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The Large Deviation Principle for Hypermixing Processes
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Summary. The large deviation principle of Donsker and Varadhan type is
proved under certain hypotheses on the base stationary process. Some examples
of processes satisfying those hypotheses are also given.

0. Introduction

In this paper we study large deviations arising from ergodic phenomena for
stationary processes. In particular we introduce a new notion of stationary process
which implies the large deviation principle, and present some examples including
non-Markovian processes.

Let X be a Polish space and Q be a space of X-valued trajectories w(-) on
( — oo, 00) with discontinuities of the first kind, normalized to be right continuous.
Then Q is a Polsih space endowed with the Skorokhod topology on bounded
intervals. We denote by & (I) the o-field in Q generated by w(s) for se [ for every
closed set in IR. (We abbreviate # (I) to %, when I=[—1,[].)

We denote by .# () the space of stationary measure on Q. We write I, < [, if
b, <a, for any closed intervals 7, =[a,,b,] and I, =[a,, b,].

For we £, and each >0, we define w, by

w,()=w(s), —i<s<t, wis+2)=w/(s) forall se(—o0,0).
We denote by 0, the translation map on £, i.e. (6,w)(t)=w(s+1¢). We define
R, e/ ,(Q) by
1 t
0.1) Row=n | yds.

[
W 2t 2, sWi

Foreach >0, w—R, ,, is & ([ —1, t])-measurable mapping. For each Pe .# (Q) we
define the probability measure I, =I,(P) on .# () by

(0.2) I(B)=P{weQ,R,, eB}.
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If P is ergodic, then, by the ergodic theorem,
(0.3) I,—dp as (-,

where ;is the Dirac measure on .4, () concentrated at P. We are interested in the
rate of the convergence of I,(4) as t— 0.
Wesay that Pe .#,(Q)is hypermixing if it satisfies the following two conditions;

(H.1) There is a decreasing function ¢(¢) > 1 defined on (c, o0) for some ¢ >0 such
that

0.4 lim ¢-(p(#)—1)=0,
and e
©.5) 1ALl = Alew - [ fllew-

for any bounded & (I,)-measurable functions f;, i=1,2,,...,n where [, ..., I, are
any finite intervals with I, <, < ... <[, and dist(J;, I;,,) =t for every I=1,2,...,
n—1. Here, is the LP-norm with respect to the measure P.

‘ ”p

(H.2) There are decreasing functions y(¢) and c¢(¢) defined on (c, co) for some ¢ >0
such that

(0.6) lim ¢ () —1)=0, lim ¢(r)=0
nad
(07) HEleleH}'(t)'éc(r)nf”)’(t)‘

for any two intervals I,, I, with dist(/;,],)=¢ and any bounded measurable

function f with EZ[f]=0. Here, E, is the conditional expectation with respect to P

given # (I), and y(1)’ is the Holder conjugate of y(f), i.e. 1/y(1)+1/y(#)’ =1.
Our main theorem is the following:

Theorem 1. Let Pe .# () and suppose that P is hypermixing. Then

(1) For any Qe M ,(Q),

H(Q)=1lim %H(l, Q) exists.

t—
Here H(t, Q) is defined by
dQ dQ
PLO% ) 100 22
E [dP . CBap F]

H(t,0)=

if Q is absolutely continuous w.r.t. P on
F, and the integrand is integrable.
00, otherwise.

dQ dQlF([—r th
Here, —| stands for ———>=.
dP Fy dPlF([—t,t])
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2) H: M,(2)—]0,0] is lower-semicontinuous and affine. Moreover
{Q; H(Q)S M} is compact for every M Z0.

Theorem 2. Let Pe . # ,(Q) and suppose that P is hypermixing. Then

1
(0.8) lim —

log I(F)< —inf H(Q),
tooo 21 QeF

Jor all closed sets F in .#,(Q), and

1 .
(0.9) lim ~- log I}(G)= — inf H(Q).
2t QeG

t—

for all open sets G in M ().

We will give some examples of stationary probability measures with the
hypermixing property in Sects. 4 and 5. In particular, we show that a Gaussian
process with some mixing property is hypermixing.

Let us give some remarks. The large deviation principle of the type as in
Theorem 2 was first showed for Markov processes with some strong mixing
property by Donsker and Varadhan [3]. Since then, several authors have studied the
large deviation principle of this type for non-Markov stationary processes (cf.
Accardi and Olla [1]; Olla {8], Donsker and Varadhan [4]; Orey [9] and Takahashi
[11]). On the other hand, Stroock [12] showed that a symmetric stationary Markov
process whose associated semigroup is hypercontractive satisfies the large deviation
principle (of a weaker form). In connection with Euclidean field theory, Guerra et
al. [4] showed the Gibbs variational equality for Ornstein-Uhlenbeck fields. In their
proof, they showed and used the hypermixing property (H.1) for Ornstein-
Uhlenbeck fields. A refinement of their work [4] has been given in [6].

