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Summary.  The large deviation principle of  Donsker and va r adhan  type is 
proved under certain hypotheses on the base stationary process. Some examples 
of processes satisfying those hypotheses are also given. 

O. Introduction 

In this paper  we study large deviations arising from ergodic phenomena for 
stationary processes. In particular we introduce a new notion of stationary process 
which implies the large deviation principle, and present some examples including 
non-Markovian processes. 

Let X be a Polish space and f2 be a space of X-valued trajectories w(-) on 
( - 0 %  oo) with discontinuities of  the first kind, normalized to be right continuous. 
Then f2 is a Polsih space endowed with the Skorokhod topology on bounded 
intervals. We denote by ~-( I )  the a-field in f2 generated by w(s) for s e I for every 
closed set in IR. (We abbreviate ~ ( / )  to ~-~ when I =  [ - l ,  l].) 

We denote by ~o(f2)  the space of stationary measure on O. We write I 1 < I2 if 
bl < a2 for any closed intervals I 1 = [al ,'bl] and I2 = [a2, b2]. 

For w e f2, and each t > 0, we define w t by 

wt(s)=w(s), - t < s < t ,  w~(s+2t)=wt(s) fora l l  s ~ ( - o % ~ ) ,  

We denote by 0 s the translation map on O, i.e. (O~w)(t)=w(s+t). We define 

Rt, w ~ ( ~  ) by 

1 
(0.1) Rt,~=2t ~ 6oswjs. 

For  each t > 0, w ~ Rt, ~ is ~- ([ - t, t ])-measurable mapping. For e ach P s d/t~ (f2) we 
define the probabili ty measure F~=Ft(P) on Jdo(O) by 

(0.2) c,(m = P{w ~ ~, Rt,~ e B}. 
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If P is ergodic, then, by the ergodic theorem, 

(0.3) F ~ p  as t ~ o o ,  

where 3~, is the Dirac measure on /go  (O) concentrated at P. We are interested in the 
rate of the convergence of Ft(A ) as t -  oo. 

We say that P ~ ~/go (~2) is hypermixing if it satisfies the following two conditions; 

(H.1) There is a decreasing function O(t) > 1 defined on (c, oo) for some c > 0 such 
that 

(0.4) lim t. (O(t) - 1) = 0 ,  
t - -~  CO 

and 

(0.5) ]lfx .-.f,,llx --< IIf~ I1~,,... Ilfollo,,,. 
for any bounded @ (Ii)-measurable functions f~, i = 1,2 . . . . . .  n where I 1 . . . .  , I ,  are 
any finite intervals with 11 <I2 < ... < I ,  and dist(I i , I i+l)>t  for every I = 1 , 2  . . . . .  
n - 1 .  Here, []'Hp is the LP-norm with respect to the measure P. 

(H.2) There are decreasing functions 7(0 and c(t) defined on (c, oo) for some e > 0 
such that 

(0.6) lira t - ( y ( t ) - l ) = 0 ,  lim c ( t )=0  
t - -+  c~  t - + c O  

had 

(0.7) NEs2Ehf[[~'t)' <c( t )  Nf[[~(0. 

for any two intervals 11, I2 with dist(I1, I2) > t and any bounded measurable 
function f with E p [ f ]  = 0. Here, E,  is the conditional expectation with respect to P 
given ~-(I), and 7(t)' is the H61der conjugate of 7(t), i.e. l /7 ( t )+  1/7(t) '= 1. 

Our main theorem is the following: 

Theorem 1. Let P ~ J/go(g2 ) and suppose that P is hypermixing. Then 

(1) For any Q~./g~((2), 

1 
H(Q)  = lira f f  H(t, Q) exists. 

,-+oo 

Here H(t, Q) is defined by 

dP It< r ll~l 

H(t, Q )=  ] i f  Q is absolutely continuous w.r.t. P on 
I F  t and the integrand is integrable. 
t, 0% otherwise. 

d~Q stands for dQ Iv ~t- ~, tl) Here, 
dPIv(E_~,tl) " al-" Ft 
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(2) H:  Jr oo] is lower-semicontinuous 
{Q ;H(Q)<=M} is compact for every M>=O. 

and affine. Moreover 

Theorem 2. Let P ~ ~[~ ((2) and suppose that P is hypermixing. Then 

1 
(0.8) lim ~- logFt(F)< - inf H(Q),  

t~oo Q~F 

for all closed sets F in Jg~(Q), and 

(0.9) lim 1 , -~  ~ logFt(G)> - inf H(Q).  
QEG 

for all open sets G in JClo(~?). 

We will give some examples of stationary probability measures with the 
hypermixing property in Sects. 4 and 5. In particular, we show that a Gaussian 
process with some mixing property is hypermixing. 

Let us give some remarks. The large deviation principle of the type as in 
Theorem 2 was first showed for Markov processes with some strong mixing 
property by Donsker and Varadhan [3]. Since then, several authors have studied the 
large deviation principle of this type for non-Markov stationary processes (cf. 
Accardi and Olla [1 ]; Olla [8], Donsker and Varadhan [4]; Orey [9] and Takahashi 
[11]). On the other hand, Stroock [12] showed that a symmetric stationary Markov 
process whose associated semigroup is hypercontractive satisfies the large deviation 
principle (of a weaker form). In connection with Euclidean field theory, Guerra et 
al. [4] showed the Gibbs variational equality for Ornstein-Uhlenbeck fields. In their 
proof, they showed and used the hypermixing property (H.1) for Ornstein- 
Uhlenbeck fields. A refinement of their work [4] has been given in [6]. 

