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1. Introduction

In this paper we study the rate of approximation of distributions of sums of
independent random vectors by corresponding Gaussian distributions. For
summands we suppose the validity of multidimensional conditions which in
one-dimensional case coincide with those of the well-known S.N. Bernstein’s
inequality (see [13], p. 55).

Throughout the paper we use the following notations. Let B, be the o-field
of the Borel subsets of the Euclidean space R¥, &, be the set of probability
measures on B, D, be the set of infinitely divisible distributions in &,. The
writing xelR* will further denote that x=(x,, ..., x;). For the scalar product of
x, yeR* we use the notation (x,y)=x,y,+...+x,y,. Besides the Euclidean
norm x| =(x, x)? we need the norm |x|= max |x;]. For e-neighbourhoods of a
set X =IR* we use the notations l=izk

Xe={yeRF: inf |x —y| <&},

xeX
X®={yeR*: inf |x —y|<e}.
xeX
For xeR*(k=2) we denote by x'=(x,,...,x,_;)eR*"! a vector obtained by
omitting the last coordinate of x. Similarly, the matrix D'((k—1)x(k—1)),
composed of the first k—1 rows and k—1 columns of a matrix D(k x k), will be
also denoted by a prime.
The Lévy-Prohorov distance, generated by the Euclidean norm, is defined
for F, Geg, by
n(F, G)=inf{e: F{X} £ G{X*} +s,
G{X} SF{X*}+¢ for any Xe%B,}. (.1
As it is shown, e.g., in [6], the Lévy-Prohorov distance may be defined in other

way:
n(F, G)=inf {e: F{X} <G {X*}+¢ for any closed set X}. (1.2)
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We shall also consider the following characteristic of proximity of probability
distributions, closely connected with the Lévy-Prohorov distance and depend-
ing on a parameter A>0:

n(F, G; )= sup max {F{X}—-G{X*}, G{X} - F{X*}}.
XeB;
It was introduced by Zolotarev [25] and also considered in [4, 5, 21, 23].
Obviously, if we evaluate the characteristic n(F, G; 4) for all 1>0, then we get
much more information than by the Lévy-Prohorov distance evaluation. In
particular,
n(F, G)=inf {A: n(F, G; ) S 4}. (1.3)

The symbols ¢, ¢;, ¢,, ... will be used to denote absolute positive constants
where ¢ may stand for different values. Similarly, c¢(-), ¢,(*), ¢,(*), ... will
denote positive constants depending only on the indicated argument. In the
following text # means quantities for which |8]<1; E, is a probability measure
concentrated at a point aeR*; E=E, where 0 is the zero vector, #(¢) means a
distributions of a random vector ¢;

F(t)= | ¢ “9F{dx}

denotes a characteristic function of Feg,. Products and powers of measures
will be understood in the convolution sense: FG=FxG, F'=F*",
For >0 we denote by %, (1) the union ( ) &, (k, ) where
k

B,(k,1)={L(H)eF,: EE=0 and
|E(, 028, w" | S5mle™ 2 u|™2E(E, 1)

for every m=3,4, ... and for all ¢, ucR*}.

It can be easily seen that F=%2(&e#,(l,7) if and only if ¢ satisfies

S.N. Bernstein’s inequality conditions. It should be noted that Fe#,(7) is

actually a form of Cramér’s condition of existence of exponential moments.
The following theorem is the main result of the paper.

Theorem 1.1. Let >0 and ¢&,,...,¢,€R* be independent random vectors such
that X (E)eB (k1) for i=1,...,n. Let S=¢, +...+¢,, F=2(S). Denote by &
the Gaussian distribution with the zero mean and the same covariance operator as
that of F. Then

n(F, ®)=c, (k)r(lnz|+1) (1.4)
and for all A=0

(F, &; J)<c, (k) exp (— ) (15)

cs(k)T

Moreover, the constants c;(k) (j=1,2, 3) may be taken in the form cj(k)=cjk%.
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This theorem is especially interesting because the right-hand sides of (1.4)
and (1.5) are expressed omly in terms of 7 and are independent of any other
characteristics of Z(S) or Z(¢), including covariance operators. It should be
also noted that the right side of (1.5) decreases exponentially when 1 —oco. It is
necessary to emphasize that, in general, @ is not the standard Gaussian
distribution because its covariance operator can be non-unit (it must coincide
with that of F). Finally, the summands £, are non-identically distributed and
the constants depend only on the dimension k.

It can be easily seen that the inequality (1.4) may be derived from (1.5) with
the help of (1.3). Morcover, (1.5) seems to be essentially more general in
comparison with (1.4). Note that (1.5) gives meaningful information about the
closeness of F to @ for any 1>0 (1.4) being trivial for 7=(c, (k))~ . But at first
we prove (1.4) and then deduce (1.5) by means of variation of a normalizing
constant. In this connection we use the fact that if Z(¢)e#,(k, 1), acR' then
ZL(ab)eB (k,|a|t) and the independence of the right-hand side of (1.4) with
respect to the covariance operator of F.

The conditions of Theorem 1.1 are fulfilled for a sufficiently large class of
distributions with exponentially decreasing tails. It is easy to see that these
conditions are satisfied for zero mean probability measures concentrated on
the ball 4,={xeR*: x| <t}. In Sect.2 we show that infinitely divisible distri-
butions whose Lévy-Khintchine spectral measures are concentrated on 4, may
be considered as shifted convolutions of distributions from %, (ct). Hence the
following result holds.

Theorem 1.2. Let He®D, be an infinitely divisible distribution with a characteris-
tic function

H(t)=exp {i(a, t)—1(Bt, 1)

i(x,1) ) 14+1x)?

i(x,t) __ 1 _
] (e 1+ 12 TRl

G{dx}} (1.6)
where acR¥, B: R*>R* is a non-negative linear operator and G is a bounded
Borel measure concentrated on AN\{0}. Let & be the Gaussian distribution with
its mean and its covariance operator coinciding with those of H. Then

n(H, @) <c, (k)r(Inz|+1) (1.7
and

2(H, ®; ) <c,(K) exp (—C (k)T) (1.8)
6

for every 7.>0. Here c;(k) (j=4,5, 6) can be taken in the form cj(k)=cjk%.

In one-dimensional case this theorem may be considered as a quantitative
estimate of the stability of the characterization of Gaussian distributions as
infinitely divisible distributions with their Lévy-Khintchine spectral measures
concentrated at zero.
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Earlier, results similar to Theorem 1.1 were obtained by Yurinskii [197]. He
has shown that under additional conditions (/& <t almost surely for i=1,...,n
and E(S, 1) < ||t||? for all teR¥) the following inequality holds:

n(F, ®)<c(k)t(|lnz|+1)° 1.9)

{the characteristic n{F, ®; 1) and the dependence of c(k) on k were not studied
in [19]). To prove Theorem 1.1 we shall apply some of the methods from [19]
such as the use of Gaussian smoothing distributions, the induction on k, the
study of one-dimensional conditional densities p(x,|x’), xeR¥, the application
of conjugate distributions.

We mention the following refinements of the methods of [19]. Firstly, in
Sect. 3 we obtain a generalization of an inequality of Esseén [8] for character-
istic functions. It will be used in Sect. 5 to prove an uniform bound for the
closeness of densities of smoothed distributions. Secondly, for conjugate distri-
butions we systematically apply the results having been obtained earlier for
underlying distributions (see Lemmas 4.1, 7.1 and 8.1). We also use more exact
bounds for the quantities connected with conjugate distributions.

The conjugate distributions are usually applied to estimate probabilities of
large deviations. It can be easily scen that Theorem 1.1 implies inequalities
that may be interpreted as bounds for such probabilities. For example, let us
consider a triangular array {{&,,}n_ 32, of row-wise independent random
vectors (meaning that they are independent for each fixed value of ). Suppose
EmEBy (t) for m=1,2,...,m, 1=1,2,.... Let §;=¢, +...+¢&,., F=2(S), let
@, be the Gaussian distributions with their means and their covariance oper-
ators coinciding with those of F, and assume X,eB,, [=1,2, .... It follows from
(1.5) that for the inequality

R,
oxy= 7%

lim sup

being true it is sufficient to require the validity of

A
¢, (k) exp <— )
N e S A B W
A P, {Xz} ?, {Xz}
when [ —oo. Similarly, for the inequality
F{X
lim inf (X0 =1 (I-o)
@, {X;}
being valid it is sufficient to suppose
Wew (~—)
c -
inf ¢I{Xl\(Xl)—l} : c3(k)Tl __)0 (1.11)
A ‘Dz{Xz} QI{XZ}

when [ - co. Here (X,)_,€%B, denotes an arbitrary set such that (X;)_,)* < X,. It
should be pointed out that the conditions (1.10), (1.11) are convenient for
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application because they are expressed in terms of Gaussian distributions.
Moreover, we do not require that X, belongs to more special set classes
(convex, separated from zero etc.) as was done, e.g, in [1, 2, 12, 16].

