]- $22, $ 3 ~ $ 3 1 - $ 3 2 ,  

S11-2(nh) -a Z Z  ~K,(x)Kj(x)dx, 
l<i<j<n 

St2=(nh) -2 ~ Z  ~{Ki(x) Lj(x)+Li(x)K)(x)} dx, 
l<=i<j<=n 

S21 =(nh)  -1 ~ ~ K~(x){2Efn(xlh)-Egn(xlh)--f(x)} dx, 
i=1  

$22 =-(nh) - t ~ ~L~(x){f(x)-E f,(x[h)} dx, 
i=1  

S3t-(nh) - z i ~ {K,(x)Z--EK,(x) 2} dx, 
i=1  

S32-(nh) -2 ~ I{K~(x) L,(x)-EK,(x) L,(x)} dx. 
i=1  

A similar a rgument  produces  the decomposi t ion  

(3.6) 61 (h) - (h/2) 6' (h) = Tt (h) + T2 (h), 

where Ti=- T i i -  T12, T2=- Tz i -  T22, 

Tl , -2{n(n-1)h}  -t  ~ ' ~  {Bi(X~,Xj)-bz(X~)-b~(Xj)+#,}, 
1 <=i<j<n 

T2,-(n h)-t ~, {bi(Xi) - # t -  f(X,) + ~f2},  
i=1  

B1 (x, y) = K { ( x -  y)/h}, B2 (x, y) = L {(x - y)/h}, b,(x) = E {Bt (x, X)}, #, = E {b,(X)}. 
T o  prove  (3.3) we shall show that  for  some ~ > 0, 

(3.7) E In 9/10 {S1 i (n-  1/s s) -- S l i  (n-  1/5 t)} 121 < C Is -- t[ "z, 
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(3.8) E In 9/t~ {$21 (n- 1/5 S) -  $21 (n- 1/5 t)} [21,( C I s -  tl el, 

(3.9) E In 13/10 {S31 (n- 1/5 s) - $31 (n- 1/5 t)}12/~_ C Is - t[ ~t. 

Similar inequalities may be established for the functions $12, $22 and Sa2. 
To verify (3.7), note that $11 may be written as 

S l l ( n - 1 / s t ) = n  -2 ~ Ut(i,J) 
l<=i<j<_n 

and Ut(i, j) satisfies 

(3.10) E [Ut (i, j ) IXJ  = E JUt (i, j)tXj] = 0. 

Be the compactness of support (which without loss of generality may be taken 
to be [ -  1, 1]) and the Hr lder  continuity of K, for s, te(a, b), 

/ x - - X i \  [ x - - X j \  

{x-x 4 
--(n-- i/5 {)--2 f K ~._ i/5 t] K k "- I/5 f] 

< C [s - tl"(n- 1/5 b) - I  lt_ 2, 21 k n--=iT~-b } �9 

Hence, 

(3; 11) 

But, 

(3.12) 

{x,-xj  2} [Us(i, j)-  Ut(i,j)[ < C l s - t r  (n-1/5 b) -1 lt_2,2 ~ ~ n_ l/S b ] + l . 

E [-n 9/10 {$11 (n- 1/5 s ) -  $11 (n- 1/5 t)}]2/ 

ZE 
il<jl i21<j2! 

... { Us(i2,, j 2 , ) -  G(i2~, J2,))]. 

Rearrange the terms on the right side of (3.12) into 4l groups where the term 
indexed by i l , j l ,  ..., izt,jzz is put in the m-th group when there are exactly 
m distinct integers in the list i l , j l  . . . .  , iz~,jzv Note that the cardinality of the 
m-th group is bounded by Cn", and by (3.10), each term is 0 in the groups 
2 /+  1, ..., 41. Hence, by (3.11) and integration by substitution, 

E Vn 9/1~ {811 (n- 1/5 s ) -  $11 (H- 1/5 t)}]2/ 
21 

<=Cln-11z/5 y'  n.,[s_t[2~Zn2,5-,./10 
m=2 

< C 2 [ s - t l  2~z, 

and the proof of (3.7) is complete. 
To verify (3.8), note that by Taylor's theorem, (2.1), (2.2) and the fact that 

L is also symmetric and integrates to 1, for t~(a, b) 

[2 E f , ( x ln -  1/5 t ) -  E g,(xln-1/5 t)-- f (x)[ < C n -  2/5. 
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Hence $21 may be written 

where 

and where 

(3.13) 

S21(n-1/s t )=n -1 ~ Vt(i), 
i=1 

E[~(i)] =0, 

1~(i)-  Vt (i)1 ~ C n-2/5 Is-tr .  

