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1. Introduction 

In this paper  we study the rate of approximation of distributions of sums of 
independent random vectors by corresponding Gaussian distributions. For  
summands we suppose the validity of multidimensional conditions which in 
one-dimensional case coincide with those of the well-known S.N. Bernstein's 
inequality (see [-13], p. 55). 

Throughout  the paper  we use the following notations. Let ~3 k be the ~-field 
of the Borel subsets of the Euclidean space Nk, ~k be the set of probabili ty 
measures on ~3k, ~k be the set of infinitely divisible distributions in ~k" The 
writing x~lR k will further denote that x = ( x l ,  ..., Xk). For  the scalar product of 
x, yE~l. k we use the notat ion ( x , y ) = x t y l + . . . + X k y  k. Besides the Euclidean 
norm Ilxll --(x, x)~ we need the norm Ixl = max Ixjl. For  e-neighbourhoods of a 
set X ~IR k we use the notations 1 ~j_<k 

Xe={y~lRk: inf Hx-yll <~}, 
x 6 X  

X(~)= {y~Rk: inf I x - y l  <e}. 
x E X  

For xeRl_k(k>2) we denote by x '=(x  1, . . . ,Xk_l)~lR k-1 a vector obtained by 
omitting the last coordinate of x. Similarly, the matrix D ' ( ( k - 1 ) x ( k - 1 ) ) ,  
composed of the first k -  1 rows and k -  1 columns of a matrix D(k • k), will be 
also denoted by a prime. 

The L6vy-Prohorov distance, generated by the Euclidean norm, is defined 
for F, Gs~k by 

(F, G) = inf {e: F {X} < G {X ~} + e, 

G{X} < F { X  ~} +~ for any X ~ k } .  (1.1) 

As it is shown, e.g., in [6], the L6vy-Prohorov distance may be defined in other 
way: 

re(F, G)= inf {e: F {X} < G {X ~} + e for any closed set X}. (1.2) 



536 A.Yu.  Za i t s e v  

We shall also consider the following characteristic of proximity of probability 
distributions, closely connected with the L6vy-Prohorov distance and depend- 
ing on a parameter 2 > 0: 

n(F, G; 2)= sup max {F{X}-G{XZ}, G { X } - F { X Z } } .  
XE~k 

It was introduced by Zolotarev [25] and also considered in [-4, 5, 21, 23]. 
Obviously, if we evaluate the characteristic n(F, G; 2) for all 2>0,  then we get 
much more information than by the L6vy-Prohorov distance evaluation. In 
particular, 

n(F, G)=inf{2: ~z(F, G; 2)<2}. (1.3) 

The symbols c, q ,  c2, ... will be used to denote absolute positive constants 
where c may stand for different values. Similarly, c(.), c1(.), c2(. ) . . . .  will 
denote positive constants depending only on the indicated argument. In the 
following text 0 means quantities for which ]0 l<l ;  E, is a probability measure 
concentrated at a point a~Nk; E = E  o where 0 is the zero vector, L~(~) means a 
distributions of a random vector 4; 

F( t )=  ~ ei(t'X'F{dx} 
N k 

denotes a characteristic function of Fe~k.  Products and powers of measures 
will be understood in the convolution sense" F G = F . G ,  F"=F*".  

For -c > 0 we denote by NI(T) the union U Nl(k, z) where 
k 

~l (k , z )={S f (~)e~k:  E~=O and 

IE(~, t)2(~, u) "-21 <�89 m-2 [lullm-2E(~, t) = 

for every m= 3, 4, ... and for all t, u~lRk}. 

It can be easily seen that F=s176 z) if and only if { satisfies 
S.N. Bernstein's inequality conditions. It should be noted that FeNl(v  ) is 
actually a form of Cram6r's condition of existence of exponential moments. 

The following theorem is the main result of the paper. 

Theorem 1.1. Let z>O and ~ . . . .  , ~ ,e~k  be independent random vectors such 
that ~('(~i)~l(k,'c) for i=1  . . . .  ,n. Let S = ~ 1 + . . . + ~ , ,  F = ~ ( S ) .  Denote by ~b 
the Gaussian distribution with the zero mean and the same covariance operator as 
that ofF.  Then 

n( f ,  r <-_ c 1 (k)z ([ln v[ + 1) (1.4) 

and for all 2 >= 0 

n(F, ~; 2)<c2(k ) exp - . (1.5) 

Moreover, the constants cj(k) ( j=  1, 2, 3) may be taken in the form cj(k)=cjk § 
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This theorem is especially interesting because the right-hand sides of (1.4) 
and (1.5) are expressed only in terms of z and are independent of any other 
characteristics of ~(S)  or 5~(r including covariance operators. It should be 
also noted that the right side of (1.5) decreases exponentially when 2--* oo. I t  is 
necessary to emphasize that, in general, �9 is not the standard Gaussian 
distribution because its covariance operator can be non-unit (it must coincide 
with that of F). Finally, the summands ~ are non-identically distributed and 
the constants depend only on the dimension k. 

It can be easily seen that the inequality (1.4) may be derived from (1.5) with 
the help of (1.3). Moreover, (1.5) seems to be essentially more general in 
comparison with (1.4). Note that (1.5) gives meaningful information about the 
closeness of F to ~b for any ~>0 (1.4) being trivial for z>(cl(k)) -1. But at first 
we prove (1.4) and then deduce (1.5) by means of variation of a normalizing 
constant. In this connection we use the fact that if 5r c~EIR 1 then 
2z(~0E~l(k,l~l~) and the independence of the right-hand side of (1.4) with 
respect to the covariance operator of F. 

The conditions of Theorem 1.1 are fulfilled for a sufficiently large class of 
distributions with exponentially decreasing tails. It is easy to see that these 
conditions are satisfied for zero mean probability measures concentrated on 
the ball A~={xeF, k: Ilxl[ <~}. In Sect. 2 we show that infinitely divisible distri- 
butions whose L~vy-Khintchine spectral measures are concentrated on A~ may 
be considered as shifted convolutions of distributions from ~l(c-c). Hence the 
following result holds. 

Theorem 1.2. Let H e ~  k be an infinitely divisible distribution with a characteris- 
tic function 

= exp {i(c~, t) - �89 (B t, t) //(t) 

+j~ ~~,~-1 l+llxll~ ! iixll~ 

where ~ e N  k, B: Nk--*Nk is a non-negative linear operator and G is a bounded 
Borel measure concentrated on A~\{0}. Let �9 be the Gaussian distribution with 
its mean and its covariance operator coinciding with those of H. Then 

and 
~(H, 0) ~ c4(k)z(lln v] 4- 1) (1.7) 

rc(H, q~; 2)<=cs(k)exp ( - c 6 @ )  (1.8) 

for every 2>0.  Here ci(k ) 0"=4, 5, 6) can be taken in the form Cj(k)=cjk~. 

In one-dimensional case this theorem may be considered as a quantitative 
estimate of the stability of the characterization of Gaussian distributions as 
infinitely divisible distributions with their L6vy-Khintchine spectral measures 
concentrated at zero. 
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Earlier, results similar to Theorem 1.1 were obtained by Yurinskii [19]. He 
has shown that under additional conditions (1~il _-< r almost surely for i=  1, ..., n 
and E(S, t ) 2 ~  Iltll 2 for all t fflR k) the following inequality holds: 

~(F, ~) < c(k)z(lln zl + 1) a (1.9) 

(the characteristic re(F, qs; 2) and the dependence of c(k) on k were not studied 
in [19]). To prove Theorem 1.1 we shall apply some of the methods from [19] 
such as the use of Gaussian smoothing distributions, the induction on k, the 
study of one-dimensional conditional densities P(XklX'), x~IR k, the application 
of conjugate distributions. 

We mention the following refinements of the methods of [19]. Firstly, in 
Sect. 3 we obtain a generalization of an inequality of Essedn [-8] for character- 
istic functions. It will be used in Sect. 5 to prove an uniform bound for the 
closeness of densities of smoothed distributions. Secondly, for conjugate distri- 
butions we systematically apply the results having been obtained earlier for 
underlying distributions (see Lemmas 4.1, 7.1 and 8.1). We also use more exact 
bounds for the quantities connected with conjugate distributions. 

The conjugate distributions are usually applied to estimate probabilities of 
large deviations. It can be easily seen that Theorem 1.1 implies inequalities 
that may be interpreted as bounds for such probabilities. For  example, let us 
consider a triangular array {{~f,,}~1}~~ of row-wise independent random 
vectors (meaning that they are independent for each fixed value of l). Suppose 
~l,,eNl(zl) for r e = l , 2 ,  ...,mz, l = 1 , 2  . . . . .  Let St=~zl+.. .+~z,,~,  F~=G.q~ let 
~b z be the Gaussian distributions with their means and their covariance oper- 
ators coinciding with those of F 1 and assume Xle93k, l=  1, 2 . . . . .  It follows from 
(1.5) that for the inequality 

lim sup Ft {Xz} < 1 (l --* oo) 
~ {Xl} = 

being true it is sufficient to require the validity of 

q)z{X{\Xz} cz(k) exp ca~k)zz ~ 
inf\~ q --*0 (1.10) 

when l ~  oo. Similarly, for the inequality 

lim inf FI {Xl} > 1 (1 -* oo) 
~l {Xl} - 

being valid it is sufficient to suppose 

(bz{Xz} i qh t 3(~)zl 4 0  (1.11) 

when l~oo .  Here ( X z ) _ x ~  k denotes an arbitrary set such that ((X~)_x)~cXz. It 
should be pointed out that the conditions (1.10), (1.11) are convenient for 
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application because they are expressed in terms of Gaussian distributions. 
Moreover, we do not require that Xt belongs to more special set classes 
(convex, separated from zero etc.) as was done, e.g., in [1, 2, 12, 16]. 

The one-dimensional versions of Theorems 1.1 and 1.2 have been obtained 
in [-20, 21]. It should be noted that from the results of Sahanenko [15] (see 
also [-5]) it follows that if k = 1 and the conditions of Theorem 1.1 are satisfied 
then 

n ( F , ~ b ; 2 ) < c ( l + ~ ) e x p ( - c ! )  

for all 2 > 0  where a2= DS. 
Define the multidimensional L6vy distance by the formula 

L(F, G)=inf{e: F ( x - ~ l ) - e < G ( x ) < f ( x + e l ) + ~  for all x E ~  k} 

(here F(x), G(x) are corresponding multidimensional distribution functions, 1 = 
(1, 1, ..., 1)slR k. 