The one-dimensional versions of Theorems 1.1 and 1.2 have been obtained
in [20, 21]. It should be noted that from the results of Sahanenko [15] (see
also [5]) it follows that if k=1 and the conditions of Theorem 1.1 are satisfied
then

)L
n(F, ®; ) <c¢ (1 +f) exp (—c~>
T T

for all A>0 where ¢2=DS.
Define the multidimensional Lévy distance by the formula

L(F, G)=inf {&: F(x —el) —¢ S G(x) S F(x+¢l) +¢ for all xelR*}

(here F(x), G(x) are corresponding multidimensional distribution functions, 1 =
(1,1, ..., 1)eR~

The inequality (1.4) is optimal with respect to order. This can be derived
from the following lemma due to Arak [20].

Lemma 1.1. For any 1€(0,1] there exist a distribution Fe®, and a positive
integer n such that

F{{—-1,1]}=1, 3"0 xF{dx}=0

and for all De®,
n(F", D)= L(F", D)= ct([lnt|+1).

Another simple example showing the unimprovability of the result of The-
orem 1.1 is given by the distribution Fe, with the density f(x)=(27)~'
xexp(—|x|/r). It may be easily proved that Fe%, (l,ct) and
n(F, @)=z L(F, ®)Zct(Int[+1) if 0<t<c where & is the corresponding Gauss-
ian distribution.

The various estimates for tails of convolutions of distributions from classes
similar to #,(7) were earlier obtained, for example, in [12-18].

The results of this paper have been announced in [22, 23]. Note that
Theorems 1.1 and 1.2 allow to get bounds for the rate of approximation of
distributions of sums of independent random vectors by various approximating
distributions (see [24]). Our results imply the following lemma that was essen-
tially used in [24].

Lemma 1.2. Suppose that F,,...,Fe®,, F{{x:|x|=t}}=1, [xF{dx}=0, F
= ﬁ F; and D is the accompanying infinitely divisible distribution with character-
istliz 1fwfzction ;

B)=exp ( 3 (F@-1).
Then =

n(F, D)<c(k)t(llnt|+ 1).
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To prove this lemma it is sufficient to apply Theorems 1.1, 1.2 and the
triangle inequality. Lemma 1.2 is actually one of the steps, that are necessary
for proving the following theorem.

Theorem 1.3. Suppose that the distributions F,e§, are represented in the form F,
=(1—p)U;+p;V,, where 0<p,<1; U, Ve, and
U{{{x: |x||Z1}}=1, [ xU{dx}=0, i=1,...,n.

— 0

Let

15ign

“[1F. p=max p,
i=1

let De®, be the accompanying infinitely divisible distribution with the character-
istic function .
D(t)=exp (Z (F()—1) )
Then )
L(F,D)Zc(k)(p+t(lnt|+1)).

Corollary 1.1. Suppose that Fie§, and L(F,, Ey<e¢, i=1,...,n. Then there exists a
distribution De®, such that

L (ﬁ F, D) Zck)e(|lngl+1).

Theorem 1.3 and Corollary 1.1 give a multidimensional generalization of
the main results of a paper by Zaitsev and Arak [20]. In [20} we have
obtained a definitive solution of an old problem stated by Kolmogorov in 1956
(the history of this problem may be found in [20]). The proof of Theorem 1.3
need the use of some new methods and will be published in another author’s
work.

2. Connection of 28 ,(t) with Other Classes
of Probability Distributions

1t is easy to check that if £ (€)%, (r), 1>0 then
E(&, 02((&, w2 (4/30m! |u|™ 2" 2E(, 1)

for any t,ucR* and for any m=3,4,... (it is sufficient to consider only odd
numbers m and to use Holder inequality). On the other hand, if for any
u,teR* m=3,4, ... we have

E¢=0, [E(&D%E w2 Sam!ju|" 2" 2E(L, 1) (2.1)
where a =% then Z(&)eB, (2ar).
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Let B,(1)=| ] #,(k, ) where
k

B,k 1)={Z({eF,: E{=0,
E(£,1)2e/¢¥I <4E(¢, 1)? for any t,ueR*

such that Jjul| <77t}

It is clear that %, (z) and £,(7) are increasing families of distributions when
T increases. It is easy to prove that if £ (&)e;(z) (j=1,2) then L(af)eB,(«|1),

Z(UeBi(v), L(E,)eH;(t) where acR? (oc=1=0) U is an arbitrary unitary trans-
formation of RY &, is a vector composed from any subset of coordinates of a
vector ¢ (in particular, £'e%,(1)).
Remark 2.1. In order to prove £ (£)e%,(1), it is sufficient to verify that E€=0
and

E(£ )% e <2KE(E, 1)

for any r, ueR* such that [lu|| <t~ ! (this follows from the elementary inequality
e¥l<e*+e).

Lemma 2.1. There exist c,, cg such that B,(t)=B,(c,1), B,(t)=%B,(cgT) for
any t>0.

Proof. Let Z(£)e, (). Then for any t, ucR* such that [u| <(c,7)~" we have

[E(S, 1)* e =

i VTE(E 02 )

<IE(, z)Z( Z (m+1>(m+2>(uuur>m)

E(§, 1)? (2.2)

if ¢, is large enough. According to Remark 2.1, (2.2) implies Z(£)e%,(c. ).
Let now £ (£)e4,(1). Then for any m=3,4, ...; 1, ueR* such that |ju]=7""
we obtain

lIA
[\

[E( 0% u)" 2 [S(m—2)LE(E, 1) el &)
S4m=2)!(Ju 7y 2E(¢, 1)
sim!(ful "2 EE 0 (2.3)

Obviously, the validity of the inequality

[E, 0% w21 <3m!(jul 7)™ 2B, 1)

for all ¢, ueR* follows from the same fact obtained in (2.3) under the restriction
Jul =t~ Therefore L (&)eB, (41/3) (see (2.1)).

Further it will be necessary to use some properties of Gaussian distri-
butions. Let & =2(n)ed, be a Gaussian distribution with Ey=0 and a co-
variance operator (covariance matrix) D (we identify covariance operators with
corresponding covariance matrices). It is well known that for any t, ucR* the
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following identities hold:

E(n, 1)*=(Dt,t)=| D*t|?, (24)
Ee* =exp ((Du, u)), (2.5)

E(n, 1) =(Du, t) exp & (Du, w), (2.6)
E(n, t)?e™" =((Dt, t) + (Du, £)*) exp 3(Du, v)). 2.7

Here D* is the non-negative linear operator such that D*D*=D. For the
determinant of the matrix D we have the formula

k
| exp(—3(Dt, t)dr=(2m)? (det D)~ *. (28)
R}
Lemma 2.2. If the largest eigenvalue of a covariance operator D of a Gaussian
distribution ® =L (n)e, is equal to d* (d>0) then ®cB,(cd).

Proof. Let t,ueR¥. Then (2.4), (2.7) implies

|E(n, )%™ )| =(Dt, t)(1 + (Du, u)) exp G(Du, u))
<D, ) (1+d* |ul?) exp Gd®||ul?)
<2(Dt,1)=2KE(n, t)?

if |u]|?d? <c where c is small enough. By Remark 2.1 and Lemma 2.1 we obtain
the statement of Lemma 2.2.

Remark 2.2. 1t is clear that any Gaussian distribution ®e, may be always
represented as a convolution of Gaussian distributions with arbitrarily small
eigenvalues of covariance operators. In view of Lemma 2.2 we can deal with @
as if it were of class %, (t) with arbitrarily small >0 as @ can be replaced by a
finite convolution of distrivutions from %, ().

A similar situation occurs for infinitely divisible distribution with their
Lévy-Khintchine spectral measures concentrated on a bounded set.

Lemma 2.3. Let H=%(£)eD, be an infinitely divisible distribution with EE=0
and characteristic function

i(x,t) ) 1+ x|

YD G{dx}} 29

H(t)=exp {i(oc, 0+ (ei(x") —1-
Ag

where aeR¥, G is a bounded Borel measure concentrated on the set A\{0}, A4,
={xeR*: |x| <t}. There exist absolute constants cy, c;, such that if
G{R"*} <c,min {1, 7%} then He%,(c,,7).

Proof. 1t is easy to show that E£=0 if and only if
(0, t)=— | (x,0)G{dx} (2.10)

A,
for all teR* In view of (2.9), (2.10) we have
1+ x]?
Ix | ?