1. The Proof of Theorem 1

(1.1) Lemma. Assume that P is hypermixing. If V is Frmeasurable for some
(>0 and

EP[e]< oo

Jor some £>0, then for any T>0 such that 2(T+1oQRT)<e,

1.2) .Zl_t log Ef ':exp <§ V(GSW)dS)]

—t

1 P
ém log EP [exp Q(T+1) o T) V)]

for any large t.
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Proof. Letn=[?%j|, t'=t—n(T+and t,= —t'+Q2i—-1)(T+1),i=0,1,2,...,n,

n+1. We define a function G(s), —(T+)<s<T+! by

(n+1

S V(B,.w) —(T+D<Ss< —(T+D)+1

i=1

G)=3 2 V(Oeow) —(T+D+1'Ss<(T+)—t'
i=1

Y VO, w) (THD)—t'Ss<T+I.

\ i=0

Then, by (0.5), Jensen’s inequality and the stationarity of P,

LHS of (1.2)=21—t log EX [exp( Tjﬂ G(s)dsﬂ

—(T+1)

1 1 T+1
<. dslog E¥ [exp (2(T+ D G(s
STREY) _(Tfﬂ) gE" [exp2(T+1)G(s))]

1 1 . n+l1
=5 375D (t' - log E¥ [exp (2(T+l) i; V(Htiw)>:|

+2(T+I1-t") log Ef |:exp (2(T+l) i V(H,y))}

i=1

+1¢ -log Ef [exp (2(T+ D i V(G,iw)ﬂ)

i=0

1 1 n+1
<L— t/l EP 2 T l 2T VB 1/ T)
=21 AT+ < og i1=_[1 [exp2(T+DeRT)V( t,w)]

+2(T+1—t") - log ]i[ EP[exp2(T+ 1) oQRT)V(6, w))]/eeD

i=1

i=0

+1'log TT E”[expQ(T+1)o@T) V(6, w)]He® T>>

1 1 <2t’(n+1)+2(T+l—t’)n>

T2t 2T+ 02T)
log EP[exp2(T+DoRT)V)].
=RHS of (1.2).

Thus (1.2) is proved. Q.E.D.

Let us define a class of the functions on Q by

¥ ={feCy(R); fis Fr-measurable for some /< o} .



The Large Deviation Principle 631

(1.3) Lemma. If P is hypermixing, then for any VeV,

(1.4) A(V)=lim ~10gEP[exp | v, wt)ds)}

exists.

Proof. Suppose that Ve ¥ be #,-measurable and |V|< M. Let

a(t)y=log E? {exp ( ; V(Bsw)>:l i

Take an arbitrary ¢>0 and fix it. Take 7, >0 so that ¢(2¢,) —1 <¢&/3 M. For this ¢,,
we take T so that (¢,+1)/T<&/3M. Then we claim that if >3 TM/e,

(1.5) a@)2t<a(T)2T+e.

We prove the claim. Let t=nT+t" where neZ, 0<t"<T and let 1;= —t+1¢"

+@j—1T,j=1,2,...,n Then by (0.5) and the stationarity of P and the hypotheses
on t,, 7 and I,

b

a(t)/2t§2il logEP|:]—[ exp( f V(Htj+sw)ds>:|+t”M/t
7

~T+to+1

éé og E? [1-[ (T_}M V(es(e,jw))dsﬂJr[T+n(to+l)]M/t

B T—to—1 1/e(2to)
log H EF| exp (Q(2t0) [} V(()S(G,‘w))dsﬂ

2! j=1 | ~THtp+1 ’

+[T+n(ty,+ DM/t

n

1 T 1/e(2to)
2—log ]_[ Ef|exp (Q(2t0) | V(Osw)ds>:|
-T

+[T+2n(t,+DIM/t
§%,10gEP [exp( jT V(Osw)ds>}+M(g(2to)——1)+[T+2n(to+l)] “M]t

1
<
=2Ta(T)+8.

This inequality suggests that for any >0,

lim a()/2t<a(T)2T+e
t—~>

for any large T, and thus letting ¢—0, we get
lim a({)/2t<hm a(t)/2t.

t—=

Since Ve ¥, is is easy to show that if

lim 2w log E* [exp (j V{6, w)ds)}

t— oo
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exists, then

lim 1 log EF [exp(f V(Gsw,)ds>:|
-t

(oo 21
exists and the two coincides. Thus the lemma is proved. Q.E.D.
Now we define the functions H and H(¢, -) on #,(2) by
(1.6) HQ)=sup{{VdQ—A(V), VeP),
(1.7 H(t, Q)=sup{| VdQ —log EP[exp(V)], Ve ¥,
V is &, -measurable}

Then by the fundamental fact (cf. Donsker and Varadhan [2], Theorem 2.1)
7

~— lo
dp|, C®dp
if Q is absolutely continuous w.r.t. P on
%, and the integrand is integrable.
o0, otherwise .

d 3 —_
stands for m
F dP\z(-1.0)

(1.8)  HEQ)=

dQ
h =
where dP

We are now ready to state the main theorem of this section.

(1.9) Lemma. For every

. 1
Qe @), lm - H(O)
exists, and e

(1.10) H(Q)=lim 2 H(,0),
for every Qe M ().