By a cumulant expansion of the 2/-th moment, to show (3.8) it is enough to 
check that for m=2 ,  ..., 21, 

[C U m m (n 9/10 (S21 (n- 1/5 s ) -  S21 (n- 1/5 t)})[ ~ C Is - -  t[ e'm, 

where cumin(') denotes the m-th order cumulant. But, by the independence prop- 
erty of cumulants, 

[CUmm(n 9/i~ {S2i (n- i/5 s ) -  $21 (n- 1/5 t)})[ 

= n-m/l~ cumm(V~(i)- Vt(i)) 

< C n  1 -,./lO In- 2/5 Is- t[q" 
= C n  1 - , . / 2  Is - t (  m, 

where the inequality follows from (3.13). This completes the proof  of (3.8). 
The verification of (3.9) is quite similar to that of (3.8) so only differences 

will be noted. Write 

Sa l (n -1 / s t )=n  -2 ~, Wt(i), 
i=1 

where 

and where 
E ]- Wt (i)] = O, 

[ I/V~ ( i ) -  14~t (i)[ = Cn 1/5 Is - tie,. 

Hence, for m--2, ..., 2 l, 

Ic u m,~ (n 9/i~ {S2i (n- i/5 s) - $21 (n - 1/5 t)})[ 
=< Cn-9m/l~ l +ra/Sls--t] e,m. 

This completes the proof  of (3.9) and hence that of (3.3). The same type of 
argument may be used to prove (3.1), (3.2) and (3.4). 

Lemma 3.2. For some e > 0 and any 0 < a < b < o% 

(3.14) sup {[O'(n- 1/5 t)[ + [6'(n- 1/s t)l} = Op(n- 3/5 -e). 
a<t<b  

Furthermore, for any 22>0 and any non-random h I asymptotic to a constant 
multiple of  n -  1/5, 

(3.15) sup nT/l~ p ~0. 
[t-nl/Sh1[ <n-~2 
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Proof. We give a proof only for D'. The proof for 6' is similar. To check (3.15), 
note that using the decomposition (3.5) of D', the H61der continuity of K and 
L, and the fact that both of these functions have compact support, there is 
an e > 0 sufficiently large that 

(3.16) sup ID'(n-1/Ss)--D'(n-1/5t)l=O(n-1). 
a<_s<<_t<_2b 

I s - t l < = n - ~ + l / 5  

For a < lim n 1/5 hi < b, suppose 

ni/Shi - n - ~ 2 = t o < t l  < ... <t , ,_  i <nl/5hl +n- '2<tm,  

where t i - t ~ _ l = n  -~ for each i. In view of (3.16), to finish the proof of (3.15) 
it suffices to check that 

sup nV/l~ I p ,0, 
(ti, t j) e ~- 

where J"  is the set of all pairs (t~, tj) with O<t~- t2<n -~/5-~ and i<m. For  
any ~/> 0, 

(3.17) P{ sup nT/l~ 
(ti, t j )  E ~-  

< ~ E{rl-lnV/1~ 2' 
(ti, t j )  e J -  

< Ct/- 2t n2(~-~2-1/5)(n- 1/5 -~)~lz, 

using (3.3) and the fact that the number of elements in 3- is of order n 2(~-t2-1/5). 
By choosing 1 sufficiently large we may ensure that the term in (3.17) converges 
to zero as n-~c~. This proves (3.15). A similar partitioning argument may be 
used to prove (3.14). 

Lemma 3,3. For some e > 0, 

f o  - ho] + 1/~r h o [ -  Op(n- 1/5 -~). 

Proof. First we treat fo-hol. It is not difficult to prove, using techniques of 
Hall [11] (p. 1160), that fio/ho ~ 1. Therefore by Lemma 3.2, 

A' (ho) = A'o(ho)- A' (F[o)= M' (ho)-- M' (~o) + Op(n- 3/5 -~). 

Also by Lemma 3.2, A'(ho)= D' (ho)= Op(n-3/5-~), and so 

(3.18) Op(n -3/5 -~)= M'(ho) -  M' (l;io)=(ho --fio) M"(h* ),  

where h* lies inbetween ho and/~o-As in Sect. 2, M"(h*)=c3n -2/5 -t-Op(rt-2/5). 
Using this estimate in (3.18) we conclude that ho-/~o = O,(n-1is-~), as required. 

To treat fc-ho[, notice that ~idh o p > 1. Therefore 

C V' (ho) = C V' (ho) - C V' (~) = A'(ho) -- A'([i~) + 6' (ho) - 6' (~) 

= M' (ho) - M' (~) + Op (n- 3/5 -~), 
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(3.20) 

(3.21) 

Let 

again using Lemma 3.2. But CV'(ho)=M'(ho)+Op(n-3/5-~), and so as before 
it follows that ho - ~c = Op(n- i/5 -~). 

Lemma 3.4. nV/l~ ~,N(0,  o-2). 

Proof. We shall start from decomposition (3.5), and prove that 
n9/l~ ~N(O, c2~r2/4). Now, the argument leading to (3.9) gives 
E{S~(ho)} =O(n-a3/5), and so Sa(ho)=Op(n-9/l~ Therefore by (3.5), it suffices 
to show that 

(3.19) ( n 9 / l ~ 1 7 6  N ;' (Z1 , Z 2 ) ,  

where Si=Si(ho) and Z1 and Z2 are independent normal variables with zero 
means and variances adding up to c 2 a2/4. 

