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Summary. We extend Furstenberg's theorem to the case of an i.i.d, random 
composition of incompressible diffeomorphisms of a compact manifold M. 
The original theorem applies to linear maps {X~}i~ N on IR m with de- 
terminant 1, and says that the highest Lyapunov exponent 

/3=--lim I ilx, ~ . . . .  XIH 
n ~ o o  ~/ 

is strictly positive unless there is a probability measure on the projective (m 
-1)-space which is a.s. invariant under the action of Xi. Our extension 
refers to a probability measure on the projective bundle over M. 

We show that when our diffeomorphism is the flow of a stochastic 
differential equation, the criterion for /?>0 is ensured by a Lie algebra 
condition on the induced system on the principal bundle over M. 

1. Aims 

In [6], Sect. 8, Furstenberg studies the product X ' = X n o  . . . .  X1, where {Xi}~ N 
is a random i.d.d, sequence of elements of SL(IR"). He shows (proof of Theo- 
rem 8.6) that the highest Lyapunov exponent e for this system is strictly 
positive unless there is a probability measure on the projective (m-1)-space 
pro-l, which is preserved a.s. by the induced action of the system. (The 
definition and existence of the Lyapunov spectrum is given by the Oseledec 
(multiplicative ergodic) theorem, see [-11, 13]. In fact Furstenberg's paper [6] 
predates the Oseledec theorem, and he takes c~ to be the a.s. value of 

lim -1 log IIXnllop (operator norm). It is easy to see that the largest Lyapunov 
n ~ o o  n 

exponent is given by this expression.) 
Our aim in this paper is to extend Furstenberg's result to the case of a 

stochastic volume preserving diffeomorphism of a C 1 compact Riemannian 
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manifold M. More precisely, we take a random diffeomorphism 4 of M which 
preserves the (normalised) Riemannian volume p a.s. (i.e. 4p=p for a.e. 4) and 
we work with the product 4"=4,o4,_1 . . . . .  4t, where {41}i~n is a random i.i.d. 
sequence of diffeomorphisms of M, each distributed like 4. We require that 
be C t smooth a.s.: let us denote by (Ct(M,M), ~ ,  P) the probability space 
which gives the distribution of 4. We also require that the compact open sets 
for the derivative (i.e., the sets {~eCl(M,M): T4(K)EU}, where K is compact 
and U is open in the tangent bundle TM over M) be P-measurable. This 
ensures that we can define the Markov process on M with transition probabili- 
ties p(x, B ) =P {4 :  4(x)eB} (xeM, B Borel in M), and a corresponding Markov 
process on TM. From the fact that ~p=p a.s. it is easy to deduce that p is 
stationary for this associated Markov process on M, i.e. p(B)=[.p(x, B)dp(x) (B 
Borel in M). We must assume that p is actually ergodic for the Markov 
process. Finally, we impose the regularity condition 

S EEl~ + II Tx4 -+' PloP] dp(x)  < ~ .  

(Here by  T ~  we mean the derivative T( :  TM ~ TM, restricted to the tangent 
space TxM. Thus, T~4 is a linear map Txm ~ T~(x)m.) 

In [2], Theorem 2.1 we give the definition and existence of the Lyapunov 
spectrum for 4" when p is a general stationary probability on M for the 
associated Markov process. (We actually discuss the case when 4" arises as the 
flow of a stochastic dynamical system in the sense of [5, 4], but the proof of 
Theorem 2.1 works for the system described here.) 

The condition 4p=p a.s. is equivalent to the linear map T~4: T ~ M ~  T~(~)M 
having determinant __+ 1 for a.s., and this corresponds to Furstenberg's con- 
dition XeSL(R"*). 

Our main result is the following: 

Theorem 1. In the situation above, denote by fl the largest Lyapunov exponent. 
Then f l>0  inless there is a probability measure v on the projective bundle 

PM such that n(v)=p (n: PM ~ M -  bundle projection) and T~v=v a.s., where 
the induced action of T~ on PM is denoted again by T#. 

We prove this theorem in Sect. 2. 
In Sect. 3 below we discuss the case when 4, arises as the flow of a 

stochastic dynamical system in the sense of [-5, 4]. In this case we give a Lie 
algebra condition related to the induced system on the (special) principal 
bundle, which ensures the criterion for fl > 0 of Theorem 1. 

2. Proof of the Main Result 

We base this on the following: 

Proposition 2. Let {Y,: n>0}  be a Markov chain on the measurable space (X, Y() 
with transition probabilities Q(x, dy), and admitting a stationary ergodic probabil- 
ity m on X. Take a measurable map A: X ~ S  L(N m) satisfying Slog IIAN dm < co, 
and put/~= lim 1/n log IIA(Y,_ 0 ... A(Yo)lr. 

n ---~ o o  
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Suppose f l=0 .  Then there exists an X-measurable family of measures {~z~}~ 
on pro-1 such that for m -  a.e. x, and given x for Q(x, - )  a.e. y, we have 

rc~ = A (x) z~. 