The inequality (1.4) is optimal with respect to order. This can be derived 
from the following lemma due to Arak [-20]. 

Lemmal .1 .  For any z~(0, 1] there exist a distribution Fsq~2 and a positive 
integer n such that 

F { [ - ~ ,  ~]} = 1, S x f {dx}=O 
- o o  

and for all DeT~ t 

n(F ~, D) >= L(F ~, D) > c v(]ln v[ + 1). 

Another simple example showing the unimprovability of the result of The- 
orem1.1 is given by the distribution FE~I  with the density f (x)=(2z)  -1 
x exp(-Ixl/z).  It may be easily proved that F~NI(1, cz) and 
(F, ~) > L (F, ~) > c v([ln z [ + 1) if 0 < z < c where ~b is the corresponding Gauss- 

ian distribution. 
The various estimates for tails of convolutions of distributions from classes 

similar to NI(z) were earlier obtained, for example, in [12-18]. 
The results of this paper have been announced in [22, 23]. Note that 

Theorems 1.1 and 1.2 allow to get bounds for the rate of approximation of 
distributions of sums of independent random vectors by various approximating 
distributions (see [24]). Our results imply the following lemma that was essen- 
tially used in [24]. 

Lemmal .2 .  Suppose that F 1 , . . . , F n ~ k  , Fi{{x: ]]xll<__z}}=l, ~xfi{dx}=O, F 
?i 

= H F~ and D is the accompanying infinitely divisible distribution with character- 
i = 1  

istic function 

D(t)=exP(i~_l(~(t)--l) ). 

Then 
zr(F, D) < c(k)z(lln z[ + 1). 
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To prove this lemma it is sufficient to apply Theorems 1.1, 1.2 and the 
triangle inequality. Lemma 1.2 is actually one of the steps, that are necessary 
for proving the following theorem. 

Theorem 1.3. Suppose that the distributions F i ~ k  are represented in the form F i 
= (1 --  Pi) Ui + Pi Vii, where 0 <= Pi <= 1 ; Ui, Vii ~ ~Jk and 

Let 

g~{{x: [ I x l l ~ } } : l ,  ~ xUi{dx}=O, i=1  . . . .  ,n. 
- o o  

F = (I/7/ ,  p = max Pl, 
i = 1  l <--i <-n 

let D E ~  k be the accompanying infinitely divisible distribution with the character- 
istic function 

n 

Then 
L(F, D) N c(k)(p + r(lln zl + 1)). 

Corollary 1.1. Suppose that F,.e~j k and L(F i, E)Ne, i= 1, ..., n. Then there exists a 
distribution De7~ k such that 

L (i~=lFi, D) <=c(k)e(llnsl+ l) . 

Theorem 1.3 and Corollary 1.1 give a multidimensional generalization of 
the main results of a paper by Zaitsev and Arak [20]. In [20] we have 
obtained a definitive solution of an old problem stated by Kolmogorov in 1956 
(the history of this problem may be found in [20]). The proof of Theorem 1.3 
need the use of some new methods and will be published in another author's 
work. 

2. Connection of ~ (z) with Other Classes 
of Probability Distributions 

It is easy to check that if 5~ z > 0  then 

E(~, t)2l(~, u)l m-2 <(4/3)~m ! Ilullm-2~'~-2E(~, 0 2 

for any t , u~ N k and for any m = 3 , 4  . . . .  (it is sufficient to consider only odd 
numbers m and to use HSlder inequality). On the other hand, if for any 
u , t ~ R  k, m=3 ,4 ,  ... we have 

E~=O,  IE(~,t)z(~,u)~-2l<=~m!Ilu]l~-2v~-ZE(~,t) 2 (2.1) 

where c~ >�89 then ~(~)~1(2c~z) .  
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Let s82(r ) = ~j M2(k, z) where 
k 

~(k, z)= {~(~)~ ~: E~-O, 
E(~, t)2e 1(r t) 2 for any t, u e R  ~ 

such that ]lull <~-~}. 

It is clear that ~1('C) and ~2(T) are  increasing families of distributions when 
z increases. It is easy to prove that if 5~ ( j = l ,  2) then 50(e~)eN~(]~[z), 
5P(U~)eNj(z),  ~~ ) where ~ l R l ( e 4 0 ) ,  U is an arbitrary unitary trans- 
formation of Nk, 4o is a vector composed from any subset of coordinates of a 
vector ~ (in particular, ~'~Nj(z)). 

Remark 2.1. In order to prove Lf(~)~2( 'c),  it is sufficient to verify that E ~ = 0  
and 

E(~, 0 2 e (e'")< 2E(~, t) 2 

for any t, uelR k such that JluJI <=~-i (this follows from the elementary inequality 
elxl < eX+e-X). 

Lemma2.1.  There exist c7, c s such that ~1('c)c~2(c72),  ~2('c)~r for 
any v>0.  

Proof  Let 5P(~)~NI(z ). Then for any t, u~lR k such that l[ul[ <(err)  -1 we have 

co U) rn 
IE(~, t)2 e(e'")[ = ,,~o (m !)-~E(~' t)2(~' 

~ IE(~ ,  t) 2 (2+  ~ (m+ 1)(m+2)(llull z)" 
\ m=l 

< 2 E(~, t) 2 (2.2) 

if c v is large enough. According to Remark 2.1, (2.2) implies 5P(~)eNa(CvV ). 
Let now 5r ). Then for any m=3,4 ,  . . . ; t ,  u s ~  k such that Hu H = z  -~ 

we obtain 

IE(~, t)2(~, u)'~-21 <(m - 2 ) !  E(~, t)2e I(~'")l 

<4(m -2)!(][u][ z)m- 2E(~, 02 

<~ m ! (llull 3) " - 2  E(r 0 2. (2.3) 

Obviously, the validity of the inequality 

IE(~, t)2(~, u)m-21 ~ m ! ( ] ] u l l  z)m- 2E(~, t) 2 

for all t, u ~  k follows from the same fact obtained in (2.3) under the restriction 
Hu H =z  -a. Therefore ~L~(~)~Na(4z/3) (see (2.1)). 

Further it will be necessary to use some properties of Gaussian distri- 
butions. Let ~b=~W(q)~k be a Gaussian distribution with E~/=0 and a co- 
variance operator (covariance matrix) D (we identify covariance operators with 
corresponding covariance matrices). It is well known that for any t, u ~  k the 
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following identities hold: 

E(t/, t)2=(Dt, t )=  IlD~tll 2, 

Ee(,, u)= exp (�89 u)), 

E(q, t)e ("'") =(Du, t) exp (�89 u)), 

E(r/, t) 2 e (", "3 = ((D t, t) + (D u, 0 2) exp (�89 (D u, u)). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Here D ~ is the non-negative linear operator  such that  D~D�89 For  the 
determinant  of the matrix D we have the formula 

k 

S exp ( - �89 (D t, t)) d t = (2 ~)?- (det D) - ~ (2.8) 
IR k 

L e m m a  2.2. I f  the largest eigenvalue of a covariance operator D of a Gaussian 
distribution ~ = ~LP(tl)e q~k is equal to d E (d > O) then ~ 1  (cd). 

Proof Let t, u~lR k. Then (2.4), (2.7) implies 

[E(t/, t) 2 e ("' u)l < (D t, t)(1 + (D u, u)) exp (�89 u, u)) 

<=(Dt, t)(1 + d  2 [lull 2) exp (�89 z [lull 2) 

<2(Dt, t)= 2E(t/, t) 2 

if Ilull2d 2 < c  where c is small enough. By Remark  2.1 and Lemma 2.1 we obtain 
the statement of L e m m a  2.2. 

Remark2.2. It is clear that  any Gaussian distribution ~ e S k  may be always 
represented as a convolution of Gaussian distributions with arbitrarily small 
eigenvalues of covariance operators. In view of Lemma 2.2 we can deal with 
as if it were of class ~1 (z) with arbitrarily small ~ > 0 as ~ can be replaced by a 
finite convolution of distrivutions from ~ , ( 0 .  

A similar situation occurs for infinitely divisible distribution with their 
L~vy-Khintchine spectral measures concentrated on a bounded set. 

Lemma2.3 .  Let H=~q~ be an infinitely divisible distribution with E ~ = 0  
and characteristic function 

{ i(x't) l+] 'x"2~ } 
iO(t)=exp i(o:,t)+~ (ei(X't)--I l+[ixH2) ll~[~-tr{dx} (2.9) 

where ~E~ k, G is a bounded Borel measure concentrated on the set A~\{0}, A t 
={xeFd: Ilxll_<_~}. There exist absolute constants c 9, c10 such that if 
G{IZ k} <__c 9 min {1, z 2} then HeNi(CloZ ). 

Proof It is easy to show that  E~ = 0 if and only if 

(~, t ) =  - S (x, t)G{dx} (2.101 
Av 

for all t e n  k. In view of (2.9), (2.10) we have 

t A~ l+']xll2G{dx}},lxl,~ (2.11) Ee(~'~)=exp [ (e (~ '~-  1 - ( x ,  v)) 
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for every v~lR k. Put  v=flt+u where /3~IR ~, u, v~N k and twice differentiate the 
identi ty obta ined from (2.11) with respect to ft. By subs t i tu t ing/3= 0 we get 

+ ~ (x, 0 2 e (~'"~ 1 + Ilxll 2 a{dx}) 
x exp (e (~'"~ -1  -(x, u ) ) ~  G {dx} I" (2.12) 

the elementary inequalities [e y -  t1 < [y[ e lyl, le y -  1 -y[ Taking into account  
<=y2elyl/2 we obtain 

[. (dx,~l 1 -(x, u)) 
A. 

(~ ( x , t ) ( e ( ' ~ ' " ~ - l ) ~ G { d x } )  2 

<-e211ull~E(~,t) 2 ~ (x ,u)  2 l+lbxl[2 
- A~ I i x l l 2  ~{dx} 

<=e 2 II"il ~ Ilu][ 2(1 + z2)G {P. k} e(~, t) 2, 

l + l l x [ I  2 G{dx} __<�89 tl" I1~ Ilull 2(1 + "C2) G {IRk}. 
Ilxil 2 

(2.13) 

(2.14) 

In addition, 

(x, t)2e (x' ") 1 + I l x l l  2 
A, IIxll 2 

G{dx} =< ell"li~ E(~,/)2. (2.15) 

F r o m  (2.12)-(2.15) we deduce 

E(r 0 2 e (~' "~ < (e II, II~ + e 2 II-lit I1 u 112 (1 + ~2) G {Nk}) 

x exp (lell• II ~ ]lull 2(1 + z2)a {Nk}) E(~, 0 2. 