Ee¢" =exp { [ (€= —1—(x,v))

A

G{dx}} (2.11)
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for every velR”‘. Put v=pt+u where felRY, u, velR* and twice differentiate the
identity obtained from (2.11) with respect to f. By substituting f=0 we get

£ )2 &) x,u) __ I+Hx”2 z
B 0% = (] o= - 5 Glax)
o 1]
+ift(x,t)2e( >——“x“2 G{dx})
X exp { J (e —1 — e,y LI G{dx}} 2.12)
A, [E3l

Taking into account the elementary inequalities |e’ —1|<|y|eP!, & —1—y]
<y*eP1/2 we obtain

o LX) :
(,i(x’”(e D= G{dx})
2
<2 MR B2 | (v S G rax
A. Hxh‘
<109 2(1 479G (RA E(E, 1) 2.13)

L+ x| ?

] Gldx}<Ze"I u[?(1+ )G {R*}.  (2.14)

e —1—(x,u)
A

In addition,

2
Aj (x, )2 et %ﬁi—‘ G{dx} <el*I*E(¢, 1) (2.15)

From (2.12)-(2.15) we deduce

E@, 0%e® " < (e 42 17 u| (14 7%) G {R*})
xexpGelI|ju)>(1+ %) G{R¥)E(E, 1)

It is evident that by means of a suitable choice of constants we may ensure the
validity of an inequality E(&, t)?e®? <2E(E, 1) for any t,ueR* |lu| <ct™!
provided that G{R*} <cmin {1, 7%}. According to Remark 2.1 and Lemma 2.1
we obtain the statement of Lemma 2.3.

Before proving Theorem 1.1 we shall show that Theorem 1.2 may be easily
derived from Theorem 1.1 and Lemma 2.3.

Proof of Theorem 1.2. Let H=2(£{)ed, be an infinitely divisible distribution
with a characteristic function (1.6). In view of the invariance of the Lévy-
Prohorov distance with respect to a shift transformation of the distributions to
be compared we can suppose E£=0 without loss of generality. For any natural
number n the distribution H may be represented in the form

H=H" H (2.16)
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where H,, and H,, are infinitely divisible distributions with characteristic
functions

7 = (% it _ 1 _ i(x, 1) 1+HX”2
Hln(t)‘e"p{’(n’t>+i (=t T G"{dx}}’

H,,()=exp{~$(B,t, 1)}

where G,=n"'G, B,=n"'B. By the choice of sufficiently large n we can ensure
that

H,, ,H,e#B (c,o7) (2.17)

(see Lemmas 2.2, 2.3 and Remark 2.2). Now the inequalities (1.7), (1.8) follow
from (2.16), (2.17), (1.4), (1.5).

3. The Generalization of an Inequality of Esseen
for Characteristic Functions

Here we shall prove an auxiliary inequality for characteristic functions of
multidimensional distributions.

Lemma 3.1. Let 6>0 and H=2(¢{) be a symmetric distribution (this means % (&)
=L (—¢)) such that E||£]?>< 0. Let K be a compact convex set in R* and t,eK
be a point for which

H(t,)=max H(t). (3.1)
teK
Then for all teK
2

N o) N
Ap<i- (1 -5 ) (- Ao ~4Ew 92

+ (é%) E |, é)l"’éeXP{— 1 —%) (1-A,)
4B ¢ + (24 Bl @P}, (32)

where u=t—t,.

If a probability measure Heg, is non-symmetric then similar inequalities
for |A(7)| can be obtained by estimating the characteristic function |H(t)|*> of
the symmetrized distribution.

Lemma 3.1 may be considered as a generalization and a sharpening of
Theorem 2, Chap. VII from the well known paper of Esseen [8]. Upper bounds
have been obtained for the Lebesgue measure of those teK for which
H(t)>1—¢ where K is an ellipsoid of a special form and ¢ is a small positive
number. Esseen made use of his result to estimate integrals of the form

{ 118,z

Ki=1
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It should be noted that such integrals have been also estimated by other
authors with the help of similar methods (see [7, 9, 10, 117]).

Proof of Lemma 3.1. In many respects it repeats the corresponding arguments
of Esscen [8]. By expanding the cosine function in a Taylor series we obtain

ﬁ(t) = E €os ((és tO) + (éa u))
=Ecos(&, to)—E( wsin (&, t,)

LB 7 cos (6, 1) +¢ BIE 0l (3.3)

The basic difference from [8] consists in the use of the inequality
—E(&, wsin(¢,t,) <0 (3.9

which is valid for all u=t~—t, such that teK. The left-hand side of (3.4) is
actually the derivative of H at t, in direction u and hence =0 as t, 15 a
maximum point on a segment between ¢, and t. Now (3.3), (3.4) imply that
H(©) S H(to)—E(&, u)? cos (& to)/2
+OE|E w)*/6
=1—(1-H(ty)—E( u)*/2
+E(E u)* (1 —cos (&, 1,))/2+ OE|(E, u)*/6.
(3.5)
The inequality (3.2) follows from (3.5) since
E(&, u)*(1 —cos (&, £5))/2=E(&, u)* (1 —cos(&, t,))
X W <o+ Ly wrza)/2
<0*(1—H(to)/2+ 0 E|(&, u)l*.

Remark 3.1. The right side of (3.2) may be easily minimized with respect to 4.
Then this inequality takes the following form

H(O)SH(to) —5E(E, 0 +EIE w)® + 3ENE w1 —H (1))

Corollary 3.1. Suppose that the conditions of Lemma3.l are satisfied. If
El(&,t, )P SyE(&,t, —t,)? for all t,,t,€K and for some y>0 then

- 6% - 1 11
H(z)gexp{— (1=5) 0=~ (5-7 5+5) ) Bie u)Z}
Jor all teK where u=t —t,. In particular, seiting 5==6/5, we obtain
H() Sexp { —028(1 —H (o) —G -1 E(£, 1)}
sexp{—G—1E& v’} (3.6)

Remark 3.2. Results similar to Lemma 3.1 may be obtained without the con-
dition E|[¢]|* < oo since an arbitrary distribution H €y, may be represented as
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H=(1—p)U+pV where 0<p<1, U, Ve, | [x|°U{dx}<oco (e.g, by a trun
Rk

cation). Then |H ()| (1 —p)|U(1)|+p and it remains to use our results to |U(z)|.
It should be noted that the choice of a representation H=(1—p)U+pV may
be performed in different ways in accordance with our demands.

4. The Properties of Conjugate Distributions

Let heR* and Z({)=Heg,. The conjugate distribution FQO=H=H(h) is
defined by a formula

H{X}=(Ee“")~* [ e~"H{dx} (4.1)

for all Xe®B,. It is clear that this definition has meaning only if
E exp(({, h))<oo. A conjugate distribution essentially depends on the choice of
a parameter h. A conjugate random vector having a distribution £({) will be
denoted by {={,. We shall also apply the notation {*={}={—E{ In view of
(4.1), for any B,-measurable function ¢ such that E|p({)e“"| < oo the following
identity holds:

Eo(0)=(Ee“") " Ep({)e®". (4.2)

Unless otherwise stated we shall always assume that all conjugate distributions
are defined with the help of a parameter denoted by a letter h.
It is well known that the conjugate distribution for a convolution coincides

with the convolution of conjugate distributions: if U,,..., Ued,, U=][] U,

i=1
then U=[] U. If ¢=ZL(n)e, is a Gaussian distribution with Ey=0 and a
i=1 -
covariance operator D then the distribution ¢ is also Gaussian and for all
teR”
E(7,0)=(Dh, 1),

D(7, t)= D(n, ) =E(n, 1)* =E(n*,1)* = (D1, t)= | D*t|? (4.3)
(see (2.4)-(2.7), (4.2)).

Lemmad.l. Let >0, L(eB, (v) and let n be a Gaussian random vector with
En=0 and covariance operator D coinciding with that of & There exist
Cips -+-» Cr5 Such that if |h|t=c,, then

[E(E, ) —E(7, )| Sc,, [1h]| T(Dt, 1) (Dh, h)2, (4.4)

[E(&%, 0)° —E(*, t)’| S cy5 ||k 1(Dt, 1), (4.5)
Eeléh

IHW Zciallblic(Dh, h) (4.6)

for all teR¥ and the distributions ¥ (E*) and L (n*)=F(n) belong to #,(c,51).



Gaussian Approximation of Convolutions 547

Proof. Let d* be the largest eigenvalue of the operator D and ueR¥ ful|=1, be
a corresponding eigenvector. Since ¥ (&)e 4, (1) we have

E(& u)? (B w*) = (127°E(E w)?)3,
d*=(Du, u)=E(n, u)* =E(¢&, u)?> <1212

By Lemma 2.2 it follows from this that £ (n)=%(n*)e%,(c7). In the sequel we
shall need the inequality

(D, y=d?|1])* <127t 4.7)

which is valid for all telR¥ In particular, (4.7) implies (Dh, h)<c if |[h| 1 <c.