1. The Proof of Theorem 1 

(1.1) Lemma. Assume that P is hypermixing. I f  V is ~rmeasurable for some 
l> 0 and 

E ~ [e ~v] < o0 

for some e>0, then for any T>0  such that 2 (T+l)o(2T)<e,  

(1.2) 
1 t 

1 
< 

=2(T+I)Q(2T)  
log E P [exp (2 (T+ l)0 (2 T) V)] 

for any large t. 
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[ ' ]  Proof Let n =  ~ , t '=t-n(T+l) and ti= -t'+(2i-1)(T+l), i=0 ,  1,2 .... ,n, 

n + 1. We define a function G (s), - (T+  l) < s < T +  l by 

C(s) = 

�9 n + l  

Y~ v(o,,+sw) 
i = 1  

• V(Ot,+sw) 
i = 1  

• V(O,,+sw) 
i = 0  

-(T+I)<s< -(T+l)+t'  

- (T+l)+t '<s<(T+l)- t '  

(T+I)-t '  <=s < T+I. 

Then, by (0.5), Jensen's inequality and the stationarity of P, 

LHS of (1 .2 )=2 t  \-(T+l) 

1 1 T+l 
< - - ' - -  S dsl~ 
= 2 t  2 ( T + / ) - ( r + t )  

' ' - -  [ (  )1 =2~ 2(T+/)(t"l~ exp 2(r+/) ~=~Y" V(O~,w) 

+2(T+l-t')'l~ i~=l V(Ot~w))l 

+t"l~ i~=o V(Ot'w))l ) 

I 1 / ,+1 
< - - ' - -  ~t' "log r I  Ee[exp(2(T+l)o(2T) V(Ot, w)] 1/~(2r) 
= 2 t  2 ( T + / )  i = 1  

n 

+ 2 (T+  I -  t') .log r I  EP [exp (2 (T+  l) 0 (2 T) V(Ot, w))] a/Q(2 r) 
i = 1  

, ) + t' �9 log I~ E e [exp (2 (T+  l)Q (2 T) V(Ot, w))] ~/~(2 r) 
i = 0  

1 1 (2t'(n+l)+2(T+l-t')n) 
= 2 t "  2(V+ l) O ( ~  J 

�9 log E P [exp (2 (T+  I) 0 (2 T) V)]. 

= R H S  of (1.2). 

Thus (1.2) is proved. Q.E.D. 

Let us define a class of the functions on • by 

7 j = {fe Cb(O ) ; f is g rmeasurable  for some l< c~}. 
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(1.3) Lemma. If  P is h ypermixing , then for any V e 7 ~, 

2(V) = lim ~-~ log E P exp V(Owt)ds ) 
t --+~ - - t  

(1.4) 

exists. 
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+ [T+n(t o + l)]M/t 

[ (  i 1 Ep \]a/a2to) 
< ~  log 1-I exp 0(2to) V(Osw)ds 

j = l  - T  

+ [T+2n(t o +l)]M/t 

< 2 ~ l o g E e [ e x p  ( f r  V(Osw)ds)]+M(o(2to)-l)+[T+2n(to+l)] "M/t 

1 
< ~  a(T) + ~. 

This inequality suggests that for any e > 0, 

lira a (t)/2 t = a (T)/2 T +  
t ~ Q o  

for any large T, and thus letting ~ 0 ,  we get 

lira a(t)/2t<_tim a(t)/2t. 
t--* OO I--+00 

Since Ve 7 j, is is easy to show that if 

[(! )1 lim logE v exp V(Osw)ds 
t ~ ~  I 

Proof. Suppose that Ve ~ be ~'rmeasurable and [VI < M. Let 

a(t)=l~ t V(Osw))l. 

Take an arbitrary e > 0 and fix it. Take t o > 0 so that ~ (2 to) - 1 < e/3 M. For this to, 
we take T so that (t o + l)/T< e/3M. Then we claim that if t > 3 TM/e, 

(1.5) a (t)/2 t =< a (T)/2 T +  e. 

We prove the claim. Let t=nT+t" where neT/, 0 < t " < T  and let t j = - t + t "  
+ (2j - 1) T,j = 1,2 ..... n. Then by (0.5) and the stationarity of P and the hypotheses 
on t o , T a n d  t, 

a(t)/2t< 1~ logE e exp V(Otj+sw)ds +t"M/t 
= 2 t  

J EP[j__[I 1 e x p (  r-i~ V(O~(Otjw))ds)l+[T+n(to+l)]M/t __<~ log -r+to+l 

-<_~ log 1-[ E v exp 0(26)  ~ V(O~(Otsw))ds 
j = l  - - T + t o + l  
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lim ~ logE e exp V(Osw,)ds 
t '-~ O0 t 

exists and the two coincides. Thus the lemma is proved. Q.E.D. 

Now we define the functions H and H(t, .) on ~r162163 by 

(1.6) H(Q) =sup  {~ VdQ- 2(V), V~ 7J), 

(1.7) H(t, Q) = sup {~ VdQ - l o g  E v [exp (V)], V~ ~ ,  

V is ~rmeasurable} 

Then by the fundamental fact (cf. Donsker and Varadhan [2], Theorem 2.1) 

E ~ vt log ~ ~ 

(1 �9 8~ H(t, Q~ = ] i f  Q is absolutely continuous w.r.t. P on 
| ~ t  and the integrand is integrable. 

oo, otherwise. 

where d Q stands for dQl~tr-~m). 
dP dP]o~ (t- t,t]) 

We are now ready to state the main theorem of this section. 

(1.9) L e m m a .  For every 

Q ~ o ( O ) ,  
exists, and 

(1.10) 

for every QeJr 

i 
lim ~ H(t, Q) 

1 
H(Q) = lim ~ H(t, Q), 

i 
Proof. First, we prove H(Q)<li_~m 2 t  H(t, Q). For every VE ~, we define W by 

t 

W(w)= S V(Oswt)ds" Then We ~ and W is ~-t-measurable. By stationarity, 
- - t  

VdQ=~t ~ WdQ for any t>l if Vis ~,~z-measurable. Thus 

lo  'Iex (  ' VdQ - ~  

_ 1 (~ WdQ-logEV[eW]) 
2t 

<L 
= 2 t  H(t,Q). 