It is evident that  by means of a suitable choice of constants we may ensure the 
validity of an inequali ty E(~,t)2e(~'u/=<2E(~,t) 2 for any t, udR k, Ilull <c~  -1 
provided that  G { N  k} < c  min {1,-c2}. According to Remark  2.1 and L e m m a  2.1 
we obtain the s ta tement  of  L e m m a  2.3. 

Before proving Theorem 1.1 we shall show that  Theorem 1.2 may be easily 
derived from Theorem 1.1 and L e m m a  2.3. 

Proof of Theorem 1.2. Let  H=SF(~)E~k  be an infinitely divisible distr ibution 
with a characterist ic function (1.6). In view of the invariance of the Ldvy- 
P rohorov  distance with respect to a shift t ransformat ion of the distributions to 
be compared  we can suppose E { = 0 without  loss of generality. For  any natural  
number  n the distr ibution H may be represented in the form 

H - H "  r4. (2.16) 
- -  i n  ~ 2 n  
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where HI ,  and H2n are infinitely divisible distributions with characteristic 
functions 

I41n(t)=exp{i (:, t) + ~ (e~(~'t)- I 

/q2,(t) = exp { - �89 (B, t, t)} 

i(x, t) ~ 1 + Ilxll 2 G.{dx}~. 
I + T [ ~ !  rlxll ~ S 

where G. = n-  1 G, B. = n-  lB. By the choice of sufficiently large n we can ensure 
that 

H1 ,, H2,  ~ ;~a (cl o z) (2.17) 

(see Lemmas 2.2, 2.3 and Remark 2.2). Now the inequalities (1.7), (1.8) follow 
from (2.16), (2.17), (1.4), (1.5). 

3. The Generalization of an Inequality of  Esseen 
for Characteristic Functions 

Here we shall prove an auxiliary inequality for characteristic functions of 
multidimensional distributions. 

Lemma 3.1. Let g~ > 0  and H = 5r be a symmetric distribution (this means ~(4)  
= ~ ( - 4 ) )  such that E II ~113< oo. Let K be a compact convex set in N k and to e K  
be a point for which 

/?(to) = max/q(t). (3.1) 
teK 

Then for all tEK 

t?t(t)< l -  ( 1 - 6 @ ) ( 1 -  It(to))-�89 ~) 2 

1 1 e x p t -  62 ^ + ~ ( l - Y )  (1 -H( t~  (~+~)  El(u, ~)[3 = < 

[1 1\ E 4)[3}, (3.2) 

where u = t -  t o. 

If a probability measure He~k  is non-symmetric then similar inequalities 
for I/-7(t)J can be obtained by estimating the characteristic function I/~(t)l 2 of 
the symmetrized distribution. 

Lemma 3.1 may be considered as a generalization and a sharpening of 
Theorem 2, Chap. VII from the well known paper of Esseen [8]. Upper bounds 
have been obtained for the Lebesgue measure of those t~K for which 
/~(t)> 1 - ~  where K is an ellipsoid of a special form and e is a small positive 
number. Esseen made use of his result to estimate integrals of the form 

l~I I/?,(t)ldt. 
K i = i  
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It should be noted that Such integrals have been also estimated by other  
authors with the help of similar methods  (see [7, 9, 10, 11]). 

Proof of Lemma 3.1. In many  respects it repeats the corresponding arguments 
of Esseen [-8]. By expanding the cosine function in a Taylor  series we obtain 

/ i ( t )  = E c os  ((4, to) + (4, u)) 

= E cos (~, t o ) -  E(~, u) sin (~, to) 

-�89 u) 2 cos(i, t0)+~ EI(~, u)l 3. (3.3) 

The basic difference from [8] consists in the use of the inequality 

- E ( ~ ,  u) sin(i ,  to)=<0 (3.4) 

which is valid for all u = t - t  o such that t~K. The left-hand side of (3.4) is 
actually the derivative of / t  at t o in direction u and hence < 0  as t o is a 
maximum point  on a segment  between t o and t. N o w  (3.3), (3.4) imply that 

/ t( t)  < / 1 ( t o ) -  E(~, u) 2 cos (4, to)/2 

+ 0 E 1(4, u)l 3/6 

= 1 - (1 - H(to) ) -  E(~, u)2/2 

+ E(~, u) 2 (1 - cos (4, to))/2 + 0E I({, u)] 3/6. 
(3.5) 

The inequality (3.2) follows from (3.5) since 

E(~, u)2(1 - cos (~, to))/2 = E({, u)2(1 - cos({, to) ) 

x (l[{l(g ' .)1 < a} + 11{1(r .)1 _->a} )/2 
~a2(1  - /~( to)) /2  + c5-* E I(r u)l 3. 

Remark 3.I. The right side of (3.2) may be easily minimized with respect to 6. 
Then this inequality takes the following form 

I4(t)<I~(to)-�89 u) 2 +~E](~, u)] 3 +3(E](~, u)13)@(1 - / t ( t o ) )  4. 

Corollary 3.1. Suppose that the conditions of Lemma3.1 are satisfied. I f  
E[(~, t 1 --t2)]3 ~7E(~, t I - - t 2 )  2 for all q,  t2~K and for some 7 > 0  then 

/q(t) < exp { -  (1 - ~ )  (1 - t q ( t o ) ) -  ( ~ - 7  ( ~ + ~ ) )  E(~, u) 2 } 

for all t c K  where u = t - t  o. In particular, setting 6=6 /5 ,  we obtain 

/ t(t)  < e x p  { -0 .28 (1  - /1 ( to )  ) - ( �89 u) 2} 

< exp { - (�89 - y) E(~, u)2}. (3.6) 

Remark 3.2. Results similar to L e m m a  3.1 may be obta ined without  the con- 
dition E[]~[]3< oo since an arbitrary distr ibution H c ~ k  may be represented as 
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H = ( 1 - p ) U + p V  where 0 < p < l ,  U, Ve~k, ~ [Ixll3U{dx}<oo (e.g., by a trun 

cation). Then [/4(t)l <(1-p)[U(t) l  +p  and it remains to use our results to I U(t)[. 
It should be noted that the choice of a representation H = ( 1 - p ) U + p V  may 
be performed in different ways in accordance with our demands. 

4. The Properties of Conjugate Distributions 

Let h~N k and 5 ~ ( ~ ) = H ~ k .  The conjugate distribution 5 e ( 0 = H = H ( h )  is 
defined by a formula 

/~ {X} = (Ee (~' h))- ~ ~ e(.~, h) H {dx} (4.1) 
X 

for all Xe~B k. It is clear that this definition has meaning only if 
E exp(((, h))< Go. A conjugate distribution essentially depends on the choice of 

a parameter h. A conjugate random vector having a distribution S ( ( )  will be 
denoted by ( =  (h' We shall also apply the notation ~*= ~* = ( - E  ~. In view of 
(4.1), for any ~3k-measurable function ~p such that E [(p(0e (~' h)] < oO the following 
identity holds: 

E ~p (~-) = (Ee(~'h)) - 1 Ecp(0e (~'h). (4.2) 

Unless otherwise stated we shall always assume that all conjugate distributions 
are defined with the help of a parameter denoted by a letter h. 

It is well known that the conjugate distribution for a convolution coincides 

with the convolution of conjugate distributions: if Ua,...,  U,e~k, U =  I~ U~ 
i = 1  

then U =  f i  ~ .  If ~=A~ is a Gaussian distribution with E~/=0 and a 
i=1  

covariance operator D then the distribution ~ is also Gaussian and for all 
t 6 ~  k 

E(F/, t)=(Dh, t), 

D(~/, t)= D(r/, t )= E(t/, 0 2 = E(t/*, 0 2 =(Dt, t)= [ID~tl] 2 (4.3) 

(see (2.4)-(2.7), (4.2)). 

Lemma4.1. Let z>0,  5~(~)ENI(z ) and let tl be a Gaussian random vector with 
Et /=0  and covariance operator D coinciding with that of 4. There exist 
Cll . . . .  , c15 such that if rlhl[ ~<=cll then 

[E((, t) -E(6 ,  t)[ <e12 I[hll z(Dt, t)~(Dh, h) ~, (4.4) 

[E(~*, t) 2 -E(~* ,  021 <e13 llhlr ~(Dt, t), (4.5) 

in Ee(r < 
~ 7 h 5  = c14 l[ h [[ ~ (O h, h) (4.6) 

for all t~lR k and the distributions ~LP(~*) and ~q~(q*)=~,~(q) belong to ~1(c~5z). 



Gaussian Approximation of Convolutions 547 

Proof  Let d 2 be the largest eigenvalue of the opera tor  D and u~lR ~, Ilull = 1, be 
a corresponding eigenvector. Since A~ we have 

E(~, u) z < (E(~, u)4) ~ _< (12"c 2 E(~, u)2) ~, 

d 2 = (Du, u)=  E(t/, u) 2 = E(r u) 2 < 12z 2. 

By L e m m a 2 . 2  it follows from this that ~L~~ In the sequel we 
shall need the inequality 

(Dr, t) <d 2 Ilt[] 2 < 12z 2 [Itll 2 (4.7) 

which is valid for all t ~  k. In particular, (4.7) implies (Dh, h)<c if []h[[ z ~ c .  
The derivation of (4.4)-(4.6) is similar to the proof  of L e m m a  3 from [ t9] .  

Throughout  the p roof  we use the possibility to choose Cll as small as will be 
necessary for the validity of corresponding formulae. 