The derivation of (4.4)-(4.6) is similar to the proof of Lemma 3 from [19].
Throughout the proof we use the possibility to choose ¢,, as small as will be
necessary for the validity of corresponding formulae.

Since #(&)e#, (1), £ (n)e B (c7), by expanding exponentials in Taylor series
(see (2.2)) and by choosing ¢, small enough we get

IE(S, 0P| <c(De, ) (Dh, h), [E(n, 1) ™| < c(Dt, ))*(Dh, h)?, (4.8)

[E(&, 1)e!“" —E(n, 1)e™"| <c||h| t(Dt, t)*(Dh, h)%, 4.9)
E(, 026" <c(Dt, 1), En, £)?e™M <c(Dt, 1), (4.10)
[E(E, )" —E(y, 1)*e™P| <c | h||7(Dt, t), (4.11)
|Ee&P —Ee | <c|lh|(Dh, h). (4.12)

In view of Jensen inequality
Ee(fsh);eE(éyh):]_’ Ee(ﬂ,h)él' (413)

By (4.2), (4.7)-(4.9), (4.12), (4.13) we have (if ¢, is sufficiently small):

[E(, 1) —E(, )| =|(Ee“ ")~ LE(Z, H)els?
— (e ")~ E(n, 0PI SE(E, 1) e —E(n, )]
+ ](Ee(‘i' b _ gt h))E(’?a Z)e(”’h)l

<c|h|=(Dt, t)*(Dh, h)*

that is (4.4) holds. Similarly, it follows from (4.2), (4.7), (4.10)-(4.13) that
IE(E, 8)* —E(7, )*| <c k| 1(Dt, 1) (4.14)
and from (4.2), (4.8), (4.13) that
[E(, o)l +|E(H, )] <c(Dt, )} (Dh, h)*. (4.15)

Taking into account that (Dh,h)<c, E(&*1)2=E( 1)> —(E(, )% E@n* 1>
=E(7, 1) —(E(7, 1))* we obtain (4.5) from (4.4), (4.14), (4.15). If |h|t<e,, <c
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then by (4.12), (4.13) we get

Eeleh Eenh
X{Ee(n,h)’ E&m
Sl+clhlc(Dhh)
=exp(c|hz(Dh,h)) (4.16)

}§1+|Ee(§"‘)—Ee(”"”|

that is (4.6) is valid.

Let us show that Z(&¥)ed,(ct) if |h|t<c,;<c. By Remark 2.1, for this it
suffices to check that E(&*,1)%e®" ")<2E(£* )% if Jlu|t<c. Denoting v=u+h
and using (3.2) we obtain
E(£*, 1269 = E (1)~ E(E, 1) e -BEw

:(eE(E,u)Ee(é. h))—l {E(ﬁ, t)ze(é’ v)
—2E(&, 1)eVE(E, 1) +(E(E, 1) *Ee ). (4.17)
If |oljt<c where ¢ is small enough we can use for v all relations earlier
obtained for h. Further calculations will be performed for |[v]|tZ¢, ultZc,
AT <c where constants ¢ are as small as is necessary for the correctness of

arguments. Thus, by (4.7), (4.15) E|(&, w)|<c|h|t, in view of (2.5), (4.7), (4.16)
Ee“?=exp(cO|h| 1) and from (2.7), (4.7) it follows that

E(y, £)2e"? =(Dt, t)e? 2117 (4.18)

Further, by (4.11), (4.18) we get E(¢, t)*e®?=(Dt, ) exp(c@|v|t) and from (2.5),
(4.7), (4.8), (4.15), (4.16) we deduce

—2E(¢, 1)e“E(E, )+ (E(E, 1) Ee®?
=cO(|h]+lvl)z(Dt, 2).

By substituting the relations just obtained in (4.17) we find
E(% 02" =(Dt, 1) exp(cOt(|lv] + [[A]). (4.19)
Since E(&*, 1)* =(Dt, t) exp(cB]|h| ) in view of (4.3), (4.5), we get from (4.19) that
E(&% 1)2 e K 2E(E% 1)2 (4.20)
if fhltscr, Nulzseyq  lolltSe,. I [hllesc, Smax{c,, c;q/2),

ull T <max {c;,, ¢;4/2}, we have [[v]|t<c,5. Hence (4.20) is valid and therefore
L (E¥)eB,(c7). It remains to use Lemma 2.1.

5. The Beginning of the Proof of Theorem 1.1

First we shall prove (1.4). Let us assume without loss of generality that t<e ™!
so that [Int|=In1/t=1. We shall use the smoothing inequality

n(F, ®) Sn(FG,G, #GoG)+2n(G,, E)+27(G, E)
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which is valid for any G,, Ge®, and follows from the weak regularity of the
Levy-Prohorov distance (n(V,V;, V,V3)<=n(V,, V,) for any V,,V,, V,€%,, see
[25]). Finally, we shall choose G, and G to be Gaussian with zero means and
with covariance operators all whose eigenvalues are equal to ck*7?%|Int| and
ck®7%|In 7| respectively. We shall show that in this case

271(Gy, E)+27(G, E)y<ck¥z|Int|

and it will remain to investigate the proximity of smoothed distributions
(FGy)G and (9G,)G. According to Remark 2.2, G, may be represented in the
convolution form: G,=(G,,)" where G,,e%,(7). This yields the possibility to
reduce FG, to a convolution of distributions from %, (1), i.e. to the same form
that F has itself. The role of G, is to make the smallest eigen-value 62 of the
covariance operator D of distribution FG,G sufficiently large. Thus, we may
omit the distribution G, and study only #(FG,®G) assuming however that
o®2ck*t?|In1|. But at first it will be required only that ¢2>0.

Beginning with this section we consider the following situation. There are
independent random vectors ¢, ..., ¢,, {; and #,, ..., 3, {, with zero means and
such that F;=2({)e%, (1) (i=1, ..., n); the distributions G,=#(y,) are Gauss-
ian with the covariance operators coinciding with those of F;; the vectors {,, {,
are also Gaussian with a common distribution G (the case G=E is not
excluded). Denote

F=]]F, o=[] G,
i=1 i=1
S=&+...+,+{, R=n+..+n,+(,.

Let us introduce the independent conjugate random vectors 51, . Cl and
My>oens Ty {, defined by means of a parameter h and let 5=§, ={+. 4+, +Z,
R=R, = +.. +11,,+C2 It is clear that Z(S)=FG, $(Sh) F(h)G(h), L(R)
—<15G Z(R,)=®(h)G(h). Denote the covariance operators of distributions G,
F, FG, F(h), F(h)G(h) by B, Dy, D=B+ D, Dy(h), D(h)=B+ D, (h) respectively.
We denote corresponding minimal eigenvalues of this operators by b2, o2, ¢?,
o5(h), 6%(h). Assume that ¢%>0. Hence det D=det D, >0, ¢>>0 and the opera-
tor D is invertible.

By Lemma4.1 we know that Z(&f)e,(c,s7) if ||h]|1=c,; where 5*-—5
~E¢§,, i=1, ..., n. Therefore, sometimes we shall replace the condition F,e %, (r)
by the condition Fe#,(c,s7), keeping in mind the application of results
obtained for #(S) to the centered conjugate distributions #(S¥) where
|hllt<c,;. As a rule, this will lead only to the change of several absolute
constants.

Lemma 5.1. There exist c;qg,Cyq,Cyq such that for [ht<cgScyy and for all
teR¥ the following relations hold:

[E(S,, ) —E(R,, | Sc,, [ k] 1(Dyt, )3 (Do h, b, (5.1)
(D()t, ) —(Dt, D) Scy5 |kl T(Dot, 1), (5.2)

(S, h)
In E&n Scialhlz(Doh, h), (5.3)
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(det D(h)* =(det D)* exp(c,,0kt | h]), (5.4
o(h)=a exp(c,, 07 | hl). (5.5)

Proof. The inequalities (5.1)-(5.3) follow immediately from Lemmad4.l (see
(4.4)-(4.6)). The relation (5.4) may be easily derived from (5.2) with the help of
(2.8) since (Dyt,£) £(Dt, 1) for all teR* Finally, we get (5.5) from (5.2) by means
of the identities

¢*= inf (Dt,t), o%(h)= inf (D(h)t,?).

llell=1 llefl =1
The constant ¢, , should be chosen sufficiently small.

Remark 5.1. It follows from (5.4) that in the conditions of Lemma 5.1 we have
det D(h)>0 and the operator D(h) is invertible.

