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Summary. This paper  develops a new framework for the study of Markov  
decision processes in which the control problem is viewed as an optimization 
problem on the set of canonically induced measures on the trajectory space 
of the joint state and control process. This set is shown to be compact  convex. 
One then associates with each of the usual cost criteria (infinite horizon dis- 
counted cost, finite horizon, control up to an exit time) a naturally defined 
occupation measure such that  the cost is an integral of some function with 
respect to this measure. These ~easures  are shown to form a compact  convex 
set whose extreme points are characterized. Classical results about  existence 
of optimal  strategies are recovered from this and several applications to mul- 
ticriteria and constrained optimization problems are briefly indicated. 

1. Introduction 

The study of Markov  decision processes on a countable state space (equivalently, 
controlled Markov  chains) usually proceeds from the dynamic programming 
heuristic [-7]. The aim of this paper  is to provide an alternative framework. 
The control problem is viewed here as an optimization problem on the set 
of canonically induced probabil i ty measures on the trajectory space by the joint 
state and control process. This set is shown to be compact  and convex. Next  
one associates with each of the usual cost criteria (infinite horizon discounted 
cost control, finite horizon control, control up to an exit time) a naturally defined 
concept of an occupation measure so that  the cost is the integral of some function 
with respect to this measure. The set of these occupation measures is then shown 
to be compact  convex and its extreme points are characterized. This way one 
recovers all the classical existence theorems for optimal  strategies from a different 
vantage point, uncovering in the process much structure that is not t ransparent  
in the conventional approaches. The latter has important  implications in mul- 
tiobjective and constrained control problems as will be argued in the final section 
of this paper. 
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The notation we use is that of [3], [41. Let Xn, n =  1, 2 . . . .  , be a controlled 
Markov chain on state space S=[-1 ,2 . . . ]  with transition matrix P, 
=[[-p(i,j, ui)]],i, jeS, indexed by the control vector u=[ua,u2, ..-1. Here, 
uisD(i ), isS, for some prescribed compact metric spaces D(/). The functions p(i,j, .) 
are assumed to be continous. By replacing each D(i) by HD(k) and p(i,j,') 
by its composition with the projection HD(k)~D(i), one may assume that all 
D(i)'s are replicas of the same compact metric space D. We do so and let L 
denote the countable product of copies of D. 

For any Polish space Y, denote by M(Y) the space of probability measures 
on Y with the topology of weak convergence. For  n = 1, 2, . . . ,  oo, Y" will denote 
the n-times product of Y with itself. 

A control strategy (CS) is a sequence {~,}, ~ ,=  [~,(1), ~,(2) . . . .  ] of L-valued 
random variables such that for ieS, n> 1, 

P(X.+ I =i/X,., ~,., m<=n)=p(X., i, ~.(X.)) (1.1) 

We say that the controlled chain {X.} is governed by the CS {~.} wherever 
(1.1) holds. If for each n, ~. is independent of X,., m<__n, and ~m, m<n, we call 
{~.} a Markov randomized strategy (MRS). If in addition ~., n > 1, are identically 
distributed, call it a stationary randomized strategy (SRS). An MRS for which 
the law of each ~. is a Dirac measure will be called a Markov strategy (MS). 
Similarly, an SRS for which the law of each ~. is a Dirac measure will be 
called a stationary strategy (SS). The motivation for this nomenclature is self- 
evident. 

If the common law for ~ . , n > l ,  of an SRS {4.} is ~ M ( L ) ,  we denote 
it by V[q~]. In view of (1.1), it is clear that as long as we are interested only 
in the law of the S x D-valued process {(X., ~.(X.))}, n >  1, under an SRS 7[~],  
we may assume �9 to be a product measure on L. Let ~i, ieS, denote the image 
of �9 under the projection from L onto its i-th factor space. (Thus �9 =H~b~ 
in view of the preceding comment). Under ~ [~],  {X.} will be a Markov chain 
with stationary transition probabilities given by the transition matrix P [ ~ ]  
=[[~p(i,j,u)~i(du)]]. If 7[05] is an SS with ~b=the Dirac measure at ~ L ,  
denote it by 7 {~} and the corresponding transition matrix by P {~} = P~. 

Throughout this paper, we assume that the chain has a single communicating 
class under all SRS. This is a convenient assumption to have in the background, 
but can be relaxed to a varying extent for much of what follows, being completely 
unnecessary in some cases. 