Since 5e(~)zNl(z),  5 ~ ( t l ) ~ ( c z ) ,  by expanding exponentials in Taylor  series 
(see (2.2)) and by choosing c1~ small enough we get 

IE(~, t)dr < c(Dt, t)-~(Dh, h) -~, IE0/, t)e(n'h)[ < c(Dt, t)~(Dh, h) -~, (4.8) 

IE(~, t)e (~'h) - E ( ~ ,  t)e("'h) I < c [Ihll ~(Dt, t)-~(Dh, h) -~, (4.9) 

E(~, t)2e (~'a) <c(Dt,  t), E(r/, t)Ze (~'h) <c(Dt,  t), (4.10) 

IE(~,  t) 2 e (~' h) _ E(r/, 0 2 e (', h)[ < C 1[ h II z(D t, t), (4.11) 

lee  (~'h) -- Ee("'h)l ~ c I[h]l "c(D h, h). (4.12) 

In view of Jensen inequality 

Ee (~'h) > e E(~'h) = 1,  Ee (''h) > 1. (4.13) 

By (4.2), (4.7)-(4.9), (4.12), (4.13) we have (if cll  is sufficiently small): 

I E(~-, t) - E(F/, t)[ = I(Ee (r h))- 1E(~, t)e (~' hi 

_(Ee(n,h))- 1E(t/, t)etn'h) I <~ [E(~, t)e (~'h) - E(tl, t)e(n'h) I 
+ [(Ee (~,h) -Ee(~,h))E(tt, t)e(n,h)[ 

_<c ]lhll ~(Dt, O~(Dh, h) § 

that is (4.4) holds. Similarly, it follows from (4.2), (4.7), (4.10)-(4.13) that 

IE(~-, 0 2 - E ( q ,  021 < c ]lh II ~(D t, t) (4.14) 

and from (4.2), (4.8), (4.13) that 

IE(~, t)[ + ]E(~/, t)[ <c(Dt,  t)~(Dh, h) +. 

Taking into account  that (Dh, h)<c, E ( ~ * , t ) 2 = E ( ( , t ) 2 - ( E ( ( , t ) )  2, 
= E ( ~ ,  t) ~ - ( ~ ( q ,  t)) ~ 

(4.15) 

E(r/*, 0 2 
we obtain (4.5) from (4.4), (4.14), (4.15). If IlhH-c<c11<c 
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then by (4.12), (4.13) we get 

~Ee(r ,h) Ee(~,h)'~ 
max [ ~ ,  Ee(~,h)j ~ 1 + lEe (~'h) - Ee("'h)[ 

< 1 + c lih/I z(Dh, h) 
< exp (c IIh[] z(Dh, h)) (4.16) 

that is (4.6) is valid. 
Let us show that A~ if Jlhd['c<c11<c. By Remark2.1, for this it 

suffices to check that E(~*,t)2e(~*,")<2E(~*,t) 2 if IlulJ'c<c. Denoting v = u + h  
and using (3.2) we obtain 

E(~* ,  t) 2 e (e*' ") = E (( ( ,  t) - E ( ~ ,  t)) 2 e (~' ")- e(~' ") 

= (e E(~' ~)E e (e' h))- 1 { E ( ~ ,  t) 2 e (e' ~) 

-2E(~ ,  t)e(e'~ t) + (E((, t))ZEe(~'v)}. (4.17) 

If Ilvllz<c where c is small enough we can use for v all relations earlier 
obtained for h. Further calculations will be performed for [IvH'c<c, ]lullz<c, 
Ilhl]z<c where constants c are as small as is necessary for the correctness of 
arguments. Thus, by (4.7), (4.15) El(~,u)[<cllhl[v, in view of (2.5), (4.7), (4.16) 
E e (e'h)-- exp (cO Ilh II z) and from (2.7), (4.7) it follows that 

E(q, t)2 e("'v)=(Dt, t)e ~~176 (4.18) 

Further, by (4.11), (4.18) we get E(~, t)2e(~'")=(Dt, t)exp(cO]lvlIz) and from (2.5), 
(4.7), (4.8), (4.15), (4.16) we deduce 

- 2 E ( ~ ,  t )e  (~' ")E(( ,  t) + ( E ( ( ,  t)) 2 E e  (r ~) 

=cO([Ihll + [Ivll)~(Dt, t). 

By substituting the relations just obtained in (4.17) we find 

E(#*, t)Z e(e*'")=(Dt, t) exp(cOv([lvll + IIh[I)). (4.19) 

Since E(~*, t)2=(Dt, t)exp(cOl[h[[ z) in view of (4.3), (4.5), we get from (4.19) that 

E(r t)Z e~*'") < 2E(~*, t) z (4.20) 

if [ l h l l - c ~ c l 6  , [ [ u l [ - c ~ c l 7  , Ilvll'c<~cls. If I lh[Iz<q1<max{q6,  Cls/2}, 
I[u[[z<max {c17, qs/2}, we have [Iv]lz<=qs. Hence (4.20) is valid and therefore 
A~ It remains to use Lemma 2.1. 

5. T h e  B e g i n n i n g  o f  t h e  P r o o f  o f  T h e o r e m  1.1 

First we shall prove (1.4). Let us assume without loss of generality that z<=e -1 
so that [ln ~l =ln  1/z => 1. We shall use the smoothing inequality 

~z(F, ~)<=~z(FGoG , ~GoG)+ 2~z(Go, E) + 2~z(G, E) 
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which is valid for any Go, G~k and follows from the weak regularity of the 
L6vy-Prohorov distance (re(ViVa, V2V~)=<rc(V~, 1/2) for any V1, V2, V 3 s ~  , see 
[25]). Finally, we shall choose G O and G to be Gaussian with zero means and 
with covarianee operators all whose eigenvalues are equal to ck4z2[lnz[ and 
ck3z2[lnz[ respectively. We shall show that in this case 

2rc(G o, E) + 2~(G, E) _ ck-z Iln z[ 

and it will remain to investigate the proximity of smoothed distributions 
(FGo)G and (~Go)G. According to Remark 2.2, G o may be represented in the 
convolution form" G0=(Goo) m where Gooe~l(z ). This yields the possibility to 
reduce FG o to a convolution of distributions from ~l(z), i.e. to the same form 
that F has itself. The role of G o is to make the smallest eigen-value a 2 of the 
covariance operator D of distribution FG oG sufficiently large. Thus, we may 
omit the distribution G o and study only n(FG, cI, G) assuming however that 
0 "a> Ck~1:2 [ln z[. But at first it will be required only that a2> 0. 

Beginning with this section we consider the following situation. There are 
independent random vectors ~1, ---, ~n, ~1 and t/l, ... , t/,, ~2 with zero means and 
such that Fi=L~'(~i)e~l(z ) (i=1, ...,n); the distributions Gi=~L~~ are Gauss- 
ian with the covariance operators coinciding with those of Fi; the vectors (1, (2 
are also Gaussian with a common distribution G (the case G=E is not 
excluded). Denote 

F = f i F i ,  4 ) = [ ] G  i, 
i = 1  i = 1  

S=~1+. . .+~ ,+(  l, R = t / l + . . . + t / ~ + (  2. 

Let us introduce_ the independent conjugate random vectors r ..-, r ~1 and 
gl, ..., g,, ~2 defined by_ means of a parameter h and let S =_S h = (~ + . . .  + ~-, + (-~, 
R=Rh=FI~+_...+q~+S2. It is clear that 2P(S)=FG, ~(Sh)=F(h)d(h), ~(R)  
=cI)G, ~_(Rh)=~(h)G(h ). Denote the covariance operators of distributions G, 
F, FG, F(h), _f(h)G(h) by B, Do, D=B + Do, Do(h), D(h)=B + Do(h ) respectively. 
We denote corresponding minimal eigenvalues of this operators by b E, o -2, de, 
a2(h), dE(h). Assume that dE>0. Hence d e t D > d e t D o > 0  , a2>0  and the opera- 
tor D is invertible. 

By Lemma4.1 we know that 2~v(~*)e~l(clsz) if ] lhl lz<ql  where ~ * = ~  
-E~i ,  i=  1 . . . .  , n. Therefore, sometimes we shall replace the condition F~eNI('r ) 

by the condition FieN~(clsz), keeping in mind the application of results 
obtained for 2~v(S) to the centered conjugate distributions ~(S*) where 
Ilhll~<Cx~. As a rule, this will lead only to the change of several absolute 
constants. 

Lemma5.1. There exist c19,c20,c21 such that for llhllr<=clg <=Cll and for all 
teIR ~ the following relations hold: 

IE(ffh, t ) -  E(/~h, t)l _<el2 I[hll z(Dot, t)-~(Do h, h) ~, (5.1) 

[(D(h)t, t) -(Dt,  t)] <c~3 Ilhll ~(Dot, t), (5.2) 

in Ee(S'h) 
< cx4 IIhll ~(Doh, h), (5.3) 
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(det D(h)) ~ = (det D) ~- exp (c 2o 0 k z [I h H), (5.4) 

a(h) = a exp (c210z I1 h II)- (5.5) 

Proof The inequalities (5.1)-(5.3) follow immediately from Lemma4.1 (see 
(4.4)-(4.6)). The relation (5.4) may be easily derived from (5.2) with the help of 
(2.8) since (Dot , t)<(Dt,  t) for all t e R  k. Finally, we get (5.5) from (5.2) by means 
of the identities 

a2=  inf (Dt, t), o '2 (h )  = inf (D(h)t,t). 
[It[l=l [Itll =2 

The constant c19 should be chosen sufficiently small. 

Remark 5.1. It follows from (5.4) that in the conditions of Lemma 5.1 we have 
det D(h)> 0 and the operator D(h) is invertible. 

To compare the values of probability densities p(x) and q(x), corresponding 
to FG and ~G, at a fixed point x ~ / / c l R  k ( / / i s  defined below) we investigate 
the densities of conjugate distributions defined by the parameter h = h  which is 
the solution of the equation E S h = x  (such choice of h is generally accepted, see, 
e.g., [2, 3, 12, 14]). 

Lemma 5.2. There exist c22 , c23 such that for xe  l I  = {xERk: 6z a - i JID-~ x]l ~<~C22 } 
it is possible to find h=h(x)  for which 

ES~=x,  (5.6) 

IIhll z <cz2 <c19, (5.7) 

c~ Ilhll < IID~h[I <6  [ID-~xll, (5.8) 

Proof Set 

rJD~h-D-~xll  ~ 3 6 q 2  • [ID-~xJI 2, (5.9) 
(7 

Ee(S,b_(.~,b=ex p (_�89 2 +c23 Or iiD_~xl[3) 
~y 

(5.10) 

c22 = rain {c 19, (2q4) -  1 }. (5.11) 

It is clear that for x = 0  the parameter h must be taken equal to zero. Now fix 
xEH, x+O and consider the ellipsoid M given by 

M = {heNk: IfD-~hH < 6  IlO-@x]l}. 