To compare the values of probability densities p(x) and g(x), corresponding
to FG and &G, at a fixed point xell cIR* (I is defined below) we investigate
the densities of conjugate distributions defined by the parameter h=h which is
the solution of the equation ES, =x (such choice of k is generally accepted, see,
e.g.,[2, 3,12, 14]).

Lemma 5.2. There exist ¢, ,, ¢,5 such that for xelI={xeR*: 616~" |D~#x|| Zc,,}
it is possible to find h=h(x) for which

ES;=x, (5.6)
HEHT§022§C197 (5.7)
o|k| = |D*h|| 6| D~ *x]|, (5-8)
ID*h—D*x| g36c12§ 1D~ *x|2, (5.9)

~ - A 0 1
Ee®D700 =exp (—%HD-fxuuczs — ||D~fxu3). (5.10)

Proof. Set

¢y, =min {c;q,(2¢;,) "'} (5.11)

It is clear that for x=0 the parameter & must be taken equal to zero. Now fix
xell, x+0 and consider the ellipsoid M given by

M={heRF¥: |[D*h| <6|D *x|}.
Since xe Il we have for heM:
Ihlit<tot [D*h| 6707 D7 Ex| <cy,. (5.12)
Let us introduce the function
o(h)=In EeS-H =0, (5.13)

Obviously, ¢(0)=0. By (5.11), (5.12) for heM we have |h|7=c,, and Lem-
ma 5.1 is applicable. In particular, the inequality (5.1) may be rewritten in the

form G
(D~ *ES,—D*h,u)| <c,, |h] 7| D*h]| |u]
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for all uelR” (it is sufficient to set u=D?*t and to use (4.3)). Hence
ID™*ES, —D*h|| Sc,, ||| D*h|. (5.14)

Let us suppose |D*h|=6[D~*x||. Then by (5.13), (5.3) (2.5), (4.3), (5.11),
(5.12) we obtain

@(M)=3|D*h|>(1 +0c,4 || k| 7)—(D*h, D %x)
29[ID7*x|? —6| D~ *x||*=3| D~ *x|>>0.

Thus, on the boundary of the ellisoid M the continuously differentiable function
@(h) is greater than @(0). Hence there exists a point h in which the smallest
value of @(#) on M is achieved. Moreover, & is strictly inside M. Taking (4.2)
into account it is easy to check that

grad () =ES; —x=0.

Therefore (5.6) holds. The inequalities (5.7), (5.8) follow directly from (5.11),
(5.12) and (5.6), (5.8), (5.14) imply (5.9).
From (5.8), (5.9) we get

(x, )=(D~*x, D*fy)= \|D~%x[|2+0c§ 1D~ #x]3, (5.15)

(Dh, By=|| D*h)? = uD‘%xuuacf;uD-%xu% (5.16)
Now (5.10) may be easily deduced from (5.3), (5.8), (2.5), (5.15), (5.16).

6. An Uniform Estimate for the Closeness of Densities

Beginning with this section the smoothing distribution G is supposed to be
non-degenerate, b>>0, so that the distributions FG and &G have continuous
densities p(x) and g(x)=(2n)"**(det D)~ * exp(—%||D~*x|?) respectively. Corre-
sponding densities p,(x) and g,(x) of conjugate distributions also exist and are
related to p(x) and g(x) by the equalities

pa(x)=(EeS )7 e Pp(x), g, (x)=(Ee®P) 1 Py (x) .1

(see (4.1)). The notation r,(x) will be used for the density of Gaussian distribu-
tion with the same mean and the same covariance operator as the distribution
F(h) G(h).

Here we get an upper bound for the uniform distance between p(x) and
q(x) assuming the eigenvalues of the convariance operator B of the distribu-
tion G large enough.

Lemma 6.1. a) There exist cy,, C,5, €6 such that if T1<c,,/k, b*>Zc,sk*t*|In1|
then the inequality

_ Cr6 kit T
Sup P —atl= g (o(det D) " (det DO)%)

holds.
b) The statement of item a) remains true if instead of the condition F,e &, (t)
we require F,ed,(c,57) (i=1,...,n).
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Proof. 1t is sufficient to prove a). Without loss of generality we suppose the
matrix B to be diagonal. Denote

K,={teR*: |t—u|Zc,,(kit)~'}

for ueR* The choice of c¢,, will be corrected throughout the proof. By the
inversion formula for densities we have

sup Ip(x)—g(x)|=@2m)~" f \F())— )| G(r)dt

=2 @2m)~* f |F(0)~ ()] G(t)dt. (6.2)

ack

Here o runs over all points of the k-dimensional lattice Z=2c,,(k¥t)~1Z* ie.
all points of the form a=2c,,(k*7)"!l where lelRF is a vector with integer
coordinates.

At first we estimate the integral over the cube K,. Since Z(¢)ed, (1)
taking (2.1) into account we obtain by choosing c¢,,, c,, small enough it is
possible to show that

E(,0* <t |t)* 21, |E@) -G Scr |t EE, 0)?,
" 0
[F(0)l=1-3E(&, 1)* +EI& B

gexp{—%ﬁXé,0%1—wnnﬂn}éexp{ SEG 071 Z%)}

IF(t)—tf(t)IG(t)gcrHtH(Dt,t)exp{ L(Dt,1) 1—11(—)}

’ 3 L _ L
§c;(Dt, t) exp{——z(Dt, 1) (1 4k>}

gck%‘m_lexp{ i(Dt, t)( 21k>}

for any teK,, i=1, ..., n. Therefore

ki
1)k J 1F@®- @(I)IG(l)dt<(2 Fo jexp{ 1Dt 1) (l—flﬁ)}dt

2
k3 2 )2 2
- kT ( Tsc)z = kfk : I (6.3)
(2ma (1—1/2k)?*(det D)*~ (2n)¥* ¢(det D)*
Now we pass on the estimating integrals over the rest cubes. We have
| IF@-®IG@ar
Rk Ko
< [ [FolGdi+ | S®GE)dt=I,+1,. (6.4)
R* < Ko R*~ Ko
It is clear that
L= 3 [IF®IG@ar (6.5)

acZ,a¥ 0 K,
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Let us apply Corollary 3.1 to estimate the :characteristic functions |E(¢)]> of
probability distributions #(¢; —¢;) where ¢;, ¢, are independent random vectors
such that #(&)=%(¢)=F, Let t,,t,eK,, aeR¥ v=t, —t,. By choosing c,, to
be small enough we get
E|(& — & o) S8EI(&, v’ Sevllo] EE, 0)?
<ck®tp|E(¢;, v)* Lcey kT LE(E,, v)?
<RV, 0= EE &, 0

Hence, for each i=1, ..., n the conditions of Corollary 3.1 are satisfied for H(z)
=|F(t)|%, y=(4k)~ . Therefore by (3.6) we get that there exist the points v,eK,

such that
N 1 1 s &
0 sexp{ - (3 1) BE- G-}

for all teK, and consequently,

. 11
|F (o)l éeXP{— (E_ﬂ) E(&;,t— Ui)z}' (6.6)
From (6.6) it follows that
1 1 c(27£)"/2

Put ¢,s=4c;7 and introduce the function f(-) on the set of all integers by
setting f (m)=2|m|—1 for m=+0 and f(0)=0. Let a=2c,,(k*7)"'leE. For any
integer m we have [m|< f (m)< f?(m). So the inequalities

k 2
G(t)éeXP(—%bzI|t1|2)§e><p{—%czsk3fzﬂnTl 5 (f(lj),j—il) }
=1 zr
k k !
<] 2Ve? < T o2 (6.8)
Cj=1 st
are valid for teK,, t<e~'. Therefore if t<(2k)~! we have
Y maxé(z)g( +2 Z ) —1=(1+2t3(1 -3~ —-1

acE,a+ 0 teK,
< ( : )—1< ( t
=¢X =€X

It follows from (6.5), (6.7), (6.9) that

2)—1§cr. (6.9)
T

c(Rm)*?z
I.< max G(t Ft dt_———
l_as_zzzz:#o teKq () jl | ( ‘ _(d tDO)_

(6.10)
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Let us estimate I,. By (6.8), max G(f)<t?><rt. Hence
. telR* < Kg
2ry*1

oD 6.11)

I,<t | ®(t)dt=
Rk

Now the statement of Lemma 6.1 may be deduced from (6.2)-(6.4), (6.10), (6.11).