Let h: S ~ R  +, k: S x D ~ R  +, 1: NxSxD---~R +, be continuous functions. 
The various cost criteria one typically seeks to minimize over all CS are the 
following: 

(C 1) E fl"k(X., ~.(X.)) , (1.2) 
n 1 

This is the 'discounted cost control problem'. 

(C2) E [ ~ I  I(n, X,,  ~,,(X,,)) + h(XN)], 
n = l  

1 < N < ~ (1.3) 



Convex Analytic Approach to Markov 585 

This is the 'finite horizon control problem'.  

"c-1 

where for some prescribed finite subset A of S, 

z = min {n > 1[Xn ~ A} (=  oe if the set on the right is empty). 

This is called the 'control  up to a first exit time'. 

1 
(C4) lim sup ~ k(Xm, ~,,(Xm)). (1.5) 

n~ rim= I 

This is the ' long run average cost control problem'.  
Of course, one assumes that the cost functional under consideration is finite 

under some CS, the problem being vacuous otherwise. In this paper, we shall 
concern ourselves with (C1)-(C3) only. (C4) has been adequately treated in 
the companion paper [4] (see also [3].). 

The organization of this paper is as follows: Sect. II establishes the compact- 
ness and convexity of the laws of {(X~, ~,(X,))} as subsets of M((S x D) ~ under 
various classes of CS. Sect. I I I -V study the control problems corresponding 
to (C 1)-(C 3) in that order. They follow a standard pattern. First one associates 
an appropriate notion of an 'occupation measure'  for the joint state and control 
process. The attainable set of these measures under all CS is then shown to 
remain the same if one restricts attention to SRS in the first and the third 
case and MRS in the second. Furthermore,  this set is shown to be compact 
convex using the results of Sect. II and its extreme points are shown to corre- 
spond to SS in the first and the third case and MS in the second. The choice 
of these measures is such that the corresponding cost can be written as an 
integral with respect to these measures. In view of the foregoing, this leads 
to the appropriate existence results for an optimal SS (or MS as the case may 
be) in each set-up. (Recall that a CS is optimal if the corresponding cost is 
the minimum cost over all CS.) Sect. VI discusses several potential applications 
of the foregoing to problems arising in multicriteria and constrained optimiza- 
tion of Markov decision processes. 

Given the vast extent of the existing literature on this subject, it is impossible 
to give a decent summary of it in the short span of this introduction. We shall 
content ourselves with referring to the excellent texts [2], [7] as general pointers 
in that direction. 

2. Compactness and Convexity of Attainable Laws 

Let Ac, AMR, AsR, AM, As denote the sets of attainable laws of [(X1, {1 (X1)), 
(X2, {2(X2)), ... ] viewed as subsets of M((S x D) ~ as the control strategy varies 
over all CS, all MRS, all SRS, all MS and all SS respectively, the initial Iaw 
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being held fixed. For  simplicity, we take the latter to be the point mass concen- 
trated on l eS .  In this section, we show that the above sets are compact and 
Ac is convex. 

For  n >  1 and any CS {~,,}, denote by P"({~m},')eM(S) the law of X,  under 
{~,,}, i.e., P"({~m},j)=P(X,=j),jeS, when {X,,} is governed by {~m}- 

Lemma 2.1. For each n>= 1, the set P"({~,,},.) as {~,~} varies over all CS is tight 
in M (S). 

Proof We proceed by induction. The claim is trivial for n = 1. Suppose it holds 
for some n > 1. Let ~ > 0. Pick N > 1 such that 

P(1 <=X~< N, 1 <i<_n)> 1 --~/2 

for all CS. This is possible by the induction hypothesis. For  each ieS and 
u,--* u in D, we have p (i, j, u,)-~ p(i,j, u) for all j e S and hence by Scheffe's theorem 
([1], pp, 224), p(i,',u,)--*p(i,',u) in total variation and hence in M(S). Thus 
p(i,., u), ueD, is tight in M(S). Pick N'(i) such that 

inf ~ p(i,j,u)> l - e / 2  i 
u j ~ N ' ( i )  

Let N = max {N'(1), N'(2) . . . . .  N'(N), N}. Then a straightforward computation 
using (1.l) shows that 