Since x e l I  we have for heM:  

PIhrl z<=za  -1 rlD~hll < 6 z a  -a IlD-~xll <cz2. 

Let us introduce the function 

(5.12) 

q) (h) = In E e (s" h)- (x, h). (5.13) 

Obviously, ~0(0)=0. By (5.11), (5.12) for h e M  we have IIhl].c<=cl9 and Lem- 
ma 5.1 is applicable. In particular, the inequality (5.1) may be rewritten in the 
form 

[(D-�89 ES-h-D} h, u)[ < q 2  Jlhll "c ][D~hlp ]Pull 
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for all u e N  ~ (it is sufficient to set u=D~t and to use (4.3)). Hence 

liD- ~ESh -O~hll =c12 [Ihll ~ I[D~hl[. (5.14) 

Let us suppose ND~hl[=6llD--~x][. Then by (5.13), (5.3) (2.5), (4.3), (5.11), 
(5.12) we obtain 

(p(h) =�89 [ID~hll 2(1 q- 0C14 Ilhll r ) - (O~h,  D-~x)  

> 9  liD- ~xll 2 - 6  [ID-~xll2 = 3 IID-~x[12 > 0. 

Thus, on the boundary of the ellisoid M the continuously differentiable function 
q~(h) is greater than qff0). Hence there exists a point h in which the smallest 
value of ~o(h) on M is achieved. Moreover, h is strictly inside M. Taking (4.2) 
into account it is easy to check that 

grad cp (h) = ES~ - x = 0. 

Therefore (5.6) holds. The inequalities (5.7), (5.8) follow directly from (5.11), 
(5.12) and (5.6), (5.8), (5.14) imply (5.9). 

From (5.8), (5.9) we get 

(x, h) =(D--~x, D-~ ]~)= IID-~x[I = + Oc z_ iiD_@xll 3 (5.15) 
r 

"C ~ 3 (O ~, h) = j] D-~h ]l z = II D -  ~x II 2 + 0 c - II D -  ~x  II. (5.16) 
O" 

Now (5.10) may be easily deduced from (5.3), (5.8), (2.5), (5.15), (5.16). 

6. A n  U n i f o r m  E s t i m a t e  for  the  C l o s e n e s s  o f  D e n s i t i e s  

Beginning with this section the smoothing distribution G is supposed to be 
non-degenerate, b2>0,  so that the distributions FG and ~G have continuous 
densities p(x) and q(x) = (2n)-k/2(det D)- ~ exp (--�89 IID-~x II 2) respectively. Corre- 
sponding densities Ph(X) and qh(X) of conjugate distributions also exist and are 
related to p(x) and q(x) by the equalities 

Ph (x) = (Ee ~s" h~)- ~ e~.~.h~p(x), qh(x) = (Ee/R' h~)- ~ e~,h~q(x) (6. I) 

(see (4.1)). The notation rh(X ) will be used for the density of Gaussian distribu- 
tion with the same mean and the same covariance operator as the distribution 
if(h) G(h). 

Here we get an upper bound for the uniform distance between p(x) and 
q(x) assuming the eigenvalues of the convariance operator B of the distribu- 
tion G large enough. 

L e m m a 6 . 1 .  a) There exist c24, c2s , c26 such that if z<ic24/k, b2>=c25k3z2]lnz[ 
then the inequality 

cz6 [ k~z z 
sup [p (x) - q (x)] ~ (27@/2 ~-(det D) �89 -t- (det I)o) ~ / ~IR k 

holds. 
b) The statement of item a) remains true if instead of the condition Fi~Nl('c) 

we require Fi~Nl(cl5z ) ( i= 1, ..., n). 
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Proof  It is sufficient to prove a). Without loss of generality we suppose the 
matrix B to be diagonal. Denote 

K . =  { t ~ k :  It--u[ <c27(k~z) -a} 

for u ~ R  k. The choice of c27 will be corrected throughout the proof. By the 
inversion formula for densities we have 

sup Ip(x) - q(x)l < (2•)-k ~ I ff(t) -- ~(t)l G(t) dt 
X EIR k ~ k  

= E (2re) -~ y I f ( t ) - ~ ( t ) l d ( t ) d t .  (6.2) 
a e ~  K~ 

Here a runs over all points of the k-dimensional lattice ~ = 2 c 2 7 ( k ~ z ) - i Z  k i.e. 
all points of the form a = 2 c 2 7 ( k ~ z ) - l l  where l ~ R  k is a vector with integer 
coordinates. 

At first we estimate the integral over the cube K o. Since ~c~(~,)~l(z ) 
taking (2.1) into account we obtain by choosing c24, c27 small enough it is 
possible to show that 

E(~i,t)2<=c'c2[ltH2~l, [~( t ) -6 i ( t ) l<=czHt[ lE(~, t )  2, 

0 
[/~ (t)[ = 1-�89 t) 2 + ~  E[(~i, t)[ 3 

<exp{  ~ { ( 1 ) }  -TE(~  i, t)2(1 - c z  tltll)} _<_exp - �89 i, t) 2 1 - ~  , 

< c - ( D t ,  t) ~ exp - �89  t) 1 -  
f f  

for any t e K o ,  i=  1, ..., n. Therefore 

1 ^ ~ ^ < ck~z 

c k ~ z (2 7~) k~ 2 C k ~'c 
- (2 r0 k a (1 - 1/2 k) k/2 (det D) ~ < (2 7z) k/2 a (det D) ~" (6.3) 

Now we pass on the estimating integrals over the rest cubes. We have 

[ff ( t ) - r  G(t)dt  
N k- . .KO 

< ~ ]ff(t)[G(t)dt+ ~ c ~ ( t ) G ( t ) d t = I i + I  2. (6.4) 
~ k \ K  o N k \ K o  

It is clear that 
I1= ~ ~ [ff(t)[G(t)dt. (6.5) 

a E -  ~, a 4 : 0  K~ 



Gaussian Approximation of Convolutions 553 

Let us apply Corollary 3.1 to estimate the characteristic functions t~(t)l z of 
probability distributions ~ ? ( ~ - ~ )  where ~z, ~ are independent random vectors 
such that s176 I. Let tx, t2sK ~, c~EN k, v=t  1 - t  2. By choosing c27 to 
be small enough we get 

E I ( ~ -  ~z, v)l 3 < 8 Ei(~, v)l 3 =< cz Ilvll E(~, v) 2 

< c k+z] vl E(~i, v) 2 < c c27 k-  1 E(~i, v) 2 

__< (2k) -~ E(~,, v) 2 = (4k) -~ E (~ , -  ~,, v) 2. 

Hence, for each i=  1, ..., n the conditions of Corollary 3.1 are satisfied for/~(t)  
=l/~(t)] 2, 7= (4k ) -k  Therefore by (3.6) we get that there exist the points vieK ~ 
such that 

' F i ( t ) ] 2 < e x p { - ( ~ - ~ ) E ( ~ i - ~ i , t - v i )  z} 

.for all teK~ and consequently, 

x g , t -  v / } .  (6.6) 

From (6.6) it follows that 

f Iff(t)ldt< ~ exp - 1 -  (Dot, t) dt<(detDo)~. (6.7) 
K ~  N k 

Put c25=4c~-7 z and introduce the function f ( . )  on the set of all integers by 
setting f (m)=2 lm[ -1  for m 4 0  and f ( 0 ) = 0 .  Let e=2c27(k~z)- l le~.  For any 
integer m we have Iml <f(m)<f2(m) .  So the inequalities 

G(t)_-< exp ( - �89  2 ]lt]] 2) ~ exp {- �89 k3"c 2 lln z[ 

k k 

j = l  j = l  
(6.8) 

are valid for teK, ,  z<e  -1. Therefore if z<(2k)  -1 we have 

m a x d ( t ) <  1 + 2  z 2m - l = ( l + 2 z 2 ( 1 - z 2 ) - l ) ~ - i  
a~3,~:# 0 t~Ke m=l 

<exp  t l - - ~ - )  - 1 <exp  ~ - 1 =<cz. (6.9) 

It follows from (6.5), (6.7), (6.9) that 

. . . .  c(2 ~)k/2 Z 
I 1 ~  2 maxG( t )~  l~(t) c t t < _ ~ .  

~ttct Uo)- 
(6.10) 
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Let  us estimate 1 2 .  By (6.8), max G( t )<z2< 'c .  Hence  
t EN. k "-, Ko 

12 <~ ~ ~(t)dt = (2~)k/2z 
a~ (det Do) ~" (6.11) 

Now the s ta tement  of L e m m a  6.1 may  be deduced from (6.2)-(6.4), (6.10), (6.11). 

7. The Non-Uniform Bound for the Proximity of Densities 

Lemma7 .1 .  a) Let B = b 2 I  where I is the identity operator. There exist 
C2s , ..., c32 such that for z<=c28/k , b2>=c29k3"c2]ln'cl, az>=2kb 2, 
va  -1 IlD-~xl] <=C3o/k it is possible to find a parameter ~ for which the relations 
(5.6)-(5.10) are valid, and the density p(x) may be represented in the form 

p (x) = (2 re)- k/2 (det D)-  ~ exp { - �89  ][ D -  +x ]l 2 

+O(c31"c+c32za-l(k~+ HD-~xJI 3))}. (7.1) 

Moreover, for any c33 we can choose C30 ~--C30(C33 ) SO small that the inequality 
rlhll "c<c33/k will be satisfied. 

b) The statement of item a) remains true if we change the condition Fi6~x(Z ) 
by the condition Fi~x(ClsZ),  i= 1 . . . .  , n. 

Proof It is clear that  it suffices to prove a). The  s ta tement  of i tem b) follows 
from a) (may be after a change of numerical  values of constants). 

It is easy to see that  choosing C3o sufficiently small we may achieve that  
xEI1 for z a  -1 JlD-~xJ[ <C3o/k where H is the set f rom L e m m a  5.2. In view of 
this lemma there exists for such x a parameter  h = h ( x )  satisfying (5.6)-(5.10). 
By choosing c30 to be small we may obtain the inequali ty 

II h II z < c 3 3/k < c a a (7.2) 

for any ca3. If Caa is small enough then for h = h  the condit ions of Lemmas  4.1 
and 5.1 are satisfied. Therefore  5 ~  1 (c15 ~) and (5.1)-(5.5) hold. 