1
Proof. First, we prove H(Q) < lim 2 H(¢, Q). For every VeV, we define W by
[Amdie o}
t
Ww)= | V(0w,)ds. Then We¥ and W is % -measurable. By stationarity,
—t

| VdQ=§1?§ WdQ for any t>1[if V is #,-measurable. Thus
t
[ vdQ — 2% log EF [exp < ] V(9swt)ds>}
-t
1
=37 (f wdQ —log E*[e"])

1
éz{ H(ta Q)

Letting ¢ tend to infinity, we obtain the inequality.
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1 .
To prove lim 5 H(t, Q)< H(Q), we use Lemma (1.1). By the definition of H
t—> o0
and (1.2),

1
2020+
which is for Ve ¥, #-measurable and for any large > c¢. And so

1
0@ G+D 21°

1 Prv
deQ—H(Q)ém log £ [e"]

H(Q)= up {f VdQ —log E*[e"],

if V'is #-measurable}.

Letting / to infinity first, and then letting ¢ to infinity we get the left
inequality. Q.E.D.

(1.11) Lemma. H is lower semi-continuous and affine. Moreover,
{QE%G(Q);H(Q)gc} is compact in M ,(Q2) for every ¢ =0.

Proof. Since H is the supremum of continuous linear functions, H is lower semi-
continous and also convex. By convexity, if Q is expressed as O = [ Rm(dR) where m
is a probability measure on .#_(Q), then

(1.12) H(f Rm(dR)) <[ H(R)m(dR).
To prove the converse inequality, note that

log (Aa+(1 —A)b)=log (Aa) +log (1 —A)b)=loga+logh+log A(1 1)
for a,b>0 and 0<A<1. Thus if we set

_9Q
~dp

_dR

db=—
an 7P

a

s
t t

and if we let ¢ tend to infinity, by (1.10) we get
HAQ+(1-)R)=AH(Q)+(1 —A)H(R),
and so by induction,

(1.13) H(i aiQi)éi a,H(Q,)

i=1 i=1

for any ¢,20 with ) a;=1 and Q,e #,(Q), i=1,2,....,n.
i=1

Foreachn 21, thereisa compact set K, in .4, (Q2) and finite points R{™, ..., R{,)
in . ,(R2) such that

m(A#,(Q)/K,)<1/2"
and

N(n) 1
U U(—, R}”)):K,,
i=1 n

where U(r,R)={Pe,%4(§2);d(P,R)<r}, d(,) is a metric on ./#,(Q) compatible
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with the weak topology in .#,(Q2). Let

1
wmollne)

s
n

and
1 i—-1 1 .
AP=U(=, RN U[=, R, i=1,2,....N,.
n j=1 n
Let R™ be the transformation on .#_(Q) defined by
OR)=Y, Ly(R) o | Rm(R)
R™M(R)= w(R) ———— Rm(dR
&) i;1 Lar m(A4") AP
1
+x (R) | Rm(dR),

) ap . mMNOAD)
i=1

where y,(R)=1if Re 4 and =0 if R¢ 4, then it is easily shown that

jR(")(R)m(dR)zQ
and
R™(R)—R, in weak sense, m—a.c. R.

Thus, by Fatou’s lemma, lower semi-continuity of H and (1.13), we get
H(Q)z lim H(R™(R))m(dR)Z | H(R)m(dR)
and affinity is proved. |

Finally, by (1.6) and Lemma (1.1), for every Qe .#,(Q),

H(Q)zE%[V] log E* [exp 2(T+De2T) V)],

1
T 2(T+1)e(27)
where V is any &,-measurable function in ¥ and T is some positive number.
Therefore, if H(Q)< L, then
1
EQ[V]§L+& log EX[e*V], where o=2(T+DoQT).

Since P is Radon, we can take a compact set K(M) in Dy([—/,/]) such that
P(K(M)") <e™*™ for each M > 0. If ¥ is such that ¥=0 on K(M) and ||V]|c,< M,
then

1 1
EC[VISL+-log(1 +e“M/e“M)§L+& log2
x

and so Q(K(M)C)§<L+%log2>/M. This means that {Q;H(Q)<L} is

a tight family of measures on Dy([—//]), but for stationary measures,
tightness on Q([—//]) is equivalent to tightness on £, (in fact, if we let

K(M):_ji 0i-1K(M), then K(M) is compact in Q and Q(K(M))
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1 . .
< (L +-log 2>/M > and so it is tight in .#,(Q). Since H is lower semicontinuous,
o

{Q;H(Q)< L} is compact in .#,(2). Q.E.D.
By Lemma (1.9) and Lemma (1.11), we get Theorem 1.

2. The Proof of Theorem 2: Upper Estimate

(2.1) Lemma. Let F be a compact set in M (). Then

2.2) lim —10gF(F)< 1nf H(Q).
eF

-1

Proof. Let [= 1nf H(Q). Fix an arbitrary ¢>0. For each Qe F, we can choose a

Voe¥ so that fVQdQ A(Vy)zl—e. Next, for each QeF, choose an open
neighborhood By, of Q so that

sup [ VodQ —[VydR|<e.
ReBg
N
Because Fis compact, we can choose Q,,(,, ..., @ye Fsothat Fc U B,,. Clearly,
i=1

lim 2—10gF(F)<11m ——logsup I(By,).

t—>

But for QeF,

t
I (By)<E* [exp(j Vo (O,w,)ds, Rt’WeBQ>]- sup exp(—2t{ V,dR)
—t ReBg

<E? I:exp ( j VQ(Oswt)ds>j| cexp(—2t(A(Vy) +1-2¢)),

and thus
— 1
lim E;logl",(BQ)gl—Zs.

t—>

As ¢ is arbitrary, we obtain (2.2). Q.E.D.