P(1 <=X~<N, 1 <_i<n+ 1)> I - ~  

under all CS. The claim follows by induction. QED 

Theorem 2.1. A c is compact in M((S x D)~176 

Proof Let {X~'}, m >  1, be a sequence of controlled Markov chains governed 
by CS {~,~}, m=> l, respectively, with X]"=I  for all m. By the above lemma 
and compactness of L, the laws of (X~, ~ ) , m > l ,  are tight in M ( S x L )  for 
each fixed n. Hence for 4" = [~ ' ,  ~' ,  ... ], X '~ = X "  [ 1, X~', .. ], the laws of (~m, X"), 
m >  1, are tight in M(L ~176 x S ~ and therefore converge along a subsequence to 
the law of some U ~ x S~ random variable (4 ~176 X~176 Restrict attention 
to this subsequence and denote it by {m} again by abuse of notation. By Skoro- 
hod's theorem ([1], pp. 29), we may assume that (~ ,  Xm), m= 1, 2 . . . .  ,0% are 
defined on a common probability space and (~", X " ) ~ ( ~  ~176 X ~~ a.s. in L ~176 x S ~176 
Let 4 |  [41 ~ ~o . . . .  ], X~~ [Xi  ~ X~ ~ . . . .  ]. Let n > 1. Let f :  S--* R be a function 
of finite support and g: (S x L)"-~R a bounded continuous function. Then the 
function F: (S x L)" + 1 ~ R defined by 

F((xl, ul) . . . . .  (x,+ 1, u,+ 0 ) =  ( f (x ,  + 1)-- ~ p(x,,j, u,(x,))f(])) 
j e S  

g((xl , ul) . . . .  ,(x,,u,)) (2.1) 

is seen to be bounded continuous. For  m = 1, 2, ..., 

E[(T(X'~+ ~)-- ~ p(X~,j, {~(X,))f(j))g((XT, ~') . . . . .  (X ", ~ ) ) ]  =0.  (2.2) 
jeS 
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Letting m--+oo, the continuity of (2.1) implies that (2.2) holds for m=oo .  A 
standard monotone  class argument establishes (1.1) with {X2}, {~2} replacing 
{X,}, {~,}. The claim follows. QED 

Corollary 2.1. AMR, ASR, AM, As are compact in M ((S x D)~~ 

Proof. In the above proof, note that if for m =  1, 2, ..., ~," is independent of 
~", i < n, X~', i < n, then ~,~ will be independent of IF, i < n, X [ ,  i < n, for 
n--1, 2, .... This is because independence is preserved under convergence in 
law. Similarly, if 3]', ~ , - . . ,  are identically distributed for m =  i, 2 . . . .  , then 
~o, ~ ,  ..., will be identically distributed. The statement for AMR, AsR follows. 
The statement for AM, As follows from the further observation that a limit 
of Dirac measures in M(L) is again a Dirac measure. QED 

Remark. Note that the above proofs in fact give the stronger claims that the 
attainable laws of [(X1, ~ 1), (X2, 42), . .-] as measures in M((S x L) ~ are compact 
as the CS varies over all CS, MRS, SRS, MS or SS respectively. However, 
the above weaker version suffices for our purposes. 

Corollary 2.2. The law of IX1, X2,... ] under an SRS 7 [~]  (resp., an SS y {~}) 
is a continuous function of (b (resp., ~) when viewed as a map from the subset 
of M (L) consisting of product measures on L to M (S ~) (resp. L to M (S~)). 

This is immediate in view of the foregoing. We shall establish one other 
corollary in anticipation of its later use in connection with the cost functional 
(C3). Let A c S  be a prescribed finite set and ~',  X", m =  1, 2 . . . .  , oo, be as above. 
Define z"=min{n>_ i IX'2r with z " =  oo when X,  eA for all n. 

Corollary 2.3. z " ~ z  ~ a.s. in [1, 2 . . . .  , oo]. 

Proof. Outside a set of zero probability, X ~ , ~ X [  a.s. for each n. Since these 
m are discrete valued, X , - X ~  from some n onwards depending on the sample 

point. The claim follows quite easily from this. QED 

Theorem 2.2. Ac is convex. 