Letting t tend to infinity, we obtain the inequality. 
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To prove lira 1 t-,~ 2 t  H(t, Q)<H(Q),  we use Lemma (1.1). By the definition of H 

and (1.2), 

i 1 
20(2t)( t+i  ) ~ V d Q - H ( Q )  < logE~'[e v] =2e(2t)(t+l) 

which is for VEt/,, ~rmeasurable  and for any large t > c. And so 

1 1 
H(Q) > ~ (2 t) (t + l) "21 sup {~ VdQ - log E e [eV], 

if V is ~,~rmeasurable}. 

Letting l to infinity first, and then letting t to infinity we get the left 
inequality. Q.E.D. 

(1.11) Lemma. H is lower semi-continuous and affine. Moreover, 
{QeJ/go(O);H(Q)<c} is compact in dg~(O) for every c>O. 

Proof. Since H is the supremum of continuous linear functions, H is lower semi- 
continous and also convex. By convexity, ifQ is expressed as Q = ~ Rm(dR) where m 
is a probability measure on//r then 

(1.12) H(~ Rm(dR )) < ~ H(R )m(dR ) . 

To prove the converse inequality, note that 

log (2a + (1 - ,~) b) > log (2a) + log ((1 - 2) b) > log a + log b + log 2 (1 - 2) 

for a, b > 0 and 0 < 2 < i. Thus if we set 

a = ~ Q p t a n d b = ~ t ,  

and if we let t tend to infinity, by (1.10) we get 

H(2Q + (1 - 2 ) R )  >)oH(Q) + (1 - 2 ) H ( R ) ,  

and so by induction, 

(1.13) H aiQ i aiH(Qi) 
i 

for any ai__>0 with ~ a i = l  and Qi~Jr i=1,2 . . . . .  n. 
i = 1  

For each n > 1, there is a compact set K. in ~'~ (O) and finite points R~ "), o (.) 
= " "  , ~ ' N ( n )  

in ~r such that 

m (J/[o (~2)/K,) < 1/2" 
and 

where U(r, R)= {Pc J/t~(~); d(P, R)< r}, d(, ) is a metric on Jd~(O) compatible 
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with the weak topology in ~/1o(~). Let 

and 

i=1 ,2  . . . . .  N,. 

Let R (") be the transformation on Jg~(s defined by 

N (n) 1 
�9 Rm(dR) R(")(R)=,=I ~ ZA?'(R) m(A} ")) A~")t 

1 
+ Z =,,, (R) '  5 Rm(dR) 

M=(a)\ U a?) m(M,\wA(~ ")) i =\ w A} ") 
i = 1  

where xA(R)=I  if R~A and =0  if Rr then it is easily shown that 

~R(')(R)m(dR) = Q 
and 

R(")(R)--+R, in weak sense, m - a . e . R .  

Thus, by Fatou's lemma, lower semi-continuity of H and (1.13), we get 

H(Q) >5 ~im H(R(")(R))m(dR) >~H(R)m(dR) 

and affinity is proved. 
Finally, by (1.6) and Lemma (1.1), for every Q e J/'~((2), 

1 
H(Q) > E Q [ V] log E P [exp (2 (T + I) 0 (2 T) V)], 

2 (T+ I)0(2 T) 

where V is any ~,~rmeasurable function in 7* and T is some positive number. 
Therefore, if H(Q) < L, then 

E~ +l- logEV[e=V], where c~=2(T+I)o(2T ). 
05 

Since P is Radon, we can take a compact set K(M) in Dx([-l,l]) such that 
P(K(M) c) < e-aM for each M > 0. If V is such that V= 0 on K(M) and [[ V I[ cb < M, 
then 

e 1 1 
E [ V ] < L + -  l o g 0  +e~M/e=M)<L+ - log2 

and m e a . s  is 
x - -  / 

a tight family of measures on Dx([-l,I]), but for stationary measures, 
tightness on ~ ( [ - l , / ] )  is equivalent to tightness on ~2, (in fact, if we let 

R ( M ) =  (~ O(2i_l)tK(M), then R(M) is compact in ~ and Q(R(M) c) 
i =  - - o O  
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<(L+I-log2]/M.) and so it is tight in J{~(O). Since His  lower semicontinuous, 
\ } 

{Q;H(Q)<s is compact in J/~(f2). Q.E.D. 

By Lemma (1.9) and Lemma (1.11), we get Theorem ]. 

2. The Proof  of  Theorem 2: Upper Estimate 

(2.1) 

(2.2) 

Lemma. Let F be a compact set in ~r Then 

1 
lim ~-  log F~(F) ____ - inf H(Q). 
t ~  Q ~ F  

Proof. Let l=  inf H(Q). Fix an arbitrary a>0. For each QeF, we can choose a 
Q e F  

Va~gJ so that ~VadQ-2(Vo)>l-e. Next, for each QeF, choose an open 
neighborhood B a of Q so that 

sup I~ VQdQ--~ VQdRI <a. 
R e B  0 

N 

Because Fis compact, we can choose QI, Qz ..... QN e Fso that F c  U Be,. Clearly, 
i = 1  

1 1 
lim ~ log Ft ( f )  __< lim ~- logsup Ft(Ba, ). 
t ~ O 0  t---~ O0 

But for Q e F, 

Ft(BQ)<=EV[exp( !t Va(Oswt)ds' R~'weBQ)]" R~nesup exp(-2t ,  VQdR) 

and thus 

As e is arbitrary, we obtain (2.2). 

< EV [exp ( !t Va(Oswt)ds) l "exp(- 2t(2( Va) + I -  2e)) , 

1 
lim ~ logFt(Ba)<l-2e. 
t ~ o O  

Q.E.D. 