7. The Non-Uniform Bound for the Proximity of Densities

Lemma7.1. a) Let B=b%I where I is the identity operator. There exist
Cogr--rCyp SUch  that  for T=Zc,glk, b *Zc,ok*t?|Int], o222 2kbA
1o~ |D~%x|| Sc4o/k it is possible to find a parameter hi for which the relations
(5.6)~(5.10) are valid, and the density p(x) may be represented in the form

p(x)=(2n)"¥2(det D)~ * exp { —% | D~ ¥x||?
+0(c31 55707 (kE 4| D Hx]1 7). (1.1)

Moreover, for any ¢y, we can choose c;,==C40(C53) S0 small that the inequality
IR T < ¢,5/k will be satisfied.

b) The statement of item a) remains true if we change the condition F,e (1)
by the condition F.e#, (c,57), i=1,...,n.

Proof. It is clear that it suffices to prove a). The statement of item b) follows
from a) (may be after a change of numerical values of constants).

It is easy to see that choosing c,, sufficiently small we may achieve that
xell for 1o~ |D™¥x||Zc;0/k where IT is the set from Lemma 5.2. In view of
this lemma there exists for such x a parameter h=h(x) satisfying (5.6)-(5.10).
By choosing c;, to be small we may obtain the inequality

Al t<cy3/kScy, (7.2)

for any c,5. If ¢55 is small enough then for h=h the conditions of Lemmas 4.1
and 5.1 are satisfied. Therefore £ (&f;)e %, (c, 5 7) and (5.1)-(5.5) hold.
For all teR* we have (Bt, t)=>b?|t|* <¢?||t]|?/2k and

1
(Dot 0= (D1, 0~ (Br, )2 (1 -5 ) (D2, (73)
so, by (2.8), we obtain
1 k

detD=detDy= (1 —EE> detD=c detD. (7.4)

According to Lemma 5.1,
o(h)=0 exp (Ocyyt IR1), (7.5)
(det D(R))* =(det D)* exp(Oc, okt || k), (7.6)

(det Do (R))* =(det Do)* exp(0c,okt |1R]). 1.7)
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It follows from (5.6), (7.2), (7.6) that

r;l(x)=(2n)"k/2(detD(fz))‘%
= (2m)¥2(det D)~* exp (B¢, ke [l

=c(2m)~H?(det D)%, (1.8)
By Lemma 6.1, (7.2), (7.4)~(7.7) we get
Cy6 ¢, sk*t CysT
1P3C) =m0 = (o(z)(det DR " (det DO(%))%)
<c(2m)~M*(det D)~ *(k*ro ! +1). (7.9)

Choosing ¢, small enough and using (7.8), (7.9) we ensure the inequalities
P =1l SclkFre ™ +1)£1/2 (7.10)
to be valid. From (5.8), (7.2), (7.8), (7.10) we obtain

i) = rp()(1 + (pg(x) — r5(x))/r(x))
=r5(x) exp (O c|pj(x) — 15, ()|/r(x))
=(Q2n)"¥*(det D) *exp {Oc(kito~  +kto ! |D ¥ x| +1)}. (7.11)
Finally, with the help of (6.1), (5.10), (7.11) we derive (7.1) as follows:
POI=pi () Ees PP

! exp< —3[D " #x|[*+0c (&Jrﬁ—t—iw“% |
(2n)¥'%(det D)* P12 c o' X

T 1

—|D%x|I3 S —
+O_ ” x“ +T)} (2k)k/2(det D)% Cxp{
+0(cy,t+es,to HkE+H D3 x] %)

71D %x|?

8. Estimating the Closeness of Conditional Distributions

In addition to the conditions described at the beginning of Sect. 5 we suppose
that the covariance matrix D is diagonal and its diagonal elements o7,
j=1, ...,k are non-increasing when j increases:

oiz03z...20f_,=(0)20t=0" (8.1)

Further we suppose that B=bI, >0 so that the probability density p(x)
(xeR¥) of the distribution Z(S) exists and has good smoothness properties. If
kz2, the same may be stated for the density p'(x) (x'=(x,,...,x, ,)eR*"!) of
the vector §' composed from the first k—1 coordinates of S. The function
(X 1X)=p(x)/p’(x') of the argument x,elR' may be considered as the con-
ditional density of the distribution of the k-th coordinate of S, when § =x'
being fixed. The probability measure depending on x’ with the density p, (x,|x")
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will be denoted by U, =U, ,.€,. In the one-dimensional case it is not neces-
sary to consider conditional distributions and it is convenient to assume that
X=1(D) x| =0, py (x,1x) =p(x), U,=FG=2(S).

The distribution U, will be compared with the Gaussian distribution We,
having the density w(x,)=(2n)"*c~! exp(—x?/26?). In what follows we assume
that conventions just introduced are valid.

Lemma 8.1. There exist csy, ..., C35 such that for 1<cs./k, b*2cy5k>t?|In|,
o2 24kb? the following assertions are valid. For k=2, |(D')"*x'| <2|Inz|? there
exists a parameter h'=Hh(x)eR*~" supplying the solution of the equation ES,
=x" Let a=(0, ..., 0, a,)eR* where a,=ES, , and the k-dimensional parameter h
is obtained by adding zero as k-th coordinate to the (k— 1)-dimensional vector W'
if k=22 and h=0 if k=1. Denote v(x,) the density of the distribution H,
—U,E_,,. Then

2

1 X kit|lnz|* x2
v(xk)=®%;exp{—2—a%+9(c36‘c+c37—0_—— (1+g’;—)> (8.2)
Jor |x,|S4c|lnt|* and, moreover,

la | Scygkt]inz|. (8.3)

Proof. For k=1 the statement of the lemma may be easily deduced from
Lemma 7.1.

Let k=2 and fix x’elR*"! such that |(D')”*x'|<2|lnt|*. By choosing css
large enough it is possible to ensure that

Sy iy sHE DTy LT L (s
ag ag g

So, by the (k—1)-dimensional version of Lemma 5.2 there exists a parameter
W eR*~! supplying the solution of the equation ES}, =x' and satisfying (5.7)-
(5.10) (with a necessary change of notations). Here S, is a conjugate random
vector corresponding to the vector S’¢lR¥~% Define now the k-dimensional
parameter A by adding zero as a k-th coordinate to the (k—1)-dimensional
vector h'. The choice of the last coordinate of h to be equal to zero is
convenient at once for several reasons.

Firstly, for any x,eR! we have

E exp((S, h)—(x+a, h))=E exp((S’, h')—(x, 1))
where xeR¥, Therefore by (6.1) we obtain

p(x+a)

p'(x)

ZEWN@M—@+%WMW+®=MW+@ 8.5)
E exp (S, ') — (', B)) pje (%) Pi(x)

where p,(-) and p;(-) are densities of corresponding conjugate distributions.
Secondly, the covariance matrix of S, coincides with a submatrix (D(h))

v(x)=
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composed of k—1 initial rows and k—1 initial columns of the covariance
matrix D(h) of the vector S,. This will be used for the calculation of the
element f, , of the matrix (D(h)) L={B, Using the well-known formula
for inverse matrices, we obtain

By =det (D(R)Y/det D (h). (8.6)

l]l_]l

Finally, by (4.3) we have (notations are those of Sect. 5)

ER, ,=(Dh),=0 (8.7)

’

and it can be easily seen that E(S,) =x/,
Ikll=1k1l,  (D)*K]|=|D*h|. (8.8)
In view of (5.8), (8.1), (8.4), (8.8) we have
Ihl <(e) = IID*h] <6(c) 7 [(D)*x'|
<12(6) tkFInt)P <120 Lkt |In )t (8.9)
So, ¢55 being large enough, it may be ensured that
Hh’Hr%||h[|r§120‘1k%r]1nrl%§c39/k (8.10)

for arbitrary small ¢;4. In particular, we can obtain the validity of the Lem-
ma 4.1 conditions for 4, h and of the Lemma 5.1 conditions for Z(S},), Z(S,).
By Lemma 4.1, #(& , —E¢, ;) and Z (& ,—EE,,) belong to B, (c,47) for i
=1,...,n With the help of (5.1), (8.7), (8.9), (8.10) we obtain the inequality (8.3)
as follows
la <y, [kl 7o [D*]
Sl4dkey,tllnt|=cykt(ln|.

By using (8.8), (8.10) and Lemma 5.1 we find that

o(h)=cexp(Bc,, Tlhl), (8.11)
o'(hy=0c"exp(Oc,, k), (8.12)
(det D(R)* =(det D)* exp (Bc, k |1
= (det D)* exp (B, ko't /In 7], (8.13)
(det(D(h)))* =(det D')* exp(Bc, okt )
=(det D)* exp(Oc,okio 1 z|InT|?). (8.14)

Here (¢’(h))* is the minimal cigenvalue of the matrix (D(h)). Since detD’
=¢~2det D, it follows from (8.6), (8.13), (8.14) that

By r=0"2exp(Ockt|h])=0"2exp(d0c, ok 7|lnt|?). (8.15)

Let us return to the formula (8.5). Taking into account that ESj =x' and
using Lemma 7.1 we obtain

Py (') =(2m)~ ¢~V (det (D(R)))~* exp {0 ( Cyy 32T 2(;;; )} (8.16)
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To calculate p,(x +a) for |x,|<4c|lnt|* we also apply Lemma 7.1. Let us show
that the validity of its conditions can be ensured by choosing c,,, ¢4 to be
small enough and ¢, to be large enough.