(2.3) Lemma. For each M >0, there exists a compact set C(M) in M (Q) such that

(2.4) 1im it log L(C(MY)< —M.

w2

Proof. Since Pis Radon, we can take a positive &, -measurable function ¥ such that
{V<L} is compact in D_[—1,1] and

E"[exp (20 T)(T+1) V)|H2eCDT i<,
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for some 7. Then by the estimate (1.2), we have
1
2t

for large 7. Given Me(0, ) set K(M)={weQ, V(w)<M?}. Then K(M) is
compact in Dy([—1,1]), and

r{0, QKM©»)zM™ 1}

P {w, exp ( i V(6,w) ds) >e2M }

log E¥ [exp (| V(0,w)ds)] <&

A

t
gE[exp< j V(Bsw)ds>:|/e2‘Mge—h(M—l).
-t

Hence if we let C(M)= ﬁ {Q’Q(K(M—H)E)éML—H}’ then C(M) is tight in
=1

A, (D[—1,1]), and thus, by stationarity, tight in .#,(Q). Let C(M) be the closure
of C(M). Then C(M) is compact in ./#,(Q), and
i 1
[{Q,0eC(MY}£ Y IL4Q, QKM +D))z——
= M+1

e—2t(M+l—1):e—2Mt/(1 _e—ZMt)

IA
s

1

for large ¢. Thus the Lemma is proved. Q.E.D.
(2.5) Proposition. For any closed set F in . (Q),

(2.6) Tm - log I,(F)< — inf H(Q).
2 QcF

tmwo 21

Proof. Since Fe(FNC(M))w C(M) and FnC(M) is compact for each M, by the
preceeding two lemmas,

— 1
lim —

5 logF,(F)_S_max{— inf  H(Q), —M}.
[amdieo}

QeFnCM)
Since M is arbitrary, by letting M— o0, we get (2.6). Q.E.D.
3. The Proof of Theorem 2; Lower Estimate

(3.1) Proposition. Assume P is hypermixing. Let Q € M ,(2) be such that H(Q) < c©
and N be any neighborhood of Q, then

3.2) lim 5 log F,(N)2 ~H(Q).

t—>w
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Thus if G is open in M ,(Q), we have

(3.3) }Lrg ZL logI(G)= — égg H(Q).

Proof.

Step ] By virtue of the afﬁnity of H, it is sufficient to prove (3.2) for any Q such that

Q= Z a;Q;, where a;>0, Z a;=1 and Q;, i=1,2,...,n are ergodic stationary

measures Take a nelghborholod N,of Q;, i=1,2,...,n, ¢>0 and />0 such that

if R;e N, for each i and ||[R— Z
i=1

on (D[ -], #,), then ReN.
For each t>0and §>0, let T=1+®n—1)0t,

m—1
=—T+<(m—1)5+2 Y ai+am>t, and I,=[t,—a,t t,+a,t].

i=1

Then, I,’s are subintervals in [ — 7, T'] such that dist (/,,,, [,,,,)=0t, m=12, ... ,n —1.
Then

n

Z aiRait,Gtiw _RT,w
i=1 4

ait

1 I -
27 _jT 5oEWTdS—§; Z § Oo,60m0a

—ait

ot 1 z 1

<2(n—1)5+2nljt.

Thus we can take ¢ so that

Z alRa,t Oc,w _RT,w

i=1

<eg,

!

for large z. We fix the §>0 and re-define T=T(t)={1+(n—1)d}¢, for each .
Let 4,=A,(1)={w; Rait’etiweNi}, then by the preceeding argument,

(3.4) {w; Ry €N} () 4.
i=1

Step 2. We take an increasing function ¢ (¢) on (¢, c0) for some positive ¢ satisfying
(3.5) lim @(t)(e(t)—1)=0, lim @(t)/t=00, and
= i—

o) (@) —1)<M, forsome M.
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We introduce for simplicity, the notations

do;
dpP

G,(t)=min (log F,(t), p(81)), i=1.2,...,n
Z(1) =EP[H exp(G;(2)) |,

i=1

Fi(l) =

F i)

and we define Q,e.#,(D[-T, T)) by
A)=E?| — exp (G;(1)), 4
0,(4) [Z() T exp (G(0). }
Then by (3.4) and Jensen’s inequality,

P{w;RT,weN}gP{ ﬁ Al}
i=1

:Z(,).Eg{ﬁ exp(~G,0), () A.-]

A,)
el

sJolfy 4)f-2(d +)
In the next step, we shall show that

lim Z(f)=1 and lim Qt<ﬁ 4,
t— o t— o i=1

i

=Z(t) E% l_i[ exp (—G;(?)| ﬂ A] Q,(

14

-

.