Proof This is a s t ra ighforward adap ta t ion  of T h e o r e m  2.4 of Royer  [12], the 
difference being tha t  Royer  deals with a M a r k o v  process on S L ( R  m) itself 
ra ther  than  on X. (n.b.: Virtser [14] has similar results to Royer  [12].) [ ]  

Proof of Theorem t. For  this we apply  Propos i t ion  2 to the s i tuat ion of Sect. 1, 
taking X =  CI(M,M) x M and m = P |  To define A identify the tangent  
spaces {T~M}~ with IR r" in a Borel measurab le  way, and  take  A(4, x) to cor- 
respond to the m a p  T~4: T~M--*T~x)M. 

N o w  suppose  f i=0 .  Then  we have a measurab le  collection {n(~,~)}(~,~) of 
measures  on p , , -1  such that  for P |  - a.e. (4, x), and given (~,x) for P - a.e: 
0, we have 

~(,, ~x~ = T~ ~. ~ ,  ~.  ( , )  

For  such (~, x) we see f rom (.) that  rc(,,r is P - a.s. independent  of 0, and 
hence for p - a.e. y, n(n,y) is P - a.s. independent  of 0. (n.b. the m a p  (~, x ) ~  ~(x) 
yields P |  because p is stat ionary.)  F o r  x such that  n(r ) is P - a.s. 
independent  of  4, denote  its a.s. value by v x, i.e. v~---~ n(~,.,)dP(~). Then  (,) tells 
us that  for such x and P - a.e. 4, that  ~r(,,~(~)) is also a.s. independent  of 0, and 
that  

v~.~) = T ~. v~. 

T h e o r e m  1 follows f rom this, taking v=p| , i.e. taking v to have v~ as its 
marginals  on P~M. [ ]  

The  au thor  is grateful to an a n o n y m o u s  referee for point ing out that  
T h e o r e m  1 follows f rom the work  of [12]. An al ternat ive approach ,  based 
more  directly on [6] is possible. The  idea is to take pairs x, y in M and to 
apply the techniques of [6] to the l inear maps  T ~ :  T~M~TyM, using the 
probabi l i ty  dis t r ibut ion of T ~  condi t ioned on the event ~ (x )=y ,  so that  it is 
suppor ted  on the space of l inear maps  f rom T~M to TyM. Other  approaches  
can be found in [1] and [9]. 

3. Flows of Stochastic Dynamical Systems 

The flow 4t(co) of a smoo th  stochast ic  dynamica l  system (SDS) (X,z)  on a 
smoo th  compac t  R iemann ian  manifold  M of d imension  m, is studied in [5, 4], 
and as we have  said, the L y a p u n o v  exponents  for this flow are studied in [2, 
3]. We  take 

X(x)oclzt=A(x)ch + ~ Yi(x)oclN, 
i=l  
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where each B I is a Brownian motion on N, and A, y1 , . . . ,  y2 are smooth 
vector fields on M. The flow ~(co) is a diffeomorphism of M for all t a.s., such 
that for any x~M,  ~,(co)x is the solution to (X, z) starting from x, i.e. such that 

d(~t(co)x ) = A(~t(co)x)dt + ~ Yi(~t(co)x)~ 
i = 1  

(n.b.: In this section the variable co is an element of the underlying probability 
space for the SDS, i.e. the Brownian motions.) Intuitively one can think of the 
flow as that of the vector field A + {Random choice from vector space spanned 
by y1 , . . . ,  y,}, where the choice is governed by the Brownian motion 
(B~, . . . ,  B~). 

We will assume that it(co) a.s. preserves the (normalised) Riemannian vol- 
ume p on M: this is equivalent to divAm0, d ivy im0 ,  and to the condition 
that T~#t(co): T~M-* T~(o,)xM has determinant + 1 for all t, x a.s. 

From (X,z )  we will induce an SDS (SLX,  z) on the special principal 
bundle S L M  over M. For  x s M  the fibre SL~M of this bundle consists of the 
linear maps _u: ] R " ~  T~M with determinant ___ 1. If we choose an orthonormal 
(ordered) basis el, . . . ,e  m in N'~ then we can identify each u_~SLM with the 
(ordered) basis ~(el) ,  ...,_u(em) ) in TxM. We define S L X  over a chart U for M 
by 

S L X :  U x SL(ff~ m) --* U x S L ( R  m) x A m x GL(N. m) 

(x, u) --. (x, u_, X (x), D X (x)ou). 

Using [4], Remark 4.2(b) we see from this definition that the flow SL~,(co) of 
(SLX,  z) is given by 

[SL ~t(co)u] e = T~t(co)~_(e)). 