(2.3) 

(2.4) 

Lemma. For each M> O, there exists a compact set C(M) in Jgo(f2 ) such that 

lim 1 logFt(C(M)C)< = -M.  
t ~ o o  

Proof Since P is Radon, we can take a positive o~l-measurable function Vsuch that 
{ V< L} is compact in D~ [ - 1, 1 ] and 

E e [exp (2 ~ (2 T) (T+ 1) V)] 1/{2~ T)(T + 1)} _ e 
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for some T. Then by the estimate (1.2), we have 

1__ logEP [exp (~ V(O=w)ds)] <_e 2t 
2t 

for large t. Given Me(0,  ~ )  set K(M)={wEY2, V(w)<=M2}. Then K(M) is 
compact in Dx( [ -1  , 1]), and 

r,{Q, Q(K(M)C)>M -'} 

_-<E[exp ( !  t V(Osw)ds)l/e2'M<=e-e"M-1). 

Hence if we let C(M)=~{Q'Q(K(M+I)C)<--M--~I} ' t h e n z = l  C(M) is tight in 

J/ix ( D [ - 1 ,  1]), and thus, by stationarity, tight in J{~(~). Let C(M) be the closure 
of C(M). Then C(M) is compact in JC/~(Q), and 

<-_ ~ e-a"M+l-1)=e-2Mt/(1 _e-2~,) 
/=1 

for large t. Thus the Lemma is proved. Q.E.D. 

(2.5) Proposition. For any closed set F in J/t~(Q), 

1 
(2.6) lim ~ logFt(F)<= - inf H(Q). 

t ~  Q~F 

Proof. Since F~ (Fc~ C(M)) w C(Mf  and Fc~ C(M) is compact for each M, by the 
preceeding two lemmas, 

lim ~-~ logFt(F)<max - inf H(Q), - M  . 
t--' ~ Q e F n  C(M)  

Since M is arbitrary, by letting M ~  o% we get (2.6). Q.E.D. 

3. The Proof of Theorem 2; Lower Estimate 

(3.1) Proposition. Assume P is hypermixin9. Let Q ~ ~/~(f2) be such that H(Q) < 
and N be any neighborhood of Q, then 

(3.2) lira 1 t ~  ~ l~ -H(Q) .  
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Thus i f  G is open in Jg~(f2), we have 

1 
(3.3) lim logFt(G)> - inf H ( Q ) .  t-~m ~ QeG 
Proof. 

Step 1. By virtue of  the affinity of H, it is sufficient to prove (3.2) for any Q such that 

Q= ~ atQ i, where a t>0 ,  ~ at= 1 and Qt, i=1,2  . . . . .  n are ergodic stationary 
i=1 i=l 

measures. Take a neighborhood N~ of Qt, i =  1,2 . . . . .  n, e > 0 and l>  0 such that 

if R i ~ N i for each i and R -  ~ aiR, < ~, where II1[, is the the variation norm 
t=l 

on (D[- l , l ] ,o~ l ) ,  then R e N .  
For  each t > 0  and 6 > 0 ,  let T = t + ( n - 1 ) 6 t ,  

I m-J. 1 t , , = - T +  ( m - 1 ) 6 + 2  ~ ai+a m t ,  and Im=[ t~ -a , , t ,  tm+amt]. 
i=1 

Then, Im' S are subintervals in [ - T, T] such that dist (Ira, Im+ 1) = 6t, m = 1 2, . . . ,  n -- i. 
Then 

i=~l aiRaa'~ l 

~ i  ~ alt(~os(Ot,W)aitdSl = 6O~w~ds - S 
-T  i=1 -air 

~t 

< 2 ( n - l ) 6 + 2 n l / t .  

Thus we can take 6 so that 

2 ( a l t - l ) +  2nl 2 T - ~  
i=l 

i=~ aiRaa'~ --RT'w l < g, 

for large t. We fix the 6 > 0  and re-define T = T ( t ) = { l + ( n - 1 ) 6 } t ,  for each t. 
Let A i = A i (t) = {w; R,,t, %w ~ Ni }, then by the preceeding argument, 

(3.4) {w;Rr, weN }D ~] A i. 
i=1 

Step 2. We take an increasing function (p(t) on (c, oo) for some positive c satisfying 

(3.5) lira q ) ( t ) ( r  lim q)(t) / t=oo,  and 
t~oO t~oO 

q ) ( t ) ( 7 ( t ) - l ) < M ,  for some M .  
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We introduce for simplicity, the notations 

dQi I 
E l ( t )  d P  ] o~- (1i) 

Gi(t ) = min (log F~(t), q~(ft)), i= 1.2,..., n, 

Z(t) = E P exp (G i(t , 
i 

and we define Qt e J/a (D [ - T, T]) by 

Qt(A)=Ee 1 I1 exp(Gi(t)),A �9 
i = 1  

Then by (3.4) and Jensen's inequality, 

= Z( t ) '  E Q' exp( -Gi ( t ) ) ,  A i 
i i = 1  

= Z(t)" E Qt exp ( - G i(t)l Ai �9 Q, Ai 
i i = I  i 

>Z(t)  ' e x p ( E Q ' I - -  __~ t G~I ~--t A~])'Qt(~C-) A~) 

= Z ( t ) ' e x p { E a ' [ -  =~ G~, i~=l A , I / Q t ( ~  ~ A , ) } ' Q t ( ~  A,) .  

In the next step, we shall show that 

lim Z( t )=l  and 
t--+ o~ 

Thus, using these facts, we get 

(3.6) 

t ~cO i 

lim logFt (N)> - a i. lim E ~t Gi, A i . 