i
o

gZ(t)-exp<EQ‘[— i G
i=1

n

=Z(t) 'exp{EQ‘|:— Y G,

i

i=1 i

~—
lI

Thus, using these facts, we get

(3.6) lim ~2%10g1",(N)> Z a, lim 2aiT ‘[Gi, Q Ai].
Step 3. We claim that

(3.7 lim Z(r)=1,

and o

(3.8) ,lim Q,<ﬂ A)—l

Proof of the claim. First we prove (3.7). Since

1-Z()=1 —E[n eG"('):|

i=1

=E[(1 —e%)+e% (1 —e%2) + ... +51e%. . efn-1(1 —eb7)],
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it is sufficient to prove that

(3.9) lim Ef[exp(G,(1)]=1,

and _t i

(3.10) lim EP|: exp(G; (1)) - (1 —exp(G,,(1)))]=0.
t—= o i=1

By definition of F,, and G,,,
E[exp(G,, (1) 2 E[F,(1), log F,,(1) < ¢(d1)]

=Q,,(og F,, (1) < (1)),
and so
0=<1—E[exp(G,(1))]

<0,,(log F,(1)Z ¢(61))

S E2(llogF, (O)|l/ 0 (58)

-2_3@ - <p?;z) T EP[F,(t)llog F,,()I].
Since

}‘3.1 v E"[F, (Ollog F,(D|1=H(Q,) <,

and

ot
lim ———=0,
o P(01)
(3.9) is proved.
Next, if we define an operator E, by the conditional expectation given

m—1
F < U Ii), by Hélder’s inequality and (0.7),

i=1

m—1
EP[ IT exp(Gi(1))(1 —exp (Gm(t)))]

m—1
=E* [ l:[1 exp (G;(1)) - E,(1 —exp (Gm(t))):|

é : HE1(1 —CXp (Gm(t)))H'y(ét)’

7(61)

I exp(Gi(t)

m—1
= 1;11 HCXP (Gi(t))Hg(ét)y(ét) : “E:(1 —€Xp (Gm(t)))“y(a:)' .

Since

Hexp (G;(») ”g(az) 261 =E€XP (@(01) (e(61)7(61) 1)
and

@(60)(2(0)y(81) =1) =2 ¢(51) (e (61) = 1) + @ (1) ((61) — 1)



640 T. Chiyonobu and S. Kusuoka

as tislarge, [exp (G;(t))|| 00 y(or i bounded above by (3.5). As for || E,(1 —e%™) |, »

if we set
a(t)=E?[1 —exp(G,(1)]
B(1)=1—exp(G, (1)) —a(?),
then EF[B(¢)]=0 and by (3.7) lim «(z)=0. Since

t— oo

1B 50 =11 = ()] + |eXp (G (D) yis1y
<N —a(t)|+exp((y(d1) —1) - @(61))

and (y(6t) —1¢(6¢) is bounded in ¢, ﬁ(l)Hy(&t) is bounded in ¢z. By (H.2) of the
hypermixing property,

“Et(l —exp (Gm(t))“y(ét)’ Sa()+ ”Ezﬂ(t)Hy(at)'
<o)+ C(5I)Hﬁ(t)“y(az) ,

and

and so
tlim “Et(i —Gm(t))”y(az)’:o'

Therefore with the preceeding consideration, we get (3.10).
Finally, we show (3.8). Since 1—0Q,(nA4,)=0,(0A4)ZXQ,(4]), it suffices
to show that lim Q,(4;)=0. Following the similar argument as in Step 2, we

t—= 0
see that
aQ
0,(49) [ 0. A,}
<Z ' Elexp(e(61)G;(t)), AFMe - TT EP[exp(o @G, )]
j=1
<Z71Q,(Af) - ere@en=1) i

By the ergodic theorem, lim Q,(A4;)=0. Thus with (3.5) and (3.7), we get (3.8).
t—= o0
Step 4. By (0.5),

EQt [Gl ,

[y

AJ.:I=Z—1 'EPI:GL' liI eXp(Gj)’ ﬁ Ai]
i=1

J i=1

éZ—1EP[lGieGl-XAJg(ét)]g(ét)—l .
T EP[le% 12001
j¥i ’
<Z ' {EP[G,e%), 4, TT E[e%, 4;)-
jEi
. (p(ét)(a(ﬁt)—l) .ezp(ét)(e(ét)—l)n}e(ét)‘ 1
<Z ' EP[F(O)log F;(OI]- TT Q;(4))
j¥i

- (5@ 1) . go (G (@@ ~1in
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By the ergodic theorem, lim Q,(4;)=1, and by (3.5),
[Amdies}
im q,(éz)(e(&t)—l) PN e —1in _ ,

0

and se we get

1 n
li E%| G, A;
Am 0T ': (1), iDI ]:l

1
e 2a,T

1

EP[|F,(1) log Ky (1]

EP[F(1) log Fy(t) +e ™' 1=H(Q)).

5w 2a;T
Thus, with (3.6) and the affinity of H, we get
1 n

37 e (N2 = T aH(0)=~H(Q).

lim
jandioo]
and the theorem is proved. Q.E.D.

By Propositions (2.5) and (3.1), we get Theorem 2 stated in the Introduction.