Proof. Let {X,}, {I1,} be controlled Markov chains governed by the CS {~,}, {~b,} 
respectively with X 1 --I11 = 1. For  n > 1, let Q1, Q2 ~M(S"x D"-1) (with S i x  D O 
= S  by convention) denote the laws of [X1 . . . . .  X, ,~I (Xx)  . . . .  , ~ , - ~ ( X , - t ) ] ,  
[Y1, -.., I1,, 4 t  (Yt) . . . .  , q~,_ 1 (Y,_ 1) ] respectively ([X1], [I11] resp. when n =  1). Let 
~1, e 2 e [  0, 1] with e1+c~2= 1. Let Q , = e l  Q1+c~2 Q2, n >  1. We shall show that 
for each n,Q, is the law of [Z  1 . . . .  Z , , 0 t ( Z l )  . . . .  , 0 ,_1(Z ,_1)  ] for some con- 
trolled Markov chain {Z,} governed by a CS {0.}. This will imply the statement 
of the theorem by virtue of the Kolmogorov extension theorem. We proceed 
by induction. The claim is trivial for n =  1. Suppose it is true for some n >  1. 
Let s=[x l ,  . , . , x , , y l  . . . .  , y ,_ l ]eS"xD"-~(=[x l ]  for n = l )  and 
= Ix1 . . . .  , x,+ 1, Yl, ..-Y,] eS  "+ ~ x D" denote typical elements of the respective 
spaces (to be used as variables of integration). For  i - 1 , 2 ,  let s~/~(s , . ) :  S" 
X D n - t  ---,M(D) denote any one representative of the regular conditional law 

of ~,(X,) (resp., q~,(Y,)) given [X1 , . . . ,X , ,~ I (X1) , . . . ,~ ,_ I (X ,_ I )  ] (resp., 
[I11 . . . .  , Y,,~bl(Y1) . . . .  ,4,_1(Y,_1)]) ,  defined a.s. uniquely with respect to the 
law of the latter, with obvious modifications for n =  1. For  simplicity, take n > 2  
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in the following, the necessary modifications for n = 1 being obvious. Let A ~ S ~ 
A' cS ,  B c D  0-~, B' c D  be measurable sets. Then 

2 

i A' Q o + I ( A x A ' x B x B ' ) =  ~ eiQo+I(Ax x B x B ' )  
i = 1  

2 

= 20:i 2 ~ Qio(ds) ~ P( xn,xo+l,yo)rli(s,dyo)" 
i = 1  X n + I ~ A ' A •  B' 

Define a measure Q~M(S ~ x D ~ by 
2 

Q(A x B • B')= Z c~i I Q',(ds) I q,(s, dyo) 
i = 1  A•  B' 

Note that the image of (~ under the projection S ~ x D ~ S ~ x D ~ ~ is given by 

2 

Z eiQ~=Q, �9 
i = 1  

Thus Q can he disintegrated as 

Q(ds, d yo)= Qo(ds)q(s, d yo) 

where s ~ q (s,-): S ~ x D ~ a __+ M (D) is any representative of the appropriate regu- 
lar conditional law, defined Qo-a.s. By induction hypothesis, Q, is the law 
of [Z1 . . . . .  Zo, Oi(Z1), . . . ,~ ' , - l (Zo-1) ]  for some controlled Markov chain 
Zi, i<n, governed by a CS Oi, i < n - 1 .  By enlarging the underlying probabil- 
ity space of these processes if necessary (e.g. by attaching to it a copy of D), 
construct on it a D-valued random variable O,(Z,) such that the regular condi- 
tional law of ~o (Z,) given Z 1 . . . .  , Z, ,  ~l  (Z1), ..., ~ , -  1 (Zo - l) is 
q([Z1 . . . .  , Zo, Ol (Z1), ..., ~0- i  (Z, -1)], " ). By a further enlargement of this prob- 
ability space (e.g. by attaching to it a copy of S), construct on it an S-valued 
random variable Zo+I such that the regular conditional law of Z ,+ I  given 
Z~ ... .  ,Zo, OI(Za) . . . . .  O,(Zo) is p(Zo,',~',(Zo)). By construction, the law of 
[Za, ...,Zo+~,OI(ZO . . . .  , Oo(Z,)] is Qo+~, completing the induction step. The 
claim follows. QED 

Remarks. We have not bothered here about  the components of ~,  other than 
O,(Zo), n >  1. These can be easily accommodated e.g. by using the trick we 
used in the beginning of the preceding section to replace individual D(i)'s by 
a common space D. 