Step 3. We claim that 

(3.7) 

and 

( 3 . 8 )  

lira Z(t) = 1, 
t ~ o o  

t ~ o o  i 

Proof of the claim. First we prove (3.7). Since 

1 - Z ( t )  = 1 - E  e Gi(t) 
i 

= E [( ~ - e GI ) + e G' (1 - e ~2) + . . .  + e GI eG2 . . ,  e G" - 1(1 - e G " ) l ,  
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it is sufficient to prove that  

(3.9) lira E P [exp (Gin(t))] = 1, 
t---~ oO 

and 
v m--1  

10) lira E e | I-I  exp (Gi (t)) .  (1 - exp (G,,(t)))] = 0. (3. 
t-+oo [_ i=1 

By definition of  F m and Gin, 

E [exp (G,,(t))] > E [Fm(t ), log Fro(t) < q~ (ft)]  

= QmOogFm(t ) < q~(fit)), 
and so 

Since 

0 __< 1 - E [ e x p  (G.,(t))] 

= < Qm(log F.,(t) > q)(ft)) 

_-< E Q~ [llogF~(t)ll/~o (&) 

2 %  fit 1 
- -  E p [F~(t)llog F,,(t)[]. 

f q~(ft) 2 % t  

and 
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1 
lim EP[F~(t)]lOgFm(t)]]=H(Q~) < oo 
t~Ot3 ~ 

f t  
lim - -  = 0 ,  

q)( f t )  (o( f t )7(  f t )  - 1) < 2 q)( f t )  (O( f t )  - 1) + q)( f t )  (7( f t )  - 1) 

Since 

and 
II exp (G i (t))II Q~t)~(ot) < exp ((p ( f t)  (~ ((5 t) 7 ( f  t) - 1) 

(3.9) is proved.  

Next,  if we define an opera tor  E z by the condit ional  expectat ion given 

) I/ , by Hf lde r ' s  inequality and (0.7), 
\ i = l  

1 
m--1 

= Ili=1 exp (Gi(t)) ,(o,)" IIEt(1 - e x p  (Gin(t)))II,(ao' 

m--1  

< 1-I ]texp (Gi(t))II o(ft),(ft)" II e,(1 - e x p  (G.,(t)))I1 , (at)' .  
i = 1  
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as t is large, Ilexp (Gi(t))lie(do ~(~t)is bounded above by (3.5). As for II Et(1 - e ~ ) I I  ~(at)', 
if we set 

(t) = E P [1 --  exp (G,,(t))] 
and 

fl(t) = 1 - e x p  (Gin(t)) - a ( t ) ,  

then EV[fl(t)] =0 and by (3.7) lim c~(t)=0. Since 
t ---~ oo 

[]flU) ][ v(at) < [1 -a( t ) [  + I[exp (G,,(t))l] ~(at) 

< [1 -af t ) [  + exp ((7(6t) - 1) �9 go(&)) 

and (7(60-igo(6t)  is bounded in t, ][fl(t)[t~(at)is bounded in t, By (H.2) of the 
hypermixing property, 

- e x p  (G.,(t))ll,(~,). < ~(t)+ Ile, 

<= + c(at)II  (t)II ,<a,,, 

and so 
lim IIEt(1-G,,(t))Hv(ao,=O. 
t-+ oo 

Therefore with the preceeding consideration, we get (3.10). 
Finally, we show (3.8). Since 1-Qt (nA i ) - -Q t (uA~)<=ZQt (A f ) ,  it suffices 

to show that lim Qt(A~)=0. Following the similar argument as in Step 2, we 
t--+ oo 

see that [dQ, 
Qt(A~) = EP [_ d P '  A; 1 

n 

< Z t- J E [exp (Q (6Q Gi (t)), A ~]i/Q(o,). l-I EP [exp (0 (St)Gj (t))] 
j = l  

~ Z t _ l Q i ( A C  ) .en(o(at)(e(at)_l)" j * i  

By the ergodic theorem, lira Qi(A~)=O. Thus with (3.5) and (3.7), we get (3.8). 
t-+oO 

Step 4. By (0.5), 

J I ] EO'~FG . ~ A i = Z - I ' E  P Gi I~ exp(Gj), ~ Aj 
L ~' j = l  i=1 i=l  

--~ Z - 1 E P [[GigGi Z A i l e ( a t ) ] ~  1 .  

1uP f loGj.  ~ ]O(6t)]O(at)- i 
�9 ] - - [  ~ I I  w LAjl  J 

j ~ i  

<= Z - 1  "{EP[IGieGq, Ai]" I'[ EP[ e~', Aj]" 
j * i  

. go (St)(o(~t)-l). e~(ao(o(~t)-*),}o(ar) -1 

Z - i .  E P [[Fi (t) log F/(t)[] - ~I Qj (A j) 
j r  

�9 go (3 t) (~ (at) - l). e(O(at) (e(at) - 1 )n. 
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By the ergodic theorem, lira Qj(Ai)= 1, and by (3.5), 
t-~oO 

lim (p((~t) (~ 1) . ee(at)(o(at)- l)n = :l , 
t -~  or? 

and se we get 
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lim ~ E ~ Gi(t) ,  A j  
t -~m i = l  

1 
-<,-~o~lim ~ EP[IF~(t)"logF~(t)l] 

1 
<__ e IF, (t) . log F,(t) + e -  11 = Lr(Q,). 

Thus, with (3.6) and the affinity of H, we get 

lim i t-~o 2 t  l ~  - a i H ( Q i ) =  - H ( Q ) ,  
i=1 

and the theorem is proved. Q.E.D. 

By Propositions (2.5) and (3.1), we get Theorem 2 stated in the Introduction. 

4. e-Markov Case 

(4.1) Definition. Let e be a nonnegative number. We say that P~Jg~(g2) is 
e - M a r k o v  if ~-(I1) and ~-(I2) are independent under conditional probability of P 
with respect to ~ (I 1 c~ I2) for any pair of intervals/1, I a in IR such that I 1 w I 2 = IR 
and dis (If, I~) > e. 

The following lemma is clear from the above definition. 

(4.2) Lemma. A s s u m e  P is ~ -Markov .  Suppose  that  I 1, I 2 . . . . .  I ,  are the closed 
intervals  o f  length longer that  e and I 1 < I 2 < . . .  < I n, then, 

(4.3) E I , E h . . . E I  = E h E ,  . 

In this section, we consider an e-Markov process with the following property; 

( Y ) ;  There is a T > 0  such that 

(4.4) IlEhEh 112,4 < 1 

for any two intervals I 1 and I 2 with dist ( I , ,  _12)> 7", where IJ II,,q is the operator 
norm of the operator from LP(f2, F, P) to Lq(f2, F, P). 