4. &-Markov Case

(4.1) Definition. Let ¢ be a nonnegative number. We say that Pe.# (Q2) is
e-Markov if & (1,) and & (I,) are independent under conditional probability of P
with respect to % (I; n 1) for any pair of intervals I;, I, in IR such that I, UL, =R
and dis (I}, ;) > ¢.

The following lemma is clear from the above definition.

(4.2) Lemma. Assume P is e-Markov. Suppose that I, I,,... I, are the closed
intervals of length longer that ¢ and I, <I, < ... <I,, then,

4.3) E, E,, .. .E =E_ E, .
In this section, we consider an e-Markov process with the following property;
(A); There is a T> 0 such that

(4.4) RN VRS

for any two intervals Z; and I, with dist(J;,,)2 T, where | - |, , is the operator
norm of the operator from LP(Q, F, P) to L4(Q, F, P).
Then, by Lemma (4.2) and interpolation theory, it is easy to prove the following

(4.5) Lemma. Assume an ¢-Markov process satisfies (A"). Then there is an a>0
such that

(4.6) |ErBr5.g
whenever (p —1)/(g —1)Zexp (—a-dist(;, L,)).

<1
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The next lemma is the direct modification to the e-Markov case of Theorem (I11-
7), Guerra et al. [4].

(4.7) Lemma (Sandwich estimate). Set f(£)=1+2-(**"9 —1)"1, 1> ¢, where o is
the same as in Lemma (4.5). Then,

4.8) |Er fEL 222 f 5

for any bounded F (I)-measurable function f, where 1,, I,, I are closed intervals
such that I, <I<1,, the length of I, and I, is longer than ¢ and dist(I;, )=t and
dist (I, =t

Proof. Let J,, J, be closed intervals of length ¢ such that I, <J, £I<J, <1,
dist (J;, )=0 and dist (7}, J;))=t —e¢, i=1,2. Then, by (4.3) and (4.5),

nEfluEIZHZ,ZZ \|E11E§1“E32E12l\2,2
< B Es, o, ol Es WEs, | 0| Eri B .2
= “ElluEJzup,q
if p—1=¢*""% and g —1=e"*¢"%, Thus by Holder’s ineqaulity,
|E;uEy, |, Ssup {|Es, (uv,)]/|v2] s vz 18 F (J,)-measurable}
v2

<sup {||o,uv, |1/ |01 4 |02] > v: is # (J;)-measurable, i=1,2}.

< |ju]l gy sup { o1 0all gy /01 g |22l > 01 18 F (Ji)-measurable, i=1,2}
<ullpe-
Therefore, the lemma is proved. Q.E.D.

(4.9) Lemma. Assume that P is e-Markov. Then P satisfies (H.1) of the hypermixing
property if P satisfies (X°).

Proof. For any closed intervals I, I,,...,I, such that [, <l,<...<I, and
dist (I}, I, ;) =¢, we take intervals J, , ..., J, . of length ¢ satisfying that J, <1, <J,
<L <Jy<..<I,<J,,, dist(J}, I,)=dist (I}, J,), dist (J,, J;,,)=dist (J; 11, ];44),
[=2,...,n, and dist(J,, I )=dist ([, J,.,). Then, by (4.3) and (4.8), we have

Ifi-ta Al
=1 E; fLEy, En, LBy, - By fuEy,, Die
SNEr fiBnla - B Sukr ]2z
<l - 1 2llse>
where s= (¢ —¢)/2, and so P satisfies (H.1) of the hypermixing property. Q.E.D.

Next, we show that (%) derives (H.2) of the hypermixing property in the
e-Markov case. The idea of the proof of the following lemma is due to B. Simon.
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(4.10) Lemma. Letp > 3. If T; L*(m)— L?(m) is a symmetric contraction where m is
a probability measure on a measurable space such that T1=1. Then

@.11) | Zr =, N =W =32 £,

for any feL*(m).

Proof. For any feL*(m), we write f=al+g, where (1,9),=0. Then, ||f[3=4?
+gl3 and so | f[3'=(@+]g[3 =" +1a*"V | g|3+0(a>*"?). On the other
hand, since (1,7g)=(T1,9)=(1,9)=0,

HTf“%;: 21+l(2l—1)a2("1)” Tg’\§+0(a2’"3),

So if
17 2|/

|, for every feL*(m),
then

121-1)a* Y| Tg|3<ia® V|| g||3+0(a*'"3) for every aeR.
Letting a— o0, we get

|Tg|,<(1/21—-1)"?||g|, for every positive integer . Thus we obtain the desired
estimate. Q.E.D.

(4.12) Lemma. Assume Pe M (Q) is e-Markov. Then P satisfies (H.2) of the
hypermixing property if P satisfies (A").