3. The Discounted Cost Control Problem 

Let {Xo} be a controlled Markov chain governed by a CS {~,}. Associate with 
it the discounted occupation measure vsM(S x D) by 

5fdv = ( f l - 1  _ i) E [ ~ " f ( X , ,  ~, (X,))] 
o 
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for all bounded continuous f :  S x D --+ R, fi being as in (C 1). Let B, BsR, Bs denote 
respectively the sets of attainable v's as the control strategy varies over all 
CS, SRS and SS, the initial law being held fixed. The main result of this section 
is that B = BSR and is a compact convex set with its extreme points lying in 
Bs, which itself is compact. 

Let v'e M (S) be the image of v under the projection S x D--+ S and disintegrate 
V a s  

Sf dv = Z v'({i}) 5 f(i, u) r 
i e S  D 

f as above, where the map i ~  ~bi: S--+M(D) is any representative of the appro- 
priate regular conditional law. The suggestive notation is intentional: We asso- 
ciate with v an SRS 7 [r  where �9 is the product measure Hi ~bi. 

Lemma 3.1. v remains unchanged if we use 7 [-q~] instead of {3,} as the control 
strategy, the initial law being held fixed. 

Proof Let {X;} be a controlled Markov chain governed by 7 [~]  (corresponding 
to, say, {4;}) with the same initial law as {X,}. Let f :  S x D-+R be bounded 
continuous and define g: s-+ R by 

g(i)=E[~,fl"f(X'., ~'.(X'))/X', =i] ,  ieS. 
n 

Then g is bounded and satisfies 

g(i) = fi S f (i, u) ~b,(du) + fi ~ g(j) S p( i,j, u) ~i(du). 
j e s  

(3.1) 

Define 

Then 

Z, =g(XO 
n--1  

Z.= ~ fi'~f(X,.,~m(Xm))+fi~-~g(X.), n>2 
m = l  

W.=Z.+ I - Z .  

-=fl"f(X.,~.(X.))+fl"g(X.+l)-fl"-lg(X.), n>=l. 

E -E[g(Xl)]  =E -/~"E[g(X.+ 03 
= 1 

(3.2) 
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Letting ~,= ~r(X,,, ~,,, re<n), n > 1, the sequence 

m = l  

is a zero mean { ~ +  1}-martingale with bounded increments. Thus 

= E ~m (Sin)) -]- 2 P (Sin, J, ~rn (Sin)) g (J) - ~ -1 g (Sin)) 
jsS 

(3.3) 

Substitute (3.3) in (3.2) and let n--* oe. By the dominated convergence theorem, 
we get 

oo 

" X E[m~__lfl f(  ,~, r 

= E ~m (Sin)) "~ Z p (Sin, J, ~m (Xm)) g (J) -- fl-1 g (Sin) 
jes 

=E If(X,,, u) ex~(clu)+ 2 g(J) IP(Xm,J, u) ~x,~(au)-Ulg(Xm) 
jeS 

(by our construction of ~) 

= 0  

by virtue of (3.1). Thus 

EL~=lfl"f(X.,, ~.,(Xm))]=E(g(XO] 

= E [g (Xl)] 

=EL~=fl'f(X',, ~'n (X',))J 

The claim follows. QED 

Theorem 3.1. MsR = M and is compact convex. 
Proof Follows immediately from Lemma 3.1 and Theorems 2.1, 2.2. 

Theorem 3.2. Ms is compact and the extreme points of MsR lie in Ms. 

QED 
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Proof. The first claim follows from Corollary 2.1. Let ~[~]  be an SRS with 
~ = / / , ~  such that for some keS, the measure ~p(k,',u)cI)k(du)eM(S) is not 
an extreme point of the convex set {~p (k,', u) # (d u), # e M (D)} ~ M (S). This means 
that there exist c~e(0, 1), u~, u2eM(D) such that 

~k ~- r +(1 - ~)#2. 

~p(k,j, u)# i (du) t- ~p(k,j, u)#2 (du) for some jeS. 