Our route to (3.19) uses the argument of Hall [12], and so we omit many 
details. The variables $1 and $2 are uncorrelated. 

If we write S I = ~  A(X,, Xj) and S2=Ea(XI), then E{A(Xi, Xj)]Xj}=O 
j < i  i 

almost surely for each j < i, and so for any real c and d, the variables 

i--1 

Yi-c ~ A(Xi, Xi)+da(Xi), l <_i<_n, 
j = l  

are zero-mean martingale differences with respect to the ~-fields Y {X~ .... , Xi}. 

In this sense, cS~ +dS2 = ~ Yi is a martingale. The argument leading to Hall's 
i=1 

[12] Theorem 1 shows that cS~+dS2 is asymptotically normally distributed 
with variance c 2 var(S1)+d 2 vat(S2). This property, together with the Cram6r- 
Wold device, permits us to complete the proof of (3.19) by showing that 

n 9/5 var(S,) ~ 2Co ~(~f2) ~[~K(y+ z){K(z)-  L(z)} dz] 2 dy, 
n 9/5 vat ($2) --* 4 k 2 Co 4 {~(f , , )zf_ (~f,,f)2}. 

x - -X  x - X  y - X  y - X  

and 74(x, y)=  ?a (Y, x). Then 

var(S1) = (nho) -4 n(n-  1) S~(272 -27173 -27174 + 7172 + 7374). 

The functions Yi are covariances, and each may be expressed in the form E(UV)-- 
E(U) E(V) for variables U and V. A little algebra shows that the term E(U) E(V) 
makes a negligible contribution, and in fact 
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(3.22) var(St)=n-2ho*(~fi)~(28~-2fi ,83-281f14+8,82+83fi4) 
q-o(n-ihol), 

where 

81(y) = ~/;(z) K(y + z) az, 
8~(y):SK(z) L(y + z) az, 

Since 58,  82 = I / ~  then 

3~ (y) = S/4z) L(y + z) a z, 
8,(y)  = ~ C(z) K(y  + z) az = 83(Y). 

5(2fi 2 - 2fl1 f13 - 2fll fi4 + fil fi2 -~- f13 fi4)= 2 ~(fll - fi3) 2, 

and so (3.20) is immediate  from (3.22). 
To prove (3.21), observe that  

var ($2)= (n ho)- 2 n (v2 - v~), (3.23) 

where 

A s h ~ 0 ,  

h ~  E(  f [K ~--~hX) {2E f , (xlh)--Eg,(xlh)-  f (x)} 

+L(~hX){ f ( x ) - -E f , ( x lh ) } ]dx )  i. 

E {f~ (x h h)} - f  (x) = k h2f '' (x) + o (ha), 
E {g,(x I h)} - f ( x )  = 3 k h2f '' (x) + o (h2). 

Estimates of this type give: 

--- - 2  kh 3 ~ f " f  +o(h3), 

= 4  k a h 6 ~ (f")2f +o(h6). 

Result  (3.21) now follows from (3.23). 

L e m m a  3.5. n 7/10 6'(ho) ~,N(O, cr2). 

Proof. The mart ingale methods  and Cram6r-Wold device used to prove Lem- 
ma 3.4, are also applicable here. The argument  is based on (3.6) instead of (3.5). 
We shall prove only the analogue of (3.20): 

(3.24) n 9/5 var (T1) ~ 2 %1 (~ f2) ~ (K -- L) 2 . 

The analogue of (3.21), which declares that  n 9/5 var(T2) converges to the same 
limit as in (3.21), follows as before. 

579 
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To prove (3.24), notice that with B = B 1 - - B e ,  b = b l - b 2  and/ t  =/~1-/ t2,  

v a r ( T 1 ) = 2 { n ( n -  1) ho} -~ n ( n - 1 ) E { B ( X I ,  X 2 ) - b ( X ~ ) - b ( X 2 ) + # }  2 

=2  { n ( n -  1) h 2} -1 E {B2(X~, X2)--2 b2 (X1) +/z 2} 

~ 2 n -2 ho 2 E {B2(X1, Xe)} 

= 2 n - 2  ho ho ho K - -  - L  - -  f ( x ) f ( y ) d x d y  

2 n- 2 ho 1 (~f2) ~ (K--  L) 2. 

Lemma 3.6. Under conditions (2.1), (2.2) and (2.7), and for any 0 < a < b < oe, 

(3.25) sup [O" (n- 1/5 t)[ = o v (n- 2/5). 
a<_t<_b 

Proof. First derive an analogue of (3.1), using an almost identical argument: 

sup Eln 1/2 D"(n-  1/s t)12z< C(a, b, l). 
n;a<t<b 

Then follow the proof of Lemma 3.2, to conclude that (3.25) holds, and in fact 
the right-hand side equals Op(n-2/5-,) for some e > 0. 
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