Then, by Lemma (4.2) and interpolation theory, it is easy to prove the following 

(4.5) Lemma. A s s u m e  an e - M a r k o v  process  sat is f ies  ( ~ ) .  Then there is an c~ > 0 
such that  

(4.6) []EhEh I]p,q < 1 

whenever  (p - 1 ) / (q  - 1 ) _-< exp ( - a" dist ( I  1 , Iz) ). 
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The next lemma is the direct modificat ion to the e-Markov case of  Theorem (III- 
7), Guer ra  et al. [4]. 

(4.7) Lemma (Sandwich estimate). Set fl(t) = 1 + 2 .  (e ~(t-~) - 1) -a, t > e, where ct is 
the same as in Lemma (4.5). Then, 

(4.8) IIEJE.2112,2 <= Ilflla., 

for any bounded <~---~ (I)-measurable function f,  where 11 , /2, I are closed intervals 
such that 11 <1<12 ,  the length of I 1 and 12 is longer than e and dis t(Ix ,1)>t and 
dist (I2, I )  > t. 

Proof. Let J , ,  J2 be closed intervals of  length e such that  11 < J l < I < J 2 < I 2 ,  
dist (J/, 1) = 0 and dist (I~, Ji) = t - e ,  i = 1,2. Then, by (4.3) and (4.5), 

ItE, S,2112,2 = IIE,,E3,uE~2E,:II2,2 
<= IIE,,~J, II2,.IIEj,uEj211.,qlIEj~E.:IIq,2 
< tlEj,uE II = J 2  P , q  

i f p  - 1 -- e ~(t-~) and q - 1 = e -~(t-~). Thus by H61der's ineqaulity, 

IIE~SJ:ll,,,_-<sup {lle.,,(uv2)lldll,~211,, v2 is ~ (JE)-measurable} 
1) 2 

< sup {N v, uv2 II,/ll v~ II q' II ~2 I1., v, is ~ (J/)-measurable, i =  1,2}. 

_-_ ItuN~.)sup {ll~.~211p..,/llv. IIq, llv211., v, is ~(J/)-measurable. i=  1,2} 

<HuH : f l ( t )  �9 

Therefore,  the lemma is proved.  Q.E.D. 

(4.9) Lemma.  Assume that P is e-Markov. Then P satisfies (H. 1) of the hypermixing 
property if  P satisfies (~/l). 

Proof. For  any closed intervals 11,12 . . . . .  In such that  /1 <I2 < ... <I~ and 
dist (I~, I~+,) > t, we take intervals J ,  . . . .  , J~+l of  length s satisfying that  Jx < I1 < J2 
< 12 < J3 <.. .  < I,, < Jn +,, dist (J1, I1) = dist (/1, J2), dist (I~, J~ +,) = dist (Jr +, ,  Ii + 1), 
l =  2 . . . . .  n, and dist (J~, I~)= dist (I~, J~+i). Then, by (4.3) and (4.8), we have 

IlS, A All, 
= (1, Ej,fl Ej .  Ej2f2 Ej~'... EjJ.Ex.+, 1)L~ 

_--< Ile.,,f, e.dl2,~ .... I IEJ ,  e.,o+, fl2,~ 
if, I1,,,~,... IIf211p<s,, 

where s = ( t - e ) / 2 ,  and so P satisfies (H.1) of  the hypermixing property.  Q.E.D. 

Next,  we show that  ( S )  derives (H.2) of  the hypermixing proper ty  in the 
e-Markov case. The idea of  the p r o o f  o f  the following lemma is due to B. Simon. 
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(4.10) Lemma. Letp  > 3. I f  T; LZ(m)--+LV(m) is a symmetric contraction where m is 
a probability measure on a measurable space such that T I  = 1. Then 

(4.11) II r f -  (1 , f )  112_-< (lip - 3) 1~2 Ilfl12 
for any f e  Lg(m). 

Proof. For any f~LZ(m),  we write f = a l  +9, where (1,g)2 =0. Then, NfN22 = a  2 
+ It o11~ and so Ilfll~'--( a2 + II gll~)'--a2' +la2"- l '  II 011~ +0(a 2`'-~,). On the other 
hand, since (1, Tg) = (TI ,g)  = (1,9) = O, 

II vf/I ~',-- a 2' + l(2 Z -  1)a 2('- 1)II To 1122 + 0( a2'- 3). 

So if 
II Tfll2,----Ilfl12, for every f e L 2 ( m ) ,  

then 

l(2t-1)ae"-l~llrgll~<=lai('-l~llgll~+O(a ~'-3) for every a~R.  

Letting a-+m, we get 
II T9 ll2 < (1 /2 l -  1) 1/2/I 9 I12 for every positive integer l. Thus we obtain the desired 

estimate. Q.E.D. 

(4.12) Lemma. Assume PeMs(s ) is e-Markov. Then P satisfies (H.2) of the 
hypermixing property if P satisfies (Y) .  

Proof. If K 1 and K 2 are the domains such that dis t (K1,Kz)=t  , by (4,5), 
II~,,,E,,211p,~,__< 1 i f p > e  -~"/2 + 1, where p' is a conjugate ofp .  Especially, if u 2 is 
~-(K2)-measurable, then 

(4.13) IIE~,u21t.<,,.zllu211~,,,, P(t) =e-~'i2 +1. 

By Lemma (4.10), if E[u2] =0, then 

(4.14) Ile~,u=ll~ <_e-="~ ltu2112 
for any large t. Now let I 1 , I 2 be the domains with dist (I1,12) ~- t and let J1, J2  be the 
intervals of length e such that I 1 < J1 < J2 < 12 and dist (11, J1) = dist (J1, J2) 
= dist (J2,12). We set q(t )= e -~t/4, then by Lemma (4.2), Lemma (4.5) and (4.14), 
for any ~(I2)-measurable function f2 with E[f2] =0, 

IIE.,f211~<,,.= IIE.,F~.,E.:f~II.,,,, 
- ~t120 <=llE~,u,~f2112 <=e I1F~,~f2112 

~e-='~2~ IIf~N~<, , 

Therefore P satisfies (H.2). Q.E.D. 