By relabelling S if necessary, take k =  1. Define ~o, O~M(L) by q0--#1 x Hi> 2 cI)i, 
0 = # 2 x / / ~ > 2 ~ i .  Let rI~M(S), identified with an infinite row vector 
q-=-[t/({1}),~({2}), .. .]. Let P " [ ~ ] , n > l ,  denote the n-times matrix product of 
P [ ~ ]  with itself. Take m >  1 such that the first element of q P " -  ~ [q~] ( = P ( X , , =  1) 
where {X,} is a controlled Markov chain governed by 7 [~] with initial law 
17) is strictly positive. By our assumption of a single communicating class, such 
an m exists. Let Vl, v2, v a denote respectively the discounted occupation measures 
associated with the controlled Markov chain with initial law t/ and governed 
by (i) the SRS 7 [r (ii) the MRS {~,} where the law of ~, is ~b except for 
n = m, when it is cp, (iii) the same with ~ replacing (o. We shall show that 

vl=C~Vz +(1--cQv 3 (3.4) 

Let f :  S x D--.R be bounded continuous and define fe:  S ~ R  by 

f~(i) = ~f(i, u) ~bi(du ), itS. 

Define f~o,fo: S ~ R  analogously. Identify fe  with the infinite column vector 
f ,  = [f~ (1), f~ (2) . . . .  ] T and similarly for fo, f4," Then 

(fi- l -1 ) -  l ~f dvt= ~ flntlp"- l [~bJf,~ 
n - 1  

= ~. fl"ttP"-l[~]fe+fl"tlP"-l[@]f,~+ 
n = 1 n i n o n +  1 

~ ' , T P  " -  ~ [ ,~]f~,  (3.5) 

with analogous expressions for ( f i - l_  1)-l~fdvi, i=  2, 3. But 

qp,,-1 [~ ] f~  = c~ r/P"- 1 [r f~ + (1 -- cOtlP"- i [q>] f~, (3.6) 
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and for n > m, 

qP" [~]fm = c~ q P"-~ [~ ]  P [(p] p. -m [qS] fm 

+ (1 - ~ ) . P ' - *  [~ ]  P [0]  P ' -  ~ Ira] f~. (3.7) 

Substituting (3.6), (3.7) in (3.5), (3.4) follows. Next we show that v 2 ~ v 3 . It suffices 
to show that v~ + v~ where for i = 2, 3, v'i is the image of v under the projection 
S x D-.S. Note that the space l ~ of bounded f :  S ~ R  (with supremum norm) 
separates points of M(S) in the sense that t l, = t/2 in M(S) if and only if ~fdqt 

=~fd~12 for all f~ l  ~ Note also that ~ fl"P"[~] as a map from l ~ to 1 ~ 
n = O  

is invertible with inverse I - t i P  [~],  I being the infinite identity matrix. In view 
of these and the explicit expansions for ~fdv~, i=2 ,  3, along the lines of (3.5), 
it suffices to check that 

t /p~-  1 [q~] p [ (p]f  =# q p ~ -  1 [~b] P [ O ] f  

for some f e l  ~, written as a column vector I f ( l ) ,  f(2), ... IT. Since (#, ~ coincide 
in all their factors except the first and since the first component  of t/P m- t [~]  
is strictly positive by our choice of m, this reduces to 

f(j)~p(1,j, U)#l (du) 4= ~ f(j)~p(1,j, u)/~2 (du) 
j~S j~S 

for some f e l  ~ which is certainly true. Thus 112:~V 3 and hence v 1 cannot be 
an extreme point of N = ~sR. It follows that if the discounted occupation mea- 
sure for some SRS 7 [~]  with �9 = Hi q~i is an extreme point of ~SR, then for 
each iES, the measure ~p(i,., u)~b~(du)~M(S) is an extreme point of the convex 
set {~p(i,', u)l~(du), #era(D)} c M(S). Since the set of extreme points of the latter 
set is contained in {p(i,.,u),usD}, it follows that P [ ~ ] = P { ~ }  for some 
~ L .  QED 

Note that we have in fact the stronger claim that the extreme points of 
N'=g~SR correspond to 7{~},~=[~(1),~(2), . . .] ,  for which p(i,.,~(i))is an 
extreme point of {p(i,', u), u~D} for each ieS. This is a necessary condition. 
It is not clear whether it is also sufficient, i.e., whether all 7 {~} satisfying the 
above extreme point property for transition probabilities lead to v which are 
extreme points of N. 