Thus for u_eSLxM, SL~t(co)u_ incorporates the derivative Tx~e(co ) in the sense 
that 

[SL~t(co)_u]_u - I  = Tx ~t(co): T,,M ~ TC~(o~3M. 

In Theorem 3.2 we use the following conditions: 

E: Span {y1 . . . . .  yn, multiple Lie brackets involving 

y1 . . . . .  yn} (x)= TxM for all x e M ,  

H: Span {SLY 1 . . . . .  S L Y  ~, multiple Lie brackets involving 

SLA,  S L Y  ~, ..., S L Y  ~} (9.) = T_,SLM for some _ueSLM. 

The advantage of these conditions is that they can be verified for (X,z) 
without calculating the flow. Condition E ensures that the measure p on M is 
ergodic for the Markov process associated with ~t(co), and that the transition 
probabilities have smooth nonvanishing densities. See [83, Proposition 6.1 and 
Theorem 3, also [10]. We use condition H to ensure that the transition proba- 
bilities associated with SL~t(co)u have smooth densities. 
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No te  that  our  condi t ion H is just condi t ion H 1 of  [10] applied to (SLX,  z), 
and our  condi t ion E implies condi t ion E of  [8]. No te  also that  our  condi t ion 
H can indeed occur :  we can find a vector field Z on IR m to give any DZ(x) we 
choose, therefore we can find {Z 1 . . . . .  Z p} such that  DZ~(x) , . . . ,DZP(x)  
span S L (lRm). 

L e m m a  3.1. Assume m >= 2. Suppose that vl, v z are probability measures on pm-~, 
and # is a probability measure on SL(IRm). Suppose Tv l = v  2 for # - a.e. T~ 
SL(IRm). where the action of T on P'~-1 is denoted again by T. 

Then # cannot have C o density. 

Proof The set {T: Tv~=v2} is closed in SL(IRm), therefore if Tv~=v 2 # - a.s., 
then {T: T v l = v z } ~ S u p p ( #  ). Suppose # has a C o density. Then Supp(#)  has 
an interior. Take S in this interior, and a ne ighbourhood  U of  S with 
U c S u p p ( # ) .  Then  S - I u  is an open ne ighbourhood  of the identity in SL(IR m) 
and for all R ~ S  -1 U, Rv 1 = v  1. 

But for any o r thonorma l  basis {fl ,  .-., fro} of IR m we can find a linear map 
in S - 1 U  whose limit points in p , , -1  are exactly the directions fz, ..., fro. 
Therefore v 1 must  be suppor ted  on {P(fl) . . . . .  P(f,n)} for any such basis, which 
is impossible. (Here by p: (N") \{0}  ~ P m - 1  we mean the natural  
projection.) [ ]  

Theorem 3.2. Assume dim M_>2. Suppose the SDS(X,  z) described in this section 
satisfies condition E, and the induced SDS(SLX ,  z) on S L M  satisfies condition 
H. 

Then the highest Lyapunov exponent fl of SDS(X,  z) is strictly positive. 

Proof. Condi t ion  E ensures that  p is ergodic, and condi t ion H ensures that  for 
v in some ne ighbourhood  U of _u of the s tatement  of  that  condition, the 
corresponding condi t ion occurs at _v, and hence the transit ion probabi l i ty  
SLpt(p_, - )  (any t > 0 )  associated with (SLX,  z) has C o density. Also, condi t ion 
E ensures that  the transit ion probabil i ty for p t ( x , - )  on M (where v ~ S L x M  ) 
has nonvanishing C o density, and that for all y, the probabi l i ty  SLpYt~, - )  on 
SLyM, i.e. SLpt(_v , - )  condi t ioned on the event ~t(e3)x=y, also has C o density. 
No te  that  SLpr~(v, - )  is defined for pt(x, - )  - a.e. y and hence for p - a.e. y, 
since the density of Pt(X, --) does not  vanish. 

Now, 

SL ~(o))v = wESLyM~--~ Tx~(o3 ) = wou-  1 ~SL(T~M, TyM), 

so we conclude that  via T~,(co), the condi t ioning induces a probabil i ty on 
SL(TxM, TyM) with C o density. 

Take any probabi l i ty  v on P M  with ~z(v)=p and disintegrate v as p | {vx}~. 
Then applying Lemma3 .1 ,  we conclude that for a non  p-null set of x's and 
given such x, for p t ( x , - )  - a.e. y, we cannot  have T~t(co)v =vy a.s. with 
respect to the condi t ioned measure, and it follows that  we cannot  have th(co ) v 
= v  for P - a.e. e). N o w  apply Theorem 1. []  

Note. If d im M = l  then M must  be essentially the circle and so if the flow 
preserves volume, it must  be a r andom rotation, with f i=  0. 
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