By Lemma (4.9) and (4.12), we get the main theorem of this section. 

(4.15) Theorem. Assume P is e-Markov. Then P is hypermixin9 if  P satisfies the 
condition ( ~ ) .  

(4.16) Collorary. Assume P is a stationary Markov provess whose associated 
semigroup is hypercontractive. Then P is hypermixing. 
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Remark. By Theorem 1 and Corollary (4.16), the stationary Markov process whose 
associated semigroup is hypercontractive satisfies the large deviation principle. This 
result has been shown, though only on the empirical measure level, by Stroock [12]. 

5. Gaussian Case 

Let X = (X(t),  t ~ IR), X( t )  = ( X  k (t))k = 1...a be the Re-valued Gaussian stationary 
process on (f2, F, P)  with mean zero and covariance matrix 

(5.1) Rk, , ( t )=EP(Xk(t+s)X~(s)) ,  t, s e l R ,  l < k , l < d .  

We assume that the spectral measure of the process has a density, i.e. 

(5.2) Rk, l(t) = S eiCt fk,, (~)d~ . 

We may assume that (fk,~(~)) is hermitian and non-negative definite. In this 
section, we give certain criteria on (fk, z({)) for the associated Gaussian process to be 
hypermixing. For  this purpose, we take X as a Gaussian random field indexed by a 
Hilbert space. Throughout  the section, we follow the notation of Simon [11 ]. 

It is well-known (cf. Rozanov [10]) that there exist random measures 
{Zk(d~), k = 1 . . . . .  d} on IR such that 

(5.3) Zk(A)_LZt(B ) if A n B = ( a ,  k , / = 1 , 2  .. . .  ,d ,  

(5.4) Xk(t)=Sei~'Zk(d~),  t e N ,  

(5.5) Ee(Zk(d{)Z , (d~)  =fk,,({)d~ �9 

We define separable Hilbert spaces by 

d 

(5.6) H={q)=(q)k)k=l,...d; II ll ,= Z 
k , l = l  

with an inner product 

d 

(5.7) (q),O)= 2 5q~ t ({)d{ ,  q),O e H  
k , l = l  

and 

(5.8) H ,  = the closed linear hull of 0~,({), k = 1 .. . .  , d, t e I in H ,  

where g,~,({) = (0, , . . ,  0, d'r 0 . . . . .  0), e ~'r is the k-th cordinate, for every closed se t / in  
IR with the same inner product  as (5.7). We denote by e I the orthogonal projection of 
H onto 1ti. We define a linear map ~ ; H ~ L Z ( ~ 2 , F , P )  by 

d 

(5.9) ~(q0 = Z ~(Pk(g)Zk(dr " 
k = l  

(5.10) Lenlma. X is the Gaussian random process indexed by H (cf. Simon [11], 
p. 15) under the map ~. 
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Proof. We only have to show that E P (cb (q~) ~b (0)) = (~0, 0)n for (p, ~ ~ H. But by (5.3) 
and (5.5), 

L H S =  Ee (k,I~=I ~ qh,(~)t~t(~)Zk(d~)Zl(d~)) 

d 

= ~ yq~a(~)~t(r Q.E.D. 
k , l = l  

Let F be the "second quantized operator" (Simon [11 ], p. 25) on the space of 
contraction operators on H. Let es be the orthogonal projection operator of H onto 
the subspace Hs. Then 

since 

r(eD = E , (=  E[ 1 g (Z)]), 

~,~ (I) = ~ (Xk(t), t ~ I, k = 1,2 . . . . .  d) 

= a(~b(~k(t)), t e l ,  k =  1,2 . . . . .  d). 

The following is essential in the proof of the main theorem of this section. 

(5.11) Theorem (Nelson [7]). Let A be a contraction from H to H. Let I < p < q < oo. 
Then a necessary and sufficient condition for F(A) to be a contraction from 
LV(O, F, P) to Lq(Q, F, P) is that HA H 2 =< (p - 1)/(q - 1). 

(5.12) Lemma. Let I 1 and I z be disjoint open sets in IR. Then 

(5.13) ILE,:,,/I,,,=I i f  and only i f  (p-1) / (q-J )>=l le , : , , l [  2 

where % is the projection onto Hsi, i=1,2.  Especially, if p>= Ile, leI2LI +1, then 

(5.14) ]if1 "f~ I1~--< IIf, I1,' IIS~ II, 
for any two bounded ~,~ (Ii)-measurable functions fi, i= 1,2. 

Proof. Since EhE~2=F(ez,)F(es2)=F(%es2), (5.13) is a direct consequence of 
Lemma (5.11). Now let q be the conjugate o f p  in (5.13), then if f2 is ~-(I2)- 
measurable, 

=sup {llf, -A II~/llf~ lip,f, is ~-(/1)-measurable.} 

--<Nf~ll., 
if lke, e,2ll~op<__(p-1) ~ Thus, 

Ilf,~l]l<=llflll~llf~ll, if P_-_lle,,e,~ll+l Q E D  

We define a decreasing function z(t) on (0, oe) by 

~(t)=sup {He,:i~[[, I, and I 2 are closed sets in IR such that dist(I~,Ia)>t } . 

(5.15) Lemma. The Gaussian stationary process P is hypermixing if lim t . z ( t ) =  O. 
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Proof. 