It is clear that the mean value of the probability measure with the density
pu(x+a) is equal to x —x® where x®=(0, ..., x,), xeR*. By a suitable choice of
¢;5 and by (8.15) we obtain for |x,|<4o|lnt|*

IDH)~ExB| = pE (x| £2]x, |0 <8 [In | (8.17)

By (8.11) and by the choice of c;, it may be ensured that 262 (h) = o> Therefore
o*(h)=¢?/2=2kb* and taking sufficiently large c;5 we find that
w(o(m) (D)2 x¥) <81/ 207 Te[lnt|* Scqy k.

Finally, by the choice of c;,, ¢35 we get t1=<c,g/k, b>Zc,yk*t*|Int|. Now we
can apply Lemma7.1 to conjugate distribution. So, for |x,|<4c|Int|* we
obtain

py(x +a)=(2m)"*(det D(h))* exp {3 (D (h) ~*x™?
+0(c3; T+ ez, (@)™ (kF + (D)~ ExP )} (8.18)

It follows from (8.15), (8.17) that
(D)~ x®|2 =B,  xi=x2o *(1+0ck*c™ "1[In7[?) (8.19)

(we use again the possibility to choose ¢y, large enough). From (8.5), (8.16),
(8.18), (8.11)-(8.14), (8.17), (8.19), (5.7) we get

v(x) =py(x+a)/p, (x)=2m)"* o' exp {200401620—1“111 tf*
2
—%3(1 +0ckic t|lnt|?)+20¢cy,1

2
+20c5,107 exp(fcy,z k) (k%+32z—’; |1nry%)}

1 x? +6( N k¥t|lnt|? (1_’_&))
"2t TP 267 36T o’

for |x,| <4c|lnt|%. This completes the proof.

Lemma 8.2, There exist ¢y, ...,c,, such that for t<cy,/k, b*>=c k>t |Intl,
62 =4kb? e=c  kitlint|, z=2cl|lnz|}, |[(D) " *x|<2|Inz|¥ the inequality
e<20|Int|? holds and U {X} < W {X*}+c,,1 for any closed set X [ —z, z].

Proof. For ¢,,; ¢34, ¢4, =¢34 the conditions of Lemma 8.1 are satisfied, there-
fore (8.2) is valid. Put ¢, =16k*c,,t|Int|. Then for x, =20, 26 <x, +¢, <4o]lnt|?
by (8.2) we obtain

k3c|inz|? (x,+¢,)?
v(x, +e) Sw(x, +&) exp{c36r+2637 16 ( kaz 1)
(. +e) kzllntl* (x,+e,)?
=w(x) exp{— 252 +2¢54, p o2 +C367

Sw(x,)e” (8.20)
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and, similarly,

2x,e, +¢&2
wix, +e)=w(x,) eXP{_Xk—lgl‘}

202

+e k¥it|lnt|* (x, +¢,)2
<o(x,) exp{_(xkzazl)gl_i_zc37 |G T|% (%, 6281)
+636f}§v(xk)e”“’- (8.21)

In exactly the same way it may be proved that for x, <0, ~4cg|lntP<x, —¢, <
—20 the inequalities

v(x— &) Swx)e™,  wix, —g) Sv(x,)es’ (8.22)

are true. It is also clear that by choosing small enough c,, and sufficiently
large c,, it is possible to show with the help of (8.2) that

kitjinef® x? X7
536f+C37T 1+02 <1+4

ol ")=(2 Dte (_5’%+1+4ﬁf_)
=(2—71:1)1;; exp (1 —%) (8.23)

for |x,|<4qllnt|?, and

IIA
wloy

3 1 £l
".M) wix,), (8.24)

v(x,) Sw(x,) exp (c361+5037
v(x) =B wix,) (8.25)
for |x,|=2g.
Let now g,=2e’¢, ey=cykitilntl, c,3=32e%c,,+caq, £=6,+2,
=c,3k*t|lnz|. It can be easily seen that for large c,,

e<2q|lnt|% (8.26)

Let X be an arbitrary closed set contained in the closed interval [ —z, z].
Let us consider the collection {I1,},., of open intervals I, cR'\ X such that
the Lebesgue measure of each II, is at least 2&. Denote Y =R*'\| J I1,. Then

XcY, X°=Y° (8.27)

and the set Y may be represented as the union of dlS_]Olnt closed 1ntervals
M;c[ —z, 2] distances between which are 22¢ Thus Y= U M, Y= U M,
M8 NM;, =% if j, %], and, consequently, I=

UAY} =Y UM}, W{ry=Y WM. (8.28)

j=1 j=1
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Note that in view of (8.26)
M;cM?cM;c[—4q|lnz|% 45|lnz[*] (8.29)

for j=1,...,1. Since b*>0, the distributions U, and H, are absolutely con-
tinuous, so we deduce by (8.3) that

UM} <HMS),  j=1,..,L (8.30)

We shall compare H,{M}} with W{M;}. Let Mj*=(a;,b). Then M;
=(M}?)*>=(a;—e&,, b;+¢,). Fix j and consider separately four possible cases:

a) (a;,b)n[~20,20]=2 and O¢(a;—&,, b;+¢,),

b) Oe(a;, b)) and [ —20,20] =(a;—¢,, b;+&,),

¢) at least one of the intervals (a;—e,, a)) or (b;, b;+¢,) is contained in the
segment [ —20,20],

b.-+¢,) contains at least one of the

d) one of the intervals (a;~¢,, a)) or (b;, b,

intervals (0, 2¢) or (—20, 0).
In the case a) let us suppose for example that 0<a;—¢,, a;>20. Then by
(8.20), (8.29) and since &,>¢,; we have

bj—g1
H {M?}= | o(x,+e)dx,
aj—&1
bj+z1
< | wix)e s dx, <es W {MS}. (8.31)

If b;+¢,<0, b,<—20, then the inequality (8.31) may be obtained in exactly

the same way by using (8.22).
Consider the case b). According to Bernstein’s inequality

42
W{(z, c0)} =W {(— o0, —2)} Zexp (_W) =T. (8.32)

Thus if b;+e,>z then W {(b;+¢,, c0)} =7. Provided that b;+¢, <z, since b;>0,
b;,+&,>20, &,>¢, and by (8.21), (8.32) we get that
W{b,+e,, o)} St+ [ wxddx,=t+ [ wlx+e)dx,
b+t bij+er—ey
<1+ [ v(xpe=dx, L+ H {(b;, c0)}e>*".
b.

J

Hence
W {(b;+é,, 0)} ST+ e H,{(b, 0)}. (8.33)

Similarly, with the help of (8.22) one proves that
W{(—o0,a;—&)} =t +e" H {(—o0,ay)} (8.34)
It follows from (8.33), (8.34) that 1 —W {M}} 2t +e"(1 —H,{M}*}) so that
H M} S(2+c3)7T+ W {M2. (8.35)
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To consider the case ¢) we introduce the following notations:

N;=M?n[-20,20],
K;=(M\N)n([—20—¢;, —20]U[20,20+¢,]),
T,= MP\(N,UK),
Choosing c,, large enough we obtain the inequality
exp(Scy kiclint[*fe™ ) <1+10c¢,, k¥t|lnfo L (8.36)
It follows from (8.24), (8.36) that if ¢, is sufficiently small then
Hk{Nj}=I§ v(x,)dx,

< § wixexp{cset+5cy,k¥t(lnt|Po}dx,
N

SW{N}es + 10C37k%‘5 [In|2o~tecser

<eSTW N} +—k 3 )_ (8.37)

Further by the condition c), by the definition of K ; and by (8.23), (8.29) we get

xl% €1
HA{K;} < j(2 o p(l*m)dxk§(27)—%;. (8.38)

If the set T; is non-empty then it is entirely lying either on the positive semi-
axis or on the negative one. Let T,c{x,: x,=20+¢,}. Then T,—¢ cT,UK;
and by (8.20), {8.29) we obtain

HAT}= | o(x,+e)dx,<e™ | w(x)dx,

T;—ey Tj—¢

<eW{T,UK,). (8.39)

When Tc{xk X, S —20—¢,}, (8.39) is established in a similar way. It is also

clear that in the case ¢)

~2 2¢

AM2Y > =1 8.40
WAMAM; }_(27'5) o (2n)to’ (8.40)