Proof. If K, and K, are the domains such that dist(K,,K,)=¢, by (4,5),

|Ex,Ex, |, <1if p2e 2 +1, where p’ is a conjugate of p. Especially, if u, is

Z (K,)-measurable, then

(4.13) |Ex o] iy S (2]l oy, ()= 41
By Lemma (4.10), if E[u,]=0, then

(4.14) |Ex |, S €™ |luy |,

for any large . Now let I, I, be the domains with dist (/;, ,) =t and let J,, J, be the
intervals of length ¢ such that I, <J, <J,<I, and dist({,,J,)=dist(J;,J;)
=dist (J,, I,). We set g(¢)=e~*"*, then by Lemma (4.2), Lemma (4.5) and (4.14),
for any & (I,)-measurable function f, with E{f,]=0,

HEIIfz ||q<r)' = HEIIEJIEszZHq(r)'
< | B Enfalase™ | Epfol
e | fof -
Therefore P satisfies (H.2). Q.E.D.
By Lemma (4.9) and (4.12), we get the main theorem of this section.

(4.15) Theorem. Assume P is e-Markov. Then P is hypermixing if P satisfies the
condition (A°).

(4.16) Collorary. Assume P is a stationary Markov provess whose associated
semigroup is hypercontractive. Then P is hypermixing.
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Remark. By Theorem 1 and Corollary (4.16), the stationary Markov process whose
associated semigroup is hypercontractive satisfies the large deviation principle. This
result has been shown, though only on the empirical measure level, by Stroock [12].

5. Gaussian Case

Let X=(X(),1eR), X(1)={X())=1....a be the R%valued Gaussian stationary
process on (Q, F, P) with mean zero and covariance matrix

6.1 Rk,l(z)zEP(Xk(t+s)Xl(s)): t,seR, 15k, I<d.

We assume that the spectral measure of the process has a density, i.e.
(52) R (=] e f, 1 (E)dE.

We may assume that (f, ;(¢)) is hermitian and non-negative definite. In this
section, we give certain criteria on (f ;(£)) for the associated Gaussian process to be
hypermixing. For this purpose, we take X as a Gaussian random field indexed by a
Hilbert space. Throughout the section, we follow the notation of Simon [11].

It is well-known (cf. Rozanov [10]) that there exist random measures
{Z,(d¢),k=1,...,d} on R such that

(5.3) Z(A)LZ(B) if AnB=¢, ki=1,2,...d,
(5.4 X (O=[e"Zd¢), teR,
(5.5) EX(Z,(d) Z,(dE) =1, (($)dE .

We define separable Hilbert spaces by

5.6)  H={p=(9di=1...a5 |0l =HZ=:1 § (&) 0,(8) fi1(§)dE < o0}

with an inner product

d
(5.7 (o, ¢)=“Z:1 F o) fe i (O)dE, o, yeH
and
(5.8) H, =the closed linear hull of yi(¢), k=1,...,d, telin H,

where yi(£)=(0, ..., 0,¢",0,..., 0), " is the k-th cordinate, for every closed set /in
R with the same inner product as (5.7). We denote by ¢; the orthogonal projection of
H onto H;. We define a linear map &; H—L*(Q, F, P) by

9) (o) =k;1 Jou($)Z,(dE).

(5.10) Lemma. X is the Gaussian random process indexed by H (cf. Simon [11],
p. 15) under the map ®.
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Proof. We only have to show that EX (@ (¢) () = (@, ¥ )g for @, y e H. But by (5.3)
and (5.5),

d

LHS=EP( PR AL AQYACIVACII)

k. l=1

=HZ:1 T 0O (&) fi1(E)dé=RHS. Q.E.D.

Let I' be the “second quantized operator” (Simon [11], p. 25) on the space of
contraction operators on H. Let e; be the orthogonal projection operator of H onto
the subspace H;. Then

e =E(=E[|F# )],

since
F)=cX,(1),tel,k=1,2,...,d)

=o(P( (1), tel k=1,2,...,d).
The following is essential in the proof of the main theorem of this section.
(5.11) 'Theorem{Nelson [7]). Let A be a contractionfromHitoH. Let 1 SpLg < 0.
Then a necessary and sufficient condition for I'(A) to be a contraction from

LP(Q, F, P) to LYQ,F, P) is that || 4|*<(p—1)/(g —1).

(5.12) Lemma. Let I, and I, be disjoint open sets in R. Then

(513 |ELE),eSt fandonly if (p—D/(g D)2 erer,]
where ey, is the projection onto Hy,, i=1,2. Especially, if p= He,le,zu +1, then
(5.14) (FAVA TR VA TR A P

for any two bounded F (I,)-measurable functions f;, i=1,2.

Proof. Since E; E; =TI(e;)I (e;,)=I(e;,e;,), (5.13) is a direct consequence of
Lemma (5.11). Now let g be the conjugate of p in (5.13), then if f, is F (I,)-
measurable,

|ErErfol o= | Eri fallg
=sup {[| /i Lol /Ifs

»»J1 18 F (I})-measurable. }

<[4l
if Hellehuip§(p—l)2. Thus,
12l =4l 140, i pzleen]+1. QED.

We define a decreasing function ©(¢) on (0, «0) by

t(®)=sup {|e; e,||, I; and I, are closed sets in IR such that dist (I, L)=t}.

(5.15) Lemma. The Gaussian stationary process P is hypermixing if lim ¢ -7(£)=0.

t—> 0
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Proof.