Step 1. We first show (H.1) of  the hypermixing proper ty .  Let  Ii, i =  1, 2 . . . . .  n be 
intervals such tha t  dist (li, 1~ + 1) > t, i = 1,2 . . . . .  n - 1. We divide the intervals into 
two groups ;  {It,  I 3 . . . .  ) and {12, I4, ... }. Then  since dist (11 u I 3 w ....  I 2 u 14 w. . . )  > t, 
by (5.15) we get 

liT, ~ ...f.lll--< liT, 'f3 .--II, +:<,, l l f~ 'f4--. II, +~,,,. 
Next,  we split each group  of  intervals into two by the same way. Then, since 
dist(Il wIswI9w .... I3wIvWIll W...)> 2t, 

IIA .f3... I[1+~,, 

Successive use of  the hypermixing  p roper ty  as in the above  way  leads to 

(5.16) IIf: .f2 ... f~l l ,  
n 

_-< N Its, ll. +,,,~, +:<~,,,..,, +, , - , ,  
i : 1  

Let 0 ( t ) =  I-[ (z(kt)+ 1). The  R H S  converges for  each t since 
k = l  

Moreover ,  since 

t--~ co t ~ o o  k = l  

By (5.16), we get 

(5.17) IIs, L I I1  --< IIS, I1o,,,---Ilfollo,,, - 
Thus P satisfies (H.1) of  hypermixing proper ty .  

Step 2. Secondly, we show (H.2). Since 

E, iE,2=r(A)r(lle.e,211), A =e.,eUIle.,e.l[ 
for  closed intervals 11 and  la, and since F(A) is a cont rac t ion  on any  LP(f2, F, P) (cf. 
S imon [i 1 ]), it suffices to show tha t  

IIr(~(t))fll~.,. <_c(t) IIf I1.~,, 
for every bounded  measurab le  funct ion f with E[f] = 0, where c(t) and q(t) are 
decreasing funct ions such tha t  

lim t (q(t)- l)=O and lim c ( t ) = 0 .  
t -+a3  t ~ c o  
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Since lim t. z(t) = 0, it is possible to take functions z'(t) and z"(t) on (0, co) such that 
t--+ 00 

(t) = r'(t) 2 z"(t) and 

lim z ' ( t )=0 ,  lim v"(t)=0 and lim t 1/2 "'C'(/)=0. 

Thus taking q(t)= z'(t)l/a+ 1 and c(t)= z"(t) 1/2, we have, by Theorem (5.11) and 
Lemma (4.10), 

Plr(~(t))fl lq(,) ,  = IIr(,:'(t))r(~"(t))r(.~'(t))fllq,,). 
<__ Ilr(.~"(t))r(.~'(t))fll2 
<c(t) I f  (z'(t))f]12 <=c(t)Ir f/l~(,, 

for all f with E [ f l = 0 .  Thus the lemma is proved. Q.E.D. 

(5.18) T h e o r e m .  Assume the spectral density matrix f ( { ) =  (fk, z({)) satisfies for 
some c>0,  a > 0 ,  7>0  and ~>0, 

(5.19) ~A,z(~+x) -~A,,(~+x+h) <:elhl~(1 + Ih[)~(l + Ix[)r 

for all ~ ~ IR, x ~ IR and h ~ IR, where 0(4) is the smallest eigenvalue o f f  ( { ). Then P is 
hypermixing. 

Remark. The idea of the following proof is essencialy due to Kesten and 
Papanicolau [5], Theorem 4, and Kolmogorov and Rozanov (cf. Rozanov [10], 
Lemma i0.6, p. 189), and so we omit the detailed calculation in the proof. 

Proof. From Lemma (5.15), it is sufficient to prove that lira t . z ( t )=0  under the 
above condition, t--,~ 

Now we take for any T> 0 and m e N 

(5 .20)  

where 

and 

s in  Tx~ 2 ~ 
g r ( x ) = r ' c T " ' \  Tx J 

= - -  d x  

(5.21) f/,r ,,, ({) = ~gr(x) {2fk,,({ +x)  -fk,,(g +2x)}dx 

Then since ~ r ( t ) = 0  if It] > T, 

(5.22) ~r ~r - f~,k,,(t) =g,,(t)f~,t(t)=O 

And also, since 5gr({)d{ = 1, 

if Itl> T. 

T T 
fk ,  l (~)  - - fk , l ,m(~)  -~-5gm(x) (fk, / (~)  --  2fk , / (~  -}-X) q-fk, l(~ -~ 2 x ) ) d x .  
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Let F~(x)=fk,~(~ ) --2fk, t(~ +x)+f~,l({ +2x), then Fr and 

<2clxV(l + lxly+%o(O, 
and so 

IF&)I ~ 2 c  ~+r Lxl a +"(a + IxlY+~0(O. 

Thus if we define Jkrz(~) by fkTl,,,(~) for sufficiently large m, we can show that 

(5.23) tfk, t(~) --f~,,(~)] <=A" T-("+I)~(~). 

Let I~ and /2 be intervals such that dist(I~,I2)>T, and let f = ( f k ) e H s ,  and 
g = (ga) �9 Hi2, (k, l=  1,2, . . . ,  N) be 

f k ( { ) = ~  ak,,,e ir (finite sum), t, e I  a 
/1 

g z ( { ) = ~  bl.,.e i ~  (finite sum), t , . � 9  a. 

Then since It. - t,.I > T for every t. �9 I a and tm ~ I2 

(f, g)n = ~ Z fk(~) g,(~)fk, z(~)d~ 
p,_ k,! 

k,l 

Thus by (5.23) and the Schwarz inequality 

[(f, g)H[ <-AT-("+ a) ~ j Ifk(~)Ig,(~)lO(r 
k,l  

(5.24) ~NAT-(<'+I)( ~ k,,~ fk(~)ft(~)fi~"(~)d~) ai2 
,k1/2 

k,1 / 

<NAT- ' "+  " V I I , ,  II o II. �9 
Now we recall that 

r(t) = sup { I[ehe~ IIn, dist (I1,/2) a t} 

= sup {(f, g)n, F~ Ha, g �9 Ha,/JfIIn = II hlJn = 1, dist (I 1 , I2) > t}. 

Thus (5.24) shows that lim t -z ( t )=0 ,  and the theorem is proved. Q.E.D. 
t ~ o o  
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