Now from (8.37)-(8.40) it follows that

H,{M?}=H,(N,UK,u T}=H (N} +H K} +HAT}

eSS W N} + +es WK, UT}

(2 )
SeSTWIMB+ W{MNMP} e W {M}. (8.41)
Finally, let us consider the case d). In this case we have

2
WA{MAME}2(2n) " [ e=2dx>0.475,
0

W {M:A[—20,20]} <0.5
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and, by (8.25),

2
H,{(—20,20)}282n) " | e *2dx>18.0.95=09.

-2
Therefore, using (8.24) one obtains

H {M*} <H {R'\[ 20,201} + H{M? n[~20,20]}
<O1+12W (M A[ 20,201} 0.2+ W { M2}
<W{MA\MS}+ W (M} =W {M2}. (8.42)

Thus, according to (8.31), (8.41), (8.42) in the cases a), ¢} and d) it is proved
that
H {M7?} Se"W{M;}. (8.43)

In the case b) we have only the inequality (8.35). But only one of the intervals
M;* may contain zero. Therefore, choosing ¢,, to be small enough we obtain
from (8.27), (8.28), (8.30), (8.35), (8.43) that

Uk{X}é Uk{Y}= 2_-:1 Uk{Mj}§ Z Hk{M?}

j j=1

1
et Y WM +cr=eS W (Y} +ct

i=1

= WX+ et SW{X®} +cyyt

9. Proof of Theorem 1.1

In following Lemmas9.1-9.3 we suppose the assumptions and the notations
introduced in Sects. 5-8 to be valid. Set now F=FG, &=&G, F’=$(S’), i
=Z(R),

P={xeR¥: |D " %x|<2|In7|?}.

Lemma9.1. For t<c¢,,/k, b*>Zc,,k*t*[Int|, 6> =4kb? e=c, 3 kit|Int| and for
any closed set X < P the inequality

FIX} <P (X +c, k1
is valid.

Proof. Tt will be carried out by the induction on k (see [19]). For k=1 the
statement of the lemma coincides with the assertion of Lemma 8.2 since in this
case U =F, W=&, P=[—z,z]. Let us suppose the assertion of Lemma 9.1 to
be valid in (k—1)-dimensional case and let us prove it for k-dimensional
situation where k=2.

Let X be an arbitrary closed set contained in the parallelepiped P. Let Y be
the set {xeR*: IyeX: x' =y, |x,—yl<e}, X, ={xeR': x=(x,x)eX} be a
one-dimensional section of X given by fixing the first k—1 coordinates, Y,
={x'eR¥"': x=(x/, x,)eY} be the (k—1)-dimensional section of Y given by
fixing the last coordinate.
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Using diagonal character of a covariance matrix D and taking (8.1) into
account it is not difficult to check that the distribution F'=%(§') satisfies the
same conditions which in k-dimensional situation are satisfied for the distribu-
tion F=%(S). Therefore, by the induction hypothesis, for every set
X' c{xeR* ! |(D) *x'|<2(lnz|?} the inequality F{X'}<d {(X)®}+
¢44(k—1)7 holds. In particular,

FAY}SE{YD} +cuk—D1

for any x,eR' On the other hand, if |D™*x[<2|lnz|* we have
(D)~ *x'|£2lnt|%, |x,|<z=20c|lnt|%, hence by Lemma82 the inequality
U v {IX} EW{XL} 4,47 is valid. Note that

Jxyexn=Y, J¥Yeix)=Xx"

(here the sign ® is used to denote a direct product of sets). Finally, g(x)
=w(x,)q (x) where ¢'(x’) is the density of the distribution £ (R")=&".

Taking above mentioned into account and using Fubinf’s theorem we
obtain

FiX)= | U (X0 x)dx

S | WH{XLIp' (x)dx +cuqt
Rk—l

= [ F{Y,)wix)dx+cy

[ee]

< | @'{Yéi)} wlxdx, +cy kT

= [ g(x)dx+c,kt=0{X®} +c, k.

X&)
This completes the proof.

Lemma 9.2. There exist ¢, C4q, Cy4y Such that for t<cy,/k, b*2c sk>1*|Int|,
62 24kb? e=c ,k*t|Int| for any closed set X R the inequality

F{X}<P{XN +c, okt 9.1)
holds and, consequently,
n(F, ®)<c, k*t|lnt|. 9.2)

Proof. Choose c,5 so that b*=c,,k*t?|lnt| and ¢>27 |Int|®. Hence Lem-
ma 9.1 conditions are satisfied and, in view of (8.1),

20;[Int*<0o}/t (9.3)
forj=1,.. .,k
Let X =R* be an arbitrary closed set. By Lemma 9.1,

F{XNP}<{X®} +c, k. (9.4)
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Set y,=20,(In t[f for j=1,...,k. By using (9.3) and Bernstein’s inequality we
obtain .
F{X\P}<F{R"\P}< Y P{IS;|>y}
j=1

Jj=
k
<2 ) exp(—yi/4o})=2kr. 9.5)
j=1
Now (9.4), (9.5) imply (9.1) with ¢ o =c,, +2.
Obviously, X® < X***, Therefore, it follows from (9.1) that F{X} < &{X*%}
+c¢y6kt. In view of (1.2) this means that

n(F, &) <max {ek?, c s kt} <c,,k*t|Int/.

Proof of Theorem 1.1. It is clear that throughout the proof of (1.4) we can
assume t<c,,/k, t<e~!. Since the Lévy-Prohorov distance is invariant with
respect to unitary transformations of R¥ we can suppose, without loss of
generality, that the covariance matrix of F is diagonal and its eigenvalues are
ordered so that they are non-increasing. We use at once two smoothing
distributions: G, and G with the covariance matrices d*I and b*[ respectively
where b?=c, k*t?|Inz|, d>=4kb% Then, by the weak regularity of the Lévy-
Prohorov distance, we obtain

n(F, )= n(F,FG,)+n(FG,, FG,G)
+(FGyG, PG G)+ (PG G, PGy)+ (PG, D)
=n(FG,G, ®G,G)+2xn(G,, E)+27(G, E). 9.6)
It can be easily seen that the probability measure FG, satisfies all con-
ditions which were imposed on F in Sects.5-9 (see beginning of Sect.5).
Moreover, the smallest cigenvalue of its covariance operator is at least 4kb>.
Therefore, for F=(FG,)G, ¢=(®G,)G all conditions of Lemma9.2 are satis-

fied. Hence
((FGo)G,(PGy)G)Zc,,k*t|Intl. 9.7

Further, putting 6> =4kd?|lnt|=16k’c,57*|Int|?, we obtain that
Go{R"\{x: |x|<o}} sk | (2m)~*d~"exp(—y?/2d°)dy
§,2llcy,e;:(:52/4kd2)=2kr
and, consequently,
7(Gy, E)Smax {3, G, {R*\ {x: ||x|| £6}}} <ck*z|ln7]. 9.8)
Similarly it can be proved that
(G, E)<ck*t|lnt|. 9.9)

The derivation of (1.5) from (1.4) essentially repeats the arguments used in [20,
21] to prove a one-dimensional version of (1.5). We shall show that for every
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XeB, and for all 1>0

. A
F{X} 2 0{X"} +c, k% exp (—c k%)’
3} (9.10)
< g & ——=_).
O{X}SF (X"} +c,k exp( 03,;1)
Consider the random vectors 6¢&,,...,0&, where 6>0. It is clear that

L(0E)eB(67) for i=1,...,n since F(£)edB, (7). Denote by &; a zero mean
Gaussian distribution whose covariance operator coincides with that of Z(5S5).
It follows from (1.4) that n(ZL(6S), ®;)<c, k*dt(lndt|+1). Setiing e=e(k, 1, §)
=2¢,k#7(|ln 67|+ 1), we obtain that for any Xe%B,

F{oT ' X} =ZS){X}SD,{X}+e=D {6 X)) +e.
When X runs over all Borel sets, the same occurs with 6~ X. Therefore,
F{X}<®{X?*} +¢ 9.11)

for any Xe®B,. The function Bk,,(é):2c1k%(lln ot|+1) is continuous and de-
creasing when 0<d6=<t~" Since B, .(t')=2c, k%, for y=2c,k* we can define
the inverse function B (y)=t"" exp(1 —y/2c,k*). Proving (1.5) we can assume
Jrz2e,k5 Put 5=f; i(3/7). Then

A=t (&) =2¢,kF1(Ind7|+1)=6""e(k, 1, 5), (9.12)

hence
ek, T, 5)=/15:/1ﬁ,;1(/1/1)
=11 exp (1 -

T

<c gk exp <— (9.13)

) )
2¢,k%t dc ki)

Now (9.11)-(9.13) imply the first of the inequalities (9.10). The second one is
proved in a similar way.
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