Step 1. We first show (H.1) of the hypermixing property. Let I;, i=1,2,...,n be
intervals such that dist(Z;, [, ,)=¢, i=1,2,...,n—1. We divide the intervals into
two groups; {I;,1;,...)and {I,,I,, ...}. Thensince dist (J; ULy u..., Lul,U...) 21,
by (5.15) we get

”f1 fz fn“1§ Hfl fs H1+r(z) : Hfz ﬁ; H1+m)-

Next, we split each group of intervals into two by the same way. Then, since
dist(iulsulu..., Lol u..)=2t,

||f1 LR ”1 +1(1)

= Hf1 fs ”(1 +e) A+t Hfs 'f7 “(1 +1@) (1 +1(22)

Successive use of the hypermixing property as in the above way leads to

(5.16) Lo dilh
é 1;11 H.f; H A +z@))A +120)...(1+t2m™)
Let ¢(¢)=[1 (z(kt)+1). The RHS converges for each ¢ since
k=1

RHS <exp ( Yot (2"t)> .
k=1
Moreover, since

lim t(i 'c(2"t)>=0,
p

£ o0 =1
lim z-(o(t) —1)< lim z(exp(i 1(2"t)>—1)=0.
o0 - k=1
By (5.16), we get
(5.17) 1 fal i =1 filew - 1 fall oo -

Thus P satisfies (H.1) of hypermixing property.
Step 2. Secondly, we show (H.2). Since
E Ep,=T(A)T(|es,ey,

)s A:ellelz/uehefz”

for closed intervals 1, and I,, and since I'(4) is a contraction on any LP{Q, F, P){cf.
Simon [11]), it suffices to show that

1T @@ gy 2@ o

for every bounded measurable function f with E[f]=0, where c(¢) and ¢(¢) are
decreasing functions such that

lim t(g(#)—1)=0 and lim c(z)=0.

tow t=o0
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Since lim ¢ - 7(#)=0, it is possible to take functions 7'(f) and " (¢) on (0, co) such that
t— o

1(t)=1'(t)*7"(z) and

lim t'(1)=0, lim ¢"(¢/)=0 and lim ' -7'(t)=0.

t—>00 t— o0 [Andc o}

Thus taking ¢(z)=7'(z)'?+1 and c(£)=1"(t)'/%, we have, by Theorem (5.11) and
Lemma (4.10),

IT GOV | gey = [T @V @) @O | gy
S| rE ) rE@)f |,
=cOF@Of |22 f e
for all f with E[f]=0. Thus the lemma is proved. Q.E.D.

(5.18) Theorem. Assume the spectral density matrix f(&)=(f, (&) satisfies for
some ¢>0, 6>0, y=0 and { =0,

|d d
(5.19) d_éﬁc,l(é'i'x) —d—ffk,z(é-l-erh) Zclhl?(1+A)"(1 +1x))*e (&)

forallEeR, xe R and he R, where o(&) is the smallest eigenvalue of f(€). Then P is
hypermixing.

Remark. The idea of the following proof is essencialy due to Kesten and
Papanicolau [5], Theorem 4, and Kolmogorov and Rozanov (cf. Rozanov [10],
Lemma 10.6, p. 189), and so we omit the detailed calculation in the proof.

Proof. From Lemma (5.15), it is sufficient to prove that lim ¢-(z)=0 under the
above condition. t7e
Now we take for any 7> 0 and meN

_, (sinTx\*™
(5.20) g0 =T"c; ( = )
where

. 2m

! (53]
R\ X

and
(5.21) fgz,m(i)=fg£(X) {2fk,z(f+x) _fk,{(é+2x)}dx
Then since L (£)=0 if |t|> T,
(5.22) Tt (=GO ] (=0 if ||>T.

And also, since [gL(&)dE=1,

Sl S m(©) =g (%) (fi /() =2/ ((E+X) +,, (E+2x))dx .
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Let Fe(x)=f; (&) =21 1 (E+X) + [ (€ +2x), then Fr(0)=0 and

=2

d d d
'EQ@ e SuaE 9= faE4 2

21 +1x) (),
and so
[Fe(e)| 274 X o (14 [x])7 0 (8).

Thus if we define f;7,(&) by £, .(¢) for sufficiently large m, we can show that

(5.23) el =ALENSA-T™ Po(8).

Let 7; and 7, be intervals such that dist(J;, )27, and let f=(f)eH;, and
g:(gl)elea (k,l=1,2, 7N) be

fk(g):; ay €% (finite sum), t,el;
9,(&)=Y b, e (finite sum), t,el,.
Then since |¢t,—1,|> T for e:ery t,el; and t,el,
(f.9)u= 1{; IEQEIGHNR
=§ ;mé)g,(é)(fk,z(c)—f&(é))da

Thus by (5.23) and the Schwarz inequality
I(f, @)l 24T I; FAE)19:(D)le(&)dE

1/2
(5.24) éNAT*‘““’O };fk(é)ﬁ(i)fk,z(i)dé>

172
-(5 ; gk(ag,(é)fk,,(é)dé)

NAT™ | f |l g]a-
Now we recall that
t(t) =sup {|e; ez, |lm, dist (7, L) =1}
=sup {(f, @u, FeH,,geHy, | fa=|h]a=1, dist(I,, ,)21}.
Thus (5.24) shows that lim 7-1(¢)=0, and the theorem is proved. Q.E.D.

t—r o0
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