For  all t ~ R  k we have (Bt, t)=b z Iltll 2 <a z Ilt]lZ/2k and 

(Dot, t)=(Dt, t ) - (B t ,  t)>= ( 1 - 1 )  (Dt, t) 

so, by (2.8), we obtain 

( 1; 
d e t D = > d e t D o >  1 -  detD>=cdetD. 

According to L e m m a  5.1, 

a(h) = a exp (0c21 z IIhll), 
(det D(h)) ~ = (det D) ~ exp (Oc2ok'c II ~ II), 

(det Do(h))~-= (det Do) ~ exp(Oc2okz IIhN). 

(7.3) 

(7.4) 

(7.5) 
(7.6) 
(7.7) 
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It follows from (5.6), (7.2), (7.6) that  

r~ (x) = (2 ~)- k/2 (det D (h))- ~ 

= (2~z)-k/2 (det D) -}  e x p ( O c z o k z  I1[~11) 

> c (2 ~)- k/2 (det D)- ~. (7.8) 

By Lemma 6.1, (7.2), (7.4)-(7.7) we get 

C26 ( c15k "c 1 c15c - t  
]p~,(x) - r~(x)l < (2re)k/2 \-a(h)(-~tet D-(~))~ q (det Do(~))~ / 

< c (2 70 - k/= (det D) - ~ (k s z a -  1 + z). (7.9) 

Choosing C2s small enough and using (7.8), (7.9) we ensure the inequalities 

Ip~(x) - r~(x)l/r~(x) < c(k~z  a -  1 + z) < 1/2 (7.10) 

to be valid. F rom (5.8), (7.2), (7.8), (7.10) we obtain 

p~(x) = r~,(x)(1 + (p~(x) - rr,(x))/r~(x)) 

= ra(x) exp (Oc Ip~,(x) - ra(x)l/r~,(x)) 

=(2~z)-k/2(det D) ~ exp {Oc(k} 'ca - i  + k ' c a  - i  IID-�89 +z)}. (7.11) 

Finally, with the help of (6.1), (5.10), (7.11) we derive (7.1) as follows: 

p (x) = Pr,(x) E d s' ~ -  ~' ~1 

1 {_�89189 k~ 
- -  ( 2 7 C )  k / 2  (det D) ~ exp +--a  i[D- {x II 

+z_c~ IlD-�89 - ( 2 k ) k / 2 ( d e t D )  ~ e x p { - X i [ D - @ x l l =  

-~ O(c31T q- c32 ~ f f -  l (k {--} - [IO-~xll3))}. 

8. Estimating the Closeness of Conditional Distributions 

In addit ion to the conditions described at the beginning of Sect. 5 we suppose 
2 that the covariance matrix D is diagonal and its diagonal elements or j,  

j = 1, . . . ,  k are non-increasing when j increases: 

~2>G2>= =-..--~k-l> ~ = ( ~ , ) = > ~ = ~ 2 .  (8.1) 

Further  we suppose that  B = b Z I ,  b 2 > 0  so that the probabil i ty density p(x)  
(xelR k) of the distribution S (S )  exists and has good smoothness properties. If 
k>2 ,  the same may be stated for the density i f ( x )  (x'=(x~ . . . . .  xk_l)MR k-l)  of 
the vector S' composed from the first k - i  coordinates of S. The function 
Pk(XklX ' )=p(x) /p ' (x ' )  of the argument  XkMR 1 may be considered as the con- 
ditional density of the distribution of the k-th coordinate of S, when S ' = x '  
being fixed. The probabili ty measure depending on x' with the density pk(XklX') 
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will be denoted by Uk= Uk, x , e ~ .  In the one-dimensional case it is not neces- 
sary to consider conditional distributions and it is convenient to assume that 
[x'l = I(D')-~x' l  = 0 ,  p~ (x~ Ix ' )=  p(x),  g k = F G  = s 

The distribution U k will be compared with the Gaussian distribution W e ~ t  
having the density W(Xk)=(2ZC)-~a - I  exp (--x2/2a2). In what follows we assume 
that conventions just introduced are valid. 

Lemma8.1. There exist c34 , . . . ,C3s such that for 72~_~c34/k , be>=c35k3z2]lnz], 
G2_->4kb 2 the following assertions are valid. For k >=2, I(D')-~x'l <2plnz] } there 
exists a parameter h '=h'(x ' )ElR k-1 supplying the solution o f  the equation ES'h, 
=x'. Le t  a = (0, . . . ,  0, ak)eN k where a k = ESh, k and the k-dimensional parameter h 
is obtained by adding zero as k-th coordinate to the (k-1)-dimensional  vector h' 
if k > 2  and h = 0  if k = l .  Denote V(Xk) the density of  the distribution H k 
= UkE a . Then 

1 { 2 @ 2 [ t C 3  6"C -~ C3 7 k~'clln'c'~- ( X ~ - ) ) } ~ -  V ( X k ) = ( ~ ) ~ e x p  -- + 0  1 + (8.2) 

for Ixkl _-<4allnrl ~ and, moreover, 

[akl < %8 k r Iln r]. (8.3) 

Proof. For k = l  the statement of the lemma may be easily deduced from 
Lemma 7.1. 

Let k > 2  and fix x ' e R  k-~ such that j(D')--~x'l<=2llnr] �89 By choosing cas 
large enough it is possible to ensure that 

6z 6 ( k -  1)~z . . . . . . .  < 12k~z Iln zl ~ < c22. (8.4) 

So, by the (k-1)-dimensional  version of Lemma 5.2 there exists a parameter 
h'MR k-a supplying the solution of the equation ES'h,_=x' and satisfying (5.7)- 
(5.10) (with a necessary change of notations). Here S~,, is a conjugate random 
vector corresponding to the vector S'e lR k-~. Define now the k-dimensional 
parameter h by adding zero as a k-th coordinate to the (k-1)-dimensional  
vector h'. The choice of the last coordinate of h to be equal to zero is 
convenient at once for several reasons. 

Firstly, for any Xk~lR 1 we have 

E exp ((S, h) - (x + a, h)) = E exp ((S', h') - (x; h')) 

where x ~ R  k. Therefore by (6.1) we obtain 

p(x + a) 
v(xk) = 

p'(x') 

_ E exp ((S, h) - (x + a, h))p h (x + a) _ Ph(X + a) (8.5) 
E exp ((S', h ' ) - (x ' ,  h'))p'h,(X' ) P'h,(X') 

where Ph(') and p~,(') are densities of corresponding conjugate distributions. 
Secondly, the covariance matrix of ~q~, coincides with a submatrix (D(h))' 
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composed  of k - 1  initial rows and k - 1  initial columns of the covariance 
matr ix D(h) of the vector  Sh" This will be used for the calculation of the 
element flk, k of the matr ix  (D(h))-1 k = {flij}i,j=l" Using the well-known formula 
for inverse matrices, we obtain 

ilk. k = det (D (h))'/det D (h). (8.6) 

Finally, by (4.3) we have (notations are those of Sect. 5) 

ERh, k = (D h)k = 0 (8.7) 

and it can be easily seen that  E(Sh) '=x '  , 

[]h][ = []h'][, [](D')~h'][ = []D~h[[. (8.8) 

In view of (5.8), (8.1), (8.4), (8.8) we have 

Ilhll <(a') -1 [[D~ hll -<_6(a') -1 ][(D')-~x'll 

< 12(o-')- 1 k ~ ]ln zt ~ < 12 ~ -  1 k ~ ]ln v]~. (8.9) 

So, Cas being large enough,  it may  be ensured that  

Ilh'lL z = I]hll ~__< 1Nor- lk~z Iln ~l ~ < c39/k (8.10) 

for arbi t rary small c39. In particular,  we can obtain the validity of the Lem- 
ma4.1 condit ions for h', h and of the L e m m a  5.1 condit ions for ~(S~,), ~(Sh). 

By L e m m a  4.1, ~-' ~,Qf(~i,h,--E~i,h,) and ~(~-i h- -E( i  h) belong to ~ l ( c l s z )  for i 
= 1, ..., n. With the help of (5.1), (8.7), (8.9), (8.10) we obtain the inequality (8.3) 
as follows: 

[akl <= c12 Ilhll ra  IlD~hll 
_-< 1 4 4 k q  2zlln zl-- caskz Iln z[. 

By using (8.8), (8.10) and L e m m a  5.1 we find that  

a(h) = a exp (0c21 z ILhll), (8.11) 

a'(h') = a' exp (0c21 z I} h I]), (8.12) 

(det D(h))~=(det D) ~ exp(Oc2okz Ilhll) 
= (det D) ~ exp (Oc4ok}a TM* z Iln z[r (8.13) 

(det (D (h))') ~ = (det D') ~ exp (0 c 20 kz I I h I I) 

= (det D') } exp (Oc4ok~a - 1 z [ln "c [~). (8.14) 

Here  (a'(h')) 2 is the minimal eigenvalue of the matr ix  (D(h))'. Since de tD '  
= a  -2 detD,  it follows from (8.6), (8.13), (8.14) that  

flk,k----ff - 2  exp(Ockz [Ih[])=a -2 e x p ( 4 O c , o k } a - t z  Iln ~[~). (8,15) 

Let  us re turn  to the formula  (8.5). Taking into account  that  ES'h,=X' and 
using L e m m a  7.1 we obtain 

[ c32~k \ )  
Pi,(x ')=(2u)-(k-i) /2(det(D(h)) ')-~exp 0 I c 3 1 z + ~ , , , ,  ]) .  (8.16) 

\ (Tt, n)  l j  
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To calculate ph(x + a) for JXk[ <43 Iln r[ ~ we also apply Lemma 7.1. Let us show 
that the validity of its conditions can be ensured by choosing c34, c39 to be 
small enough and %5 to be large enough. 

It is clear that the mean value of the probability measure with the density 
ph(x +a) is equal to x - x  (k) where x(k)=(0, ..., Xk) , xMR k. By a suitable choice of 
c3s and by (8.15) we obtain for JXk[<4allnrt + 

[l(D(h))~x(k)ll =flk~k IXk] <=2]Xkl 0--1 ~ 8 Iln rl ~. (8.17) 

By (8.11) and by the choice of c39 it may be ensured that 2~2(h)>0- 2. Therefore 
cr2(h)> e2/2>2kb 2 and taking sufficiently large c35 we find that 

-c(o-(h)) -1  ]l(D(h))-~x(k)ll <__8]/23-1~ ~ < Iln ~l --c30/k. 

Finally, by the choice of c3~, c3s we get z<c2s/k, b2>cz9k3r211nzl. Now we 
can apply Lemma7.1 to conjugate distribution. So, for lxkl<4allnzl ~ we 
obtain 

Ph (x + a) = (270- k/2 (det D (h)) ~ exp { - �89 I] (D (h))- 4x (k) II 2 

+ O(c3x r + c32 z(a(h))- 1 (k~ + l[ (D(h))- ~x (k) II 3))}. (8.18) 

It follows from (8.15), (8.17) that 

Ij(O(h))-+x(k)ll2=flk,kX~=X2a-2(l +Ock~a-lr l lnr l  ~) (8.19) 

(we use again the possibility to choose c35 large enough). From (8.5), (8.16), 
(8.18), (8.11)-(8.14), (8.17), (8.19), (5.7) we get 

V(Xk)=Ph(X +a)/ph,(X')=(210--~a -1 exp 20c4ok=(r - rllnz] ~ 
2 

Xk (1 +Ock~a-lrllnzl-~)+20c31~ 
232 

-}-20C32"C0 "-1 exp  (0c2~ v ]lhl]) k~+ 32 ~-I ln  ~l ~ 

1 { xZk (c k~'cllnvl~ ( + x 2 ) ) }  
-(2~)~cr exp - 2 ~ a  2 + 0  36T§ O" 1 

for Ixkl =<4allnr] +. This completes the proof. 

Lemma8.2. There exist c~1 , ...,c44 such that for z< c , l / k  , b2>_c~2k3~211nr], 
a2>-4kb 2, e=c43k#ztlnrl, z=2al lnz lL  J(D')-+x'l=2Jlnrl the inequality 
e~2a l lnz l  ~ holds and Uk{X } < W {X ~} +c443 for any closed set X = [ - z ,  z3. 

Proof For c4~ <c3~, c 4 2 ~ c 3 5  the conditions of Lemma 8.1 are satisfied, there- 
fore (8.2) is valid. Put ea =16k-c37z l lnG Then for Xk>O, 2a<xk+e~<4al lnr l  ~ 
by (8.2) we obtain 

v(xk+el)<=w(x~+e~)exp C36T§ (7 0 -2 

{ (x~+~)  k~lln~l~(x~+e~) ~ } 
<W(Xk) exp 232 ~-2C37 a a 2 ~-cs6r 

< W(Xk)e . . . .  (8.20) 
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and, similarly, 

w(xk+el)=W(Xk)exp{ 2xke*+ef-}20.2 

< V(Xk) exp { (Xk + e*)e* 
20.2 ]-2r 

k-~z Iln -c{~ (x k + ~,)2 
0. 0.2 

) 
+ c36 2 ~ < V(Xk) ec3% (8.21) 

In exactly the same way it may be proved that for x~<0, - 4 a  m'cl-=Xk--e , <= 
- -  2 a the inequalities 

V(Xk-- g l )  ~ W(Xk)ec36z, W(Xk-- ~1) < V(Xk) e~36~ ( 8 . 2 2 )  

are true. It is also clear that by choosing small enough cA, and sufficiently 
large c42 it is possible to show with the help of (8.2) that 

3 • 2 k~zltn~I ~ ( + x ~  x k 
C3627-~ C37 1 <1 o" o-21 = + 4 7 2 '  

1 x 2 + k 

_ 1 - 

(2~)~o " exp 1 Xk (8.23) 

for [xkl<=40.llnz{~, and 

( k~z~ "cl~) <6w(xk) , (8.24) V(Xk)<=W(Xk) exp c36z + 5ca7 = 

v(xk ) > 18 w(xk ) (8.25) -~-19 
for ]Xk[ <20.. 

Let now gz=2e2e1, e3=c38k-~rlln~[, c~,3=32eZc37+cas, g=g2+g3 
=c4ak}z[lnz]. It can be easily seen that for large cA; 

e<20.llnzl }. (8.26) 

Let X be an arbitrary closed set contained in the closed interval I - z ,  z]. 
Let us consider the collection {//~}~sa of open intervals l-I~,cN~\X such that 
the Lebesgue measure of each F/~ is at least 2~. Denote Y=IRI\~_) H~. Then 

/I 

X c Y, X ~ = Y~ (8.27) 

and the set Y may be represented as the union of disjoint closed intervals 
l l 

Mjc[ - z , z ]  distances between which are >2~. Thus Y= U Mj, Y~= U M~, 
M~ c~ M~2 = ~ if j l  =t=j2 and, consequently, j= 1 j= 1 

l l 

Uk{Y}= Z Uk{Mj}, W{Y~}= ~ W{M~}. (8.28) 
j = l  j = l  
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Note that in view of (8.26) 

MjcM".3cm~.c[-4al lnz[  ~ , j j 40-lln z[ ~ ] (8.29) 

for j = l  . . . .  ,l. Since b2>0,  the distributions U k and H k are absolutely con- 
tinuous, so we deduce by (8.3) that 

Uk{MjI~Hk{M~3}, j = l ,  ...,l. (8.30) 

We shall compare Hk{M~ ~} with W{M~}. Let M~=(aj, bj). Then M~ 
=(M~a)"~ = ( a j - e z ,  bj + e2). Fix j and consider separately four possible cases: 

a) (aj, bj)c~ [ -20-, 20-] = Z  and 0r -e2 ,  bj+e2),  
b) 0e(aj, bj) and [ - 2 a ,  20-] c ( a j - e 2 ,  b~+e2), 
c) at bas t  one of the intervals (a j - e 2 ,  a j) or (b j, b~ + ez) is contained in the 

segment [ - 2 0 ;  2a],  
d) one of the intervals (aj-e2, aj) or (bj, bj-l-e2) contains at least one of the 

intervals (0, 20-) or ( - 2 a ,  0). 
In the case a) let us suppose for example that 0 < a j - e 2 ,  aj>20-. Then by 

(8.20), (8.29) and since e 2 > e 1 we have 

bj--gl 

Hk{M~} = ~ V(Xk+eOdxk 
aj--s 
bjq-~l 

C36t C36~ < ~ W(Xk)e dXk<__e W{M~}. (8.31) 
aj--gl 

If bj+e2<O , bj<-20-,  then the inequality (8.31) may be obtained in exactly 
the same way by using (8.22). 

Consider the case b). According to Bernstein's inequality 

W{(z, oe)} = W { ( -  o% -z)}  <exp  - ~ a 2  =z. (8.32) 

Thus if bj-I-e 2 > z  then W{(bj+e  2, oe)} <z. Provided that bj-I"e 2 ~z, since bj>0,  
b j + e 2 > 2 a  , ez>e  a and by (8.21), (8.32) we get that 

z - - g  1 

W{(bj+e2, oc)}<z+ i W(Xk)dXk=Z+ ~ w(xk+ea)dxk 
bj+g2 b j + ~ 2 - - ~ l  

z-e 1 

<=~+ f V(Xk)ec36~dxk <Z+Hk{(bJ, ~ ec3~" 
b j  

Hence 
W {(bj + e2, oo)} < z + eC36~Hk {(bj, oe)}. 

Similarly, with the help of (8.22) one proves that 

(8.33) 

W {( - 0% aj -e2)  } --< z + e c~6~ H k {( - o% a j)}. (8.34) 

It follows from (8.33), (8.34) that 1 -W{M~} <2z+e .... (1 -Hk{M~})  so that 

Hk{M~ ~} <(2+c36)z+ W {M~}. (8.35) 
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To consider the case c) we introduce the following notations: 

Nj= M~3 c~ [ -  2cr, 2a3, 

K j=(M~\N~)c~([ - -2a-81 ,  - 2 a ]  w[2G 2a+el] ) ,  

Tj=M;~\(NjwKj) .  

Choosing c,z large enough we obtain the inequality 

exp (5cavk~r [ln zl+a - 1) < 1 + 10c37k~'c Iln zl~a - 1. (8.36) 

It follows from (8.24), (8.36) that if c~1 is sufficiently small then 

Hk {Nfl= ~ V(xk)dXk 
N1 

<= ~ W(Xk) exp {c36r + 5c37k~[lnr[~a-1}dXk 
Nj 

< W (Ni} e ~6~ + lOc37k}z ]ln zI~a - 1 e~6~ 

<eC~,~W {Nj} _~ 81 
(2n)4a. (8.37) 

Further by the condition c), by the definition of Kj and by (8.23), (8.29) we get 

1 ( x2 \ d  < 81 
H k { K j } < ~  ~ e x p  1 - - -  �9 (8.38) =Kj 4a 2) X k = i 2 ~ r  

If the set Tj is non-empty then it is entirely lying either on the positive semi- 
axis or on the negative one. Let Tjc{xk:  Xk>2a+81}. Then T i - e l c T j w K  j 
and by (8.20), (8.29) we obtain 

Hk{Tj}= ~ V(Xk+Q)dXk<~e ... .  ~ W(Xa)dXk 
T j - -e l  Tj--~ 1 

<= eC36~ W { Tj w K j}. (8.39) 

When TjC{Xk: Xk<- -2a- -e l }  , (8.39) is established in a similar way. It is also 
clear that in the case c) 

~3 ~ 8 2 e - 2  281 
W {M;\M~ } = (2~z) } a - (2 ~)~ a" (8,40) 

Now from (8.37)-(8.40) it follows that 

H k {M; 3} = H k {N i ~ Kj w Ti} = H k {N/} + Hk {K j} + H k {Tfl 

<eC36~W{Nj} - 2~1 - ~ . . . . . . .  ~oTj} = + (2 rc)~---~ + e w / ~ j  

M s ~3 < c~6~ <e ....  W{M;: ' }+W{  j \ M ;  } = e  W{M;}. 

Finally, let us consider the case d). In this case we have 

2 
W r g3 {M;\M~ } _=_(2n) -~ ~ e-~/Edx>0.475,  

0 

W { M;~ c~ [-- 2G 2a]} <0.5 

(8.41) 
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and, by (8.25), 
2 

Hk{(_2a  ' > i s  -~ 2a)} =TO (2re) ~ e-X2/Zdx>~9.0.95=0.9. 
- 2  

Therefore, using (8.24) one obtains 

~3 ~3 Hk {M ~ } =<Hk{]R~\[-2a, 2a]} + Hk{M ~ c~ [ - 2 a ,  2a]} 

<0.1 + 1.2 W{Mj3c~ [ - 2 a ,  2a]} <0 .2+  W{Mj ~} 
< W{M~\M~ 3} q- W { M ~  3} = W{M~}. (8.42) 

Thus, according to (8.31), (8.41), (8.42) in the cases a), c) and d) it is proved 
that 

H k (M~ ~} < e c36~ W {M~}. (8.43) 

In the case b) we have only the inequality (8.35). But only one of the intervals 
M~ ~ may contain zero. Therefore, choosing c41 to be small enough we obtain 
from (8.27), (8.28), (8.30), (8.35), (8.43) that 

l l 

Uk{X} <=Uk{Y}= Z Uk{Mj} < Z Hk{M~ ~} 
j = l  j = l  

l 

~-~eC36~ 2 W{M~I+cz=e~"~w{r~} +cz 
j = l  

~-eC36eW {X e} -1-c72 ~ W {X e} - [ -c44  T. 

9. Proof  of  Theorem 1.1 

In following Lemmas9.1-9.3 we suppose the assumptions and the notations 
introduced in Sects. 5-8 to be valid. Set now F=FG, ~=obG, F'=5r 45' 
= s (R'), 

P =  {xsNk: ID-~xl < 2 Iln zl~-}. 

Lemma9.1. For T~r , b2>=c42k3"c2[ln'cl, o'2~4kb 2, e=c43k~zllnrl and for 
any closed set X c P the inequality 

P{x} __<~{x ~) +c~k~ 
is valid. 

Proof. It will be carried out by the induction on k (see [193). For k = l  the 
statement of the lemma coincides with the assertion of Lemma 8.2 since in this 
case Uk=F, W=$, P=[-z , z] .  Let us suppose the assertion of Lemma9.1 to 
be valid in (k-D-dimensional  case and let us prove it for k-dimensional 
situation where k > 2. 

Let X be an arbitrary closed set contained in the parallelepiped P. Let Y be 
the s e t  {x~Nk: ~ysX: x'=y', [Xk--Ykl<ga}, Xx,~-{Xk~.l: X=(X*,Xk)~X } be a 
one-dimensional section of X given by fixing the first k - 1  coordinates, Yxk 
={X'ENk-I:  X=(X',Xk)eY } be the (k-D-dimensional  section of Y given by 
fixing the last coordinate. 
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Using diagonal character of a covariance matrix D and taking (8.1) into 
account it is not difficult to check that the distribution />=SY(S') satisfies the 
same conditions which in k-dimensional situation are satisfied for the distribu- 
tion F=s176 Therefore, by the induction hypothesis, for every set 
X ' c { X ' e N k - l :  I(D')-}x'l<2llnz] ~} the inequality />{X'}<~'{(X'ff)}+ 
c4~(k-1)~ holds. In particular, 

P' { Yx~} <--~' {Y~D + q A k -  1)~ 

for any XkelR ~. On the other hand, if [D-~xl<2llnzl}  we have 
I(D')-}x'l<211nzl 4, IXkl<Z=2allnzl -~, hence by Lemma8.2 the inequality 
Uk, x, {X~,} < W {X,~,} +c44z is valid. Note that 

U({x'}| U(Y~| =xu~ 
x '  x k 

(here the sign | is used to denote a direct product of sets). Finally, q(x) 
=w(xk)q'(x' ) where q'(x') is the density of the distribution ~'(R')=~'.  

Taking above 
obtain 

mentioned into account and using Fubini's theorem we 

/?{X}= ~ Uk,x,{Xx,}p'(x')dx' 
D k-1 

<= S W{X;,}p'(x')dx'+c44z 

= ~ P'{L~}w(xk)dx+c44~ 
- c o  

<-_ ~ ~'{E~2~}w(xOdx~+c~4kr 
- - c o  

= ~ q(x)dx+c44kz=~o{X (~)} q-c44k'c. 
X ( ~ )  

This completes the proof. 

Lemma9.2. There exist c4s, c46 , c47 such that for Z<C41/k , b2>=c45k3"cZlln'c[, 
0 "2 ~ 4kb 2, e = c43 k~z Iln z] for any closed set X c p k the inequality 

holds and, consequently, 

P{x} < ~{x ~} +c46k~ (9.1) 

7/:(/~, ~ )  ~ C4. 7 k 2 T Iln *1- (9.2) 

Proof Choose c45 so that b2>c42k3r211nr [ and a > 2 z  ]lnzl ~. Hence Lem- 
ma 9.1 conditions are satisfied and, in view of (8.1), 

2a; Iln zl ~ < a2/~ (9.3) 
for j =  1, ..., k. 

Let X c R  k be an arbitrary closed set. By Lemma9.1, 

P {X c~ P} < $ {X (~)} + c44kT,. (9.4) 
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Set yj=2o-jllnzl ~ for j = l  . . . .  ,k. By using (9.3) and Bernstein's inequality we 
obtain 

k 

F { X \ P }  </?{Rk\P}  < ~ P{ISjl >yj} 
j = l  

k 

<2 ~ exp(-y] /4a2)=2kz .  (9.5) 
j = l  

Now (9.4), (9.5) imply (9.1) with c46 =c44+2.  
Obviously, X(")~X ~k~. Therefore, it follows from (9.1) that F{X} <:~{X "k~} 

+c46k~. In view of (1.2) this means that 

re(/e, ~) <max  {ek ~, C46 k1: } ~ c47k2"c Iln vl- 

Proof of Theorem 1.1. It is clear that throughout the proof of (1.4) we can 
assume ~<c41/k, z < e - k  Since the L6vy-Prohorov distance is invariant with 
respect to unitary transformations of IR k , we can suppose, without loss of 
generality, that the covariance matrix of F is diagonal and its eigenvalues are 
ordered so that they are non-increasing. We use at once two smoothing 
distributions" G O and G with the covariance matrices d21 and b21 respectively 
where b2=c45k3z 2 [ln zl, d~=4kb 2. Then, by the weak regularity of the L6vy- 
Prohorov distance, we obtain 

re(F, ~) < Tz(F, FGo)+ rc(FGo, FGo G ) 

+ zc(FGoG , ~GoG)+ ~z(~GoG , OGo)+ Zc(~bGo, 4~) 

< ~r(F G O G, ~ G O G) + 2 ~z(Go, E) + 2 ~z(G, E). (9.6) 

It can be easily seen that the probability measure FG o satisfies all con- 
ditions which were imposed on F in Sects. 5-9 (see beginning of Sect. 5). 
Moreover, the smallest eigenvalue of its covariance operator is at least 4kb 2. 
Therefore, for F=(FGo)G, ~=(~Go)G  all conditions of Lemma9.2 are satis- 
fied. Hence 

rc((FGo)G, (~Go)G) <=c47k2"r[ln'c[. (9.7) 

Further, putting 62 =4kd z ]ln zl = 16k~c45z 2 Iln vl2, we obtain that 

Go{Rk\{x: ]pxl] <6}} < k  ~ (2rc)-~d -1 exp(-y2/ZdZ)dy 
1 

lyl __<,~k 

<.2k exp ( - 62/4kd 2) = 2kr 

and, consequently, 

z(G o, E) < max {6, G O {Rk\{x: I[x II < 6}}} < ek~z [ln r]. (9.8) 

Similarly it can be proved that 

(G, E) < c k 2 z I ln z[. (9.9) 

The derivation of (1.5) from (1.4) essentially repeats the arguments used in [20, 
21] to prove a one-dimensional version of (1.5). We shall show that for every 
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X e ~  k a n d  for  al l  2 > 0  

F{X}<-q~{xZ}+czk~exp cak2 z 
(9.10) 

~{X} < F {X~} +c2k~-exp ( - ~ ) .  

C o n s i d e r  the  r a n d o m  v ec to r s  6 { t , . . . , 6 {  . w h e r e  6 > 0 .  I t  is c lea r  t h a t  
~(6{i)e~a(6Z ) for  i = 1 ,  . . . ,  n s ince  ~ ( ~ i ) e ~ l ( z ) .  D e n o t e  b y  ~b a a ze ro  m e a n  
G a u s s i a n  d i s t r i b u t i o n  w h o s e  c o v a r i a n c e  o p e r a t o r  c o i n c i d e s  wi th  t ha t  of  s  
I t  fo l lows  f r o m  (1.4) t h a t  n (5r  ~a)__< c 1 k-~ 6z ( l ln  6z[ + 1). Se t t i ng  e = e(k, z, 6) 
=2qk§ +1) ,  we o b t a i n  t h a t  for  a n y  Xe~B k 

F { 6 -1X}= GP(6S)fX} <=cI)o{Xq + e = ~  {(6- ~ X)~/a} + ~. 

W h e n  X runs  ove r  a l l  B o r e l  sets, the  s a m e  occu r s  wi th  6 -  ~ X.  The re fo re ,  

F{X} <= ~ { X  ~/a} + e  (9.11) 

for  any  X ~  k. T h e  f u n c t i o n  flk,~(6)=2qk ( l l n 6 z l + l )  is c o n t i n u o u s  a n d  de- 
c r ea s ing  w h e n  0<6__<r -1 S ince  flk,~(z-1)=2qk ~, for  y = 2 c ~ -  we can  def ine  
the  inve r se  f u n c t i o n  -~ -~ ilk,= (Y) = ~ exp  (1 -- y/2c 1 k~). P r o v i n g  (1.5) we can  a s s u m e  
4/z> 2ctk ~. P u t  6=fl~(4/z). T h e n  

4 = zfl< ~(6) = 2c~ k~z( l ln  6zl + 1) = , 5 -  ~ ~(k, z, ,5), (9.12) 

hence  

4(1 2c~ .)<=c~,~'~ 4 = ~ e x p  e x p (  4c~_~z  ) .  (9. i3)  

N o w  (9.11)-(9.13) i m p l y  the  first  of  the  i n equa l i t i e s  (9,10). T h e  s e c o n d  one  is 
p r o v e d  in a s i m i l a r  way.  
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