Theorem 3.3. The control problem with (C 1) as the cost criterion has an optimal 
SS which is optimal for any initial law. 
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Proof. (1.2) is of the form 

(fi --1 __ 1) --1 S k d v = ( f i - 1  _ 1) - 1  s u p  ~ (klaN) d v 
N 
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and is thus a lower semicontinuous function of v. By Theorem 3.1, an optimal 
SRS ? [ ~ ]  exists. Let ,7 be the discounted occupation measure corresponding 
to 71-q~] and Ne the set of extreme points of ~ .  Then by Choquet's theorem 
[51, 

Skd, = S d ( )(Skdv) 

for some kteM(Ne). Since 5kdv>Skd~ for all yeN, it follws that 5kdg=Skdv 
for some Ve~e. The claim now follows from Theorem 3.2 when the initial 
law is fixed. Let 7{~-} be an optimal SS for the initial law t/. Suppose it is 
not optimal for some other initial law. Then it is easy to see that for some 
ieS and {'eL, the chain starting at Xl=i and governed by ?{3'} has a strictly 
lower cost than the one governed by ?{4} with the same initial law. Let m >  1 
be such that the i-th component of ~pm-1 {4} is strictly positive. Let {X,} be 
a controlled Markov chain with initial law ~ and governed by the CS {4,} 
defined by ~ = t h e  Dirac measure at ~I{n<m}+~I{n>m,X,,.i}+~'I{n 
>m,X,,=i}, n >  1. Let {X'.} be a controlled g a r k o v  chain governed by ?{{} 
and with initial law ft. Then 

-}-E[[{Xm,i } k(Xn, ~(X. +E[I{X,~=i 

The first two terms on the right are unchanged if we replace {X,} by {X',} 
and the third becomes strictly larger. Thus {4,} gives a strictly lower cost than 
7 {4}, a contradiction. The claim follows. QED 

Remarks. It is not hard to recover the dynamic programming equations from 
the above. 

4. The Finite Horizon Control Problem 

In this and the next section, the development closely parallels that of the preced- 
ing section. To emphasize this analogy and economize on notation, we duplicate 
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much of the notation of the preceding section here and again in the next section. 
We shall also omit details of the arguments used when they are routine modifica- 
tions of those employed earlier. 

Let N > 1 be as in (C2). Let B = {1, 2, ..., N}. Let {X,} be a controlled Mar- 
kov chain governed by the CS {4.}- Define the 'finite horizon occupation mea- 
sure' veM(B x S x D) by 

~fdv = 1  ~ E[f(m,X.,,~,.(Xm))] 
m = l  

(4.1) 

for bounded continuous f :  B x S x D-+R. Let N, gMR, NM denote respectively 
the sets of attainable v's as the control strategy varies over all CS, all MRS, 
all MS, with the initial law held fixed. Let v' denote the image of v under 
the projection B x D x S ~ B  x D and disintegrate v as 

N 

~fdv = ~ ~ v'({(m, i)}) ~f(m, i. u) O,..,(du) 
m = l  i ~ S  

for bounded continuous f :  B x S x D - + R ,  where the map (m,i)--+0,,,i: B x S  
~M(D) is any representative of the regular conditional law (defined v'-a.s.). 
Let Ore=Hi Om, ieM(L) for m >  1. Let {X',} be a controlled Markov chain gov- 
erned by an MRS {4',} where the law of 4', is g,, for each n, with the same 
initial law as {X,}. 

Lemma 4.1. v defined by (4.1) remains unchanged if {X,}, {4,} are replaced by 
{X;}, {4'.} respectively. 

Proof Let f :  B x S x D-+R be bounded continuous. Define g: B x S ~ R  by 

] i t ! �9 g (m, i) = e n, X ' . ,  4 . ( X . ) ) / X , .  = t ,  
n=tn  

l<m<_N. 

Also, let g(N+ 1, i)=0, itS. Then g is bounded and satisfies 

g(m, i)= [. f (m, i, u) Om, i(du) + ~ g(m + 1,j) ~ p(i,j, u)~k,.,i(du) 
jeS 

(4.2) 

for 1 <_m<_N, itS. Define 

Z1 =g(1, X1) 
,'1--1 

Zn= ~ f(m, Xm,~m(Xm))+g(n, Xn), 2 ~ < n - < N + l  
??1~1  

Wit = Z . +  1 - - Z .  

=f(n, Xn,~.(X.))+g(n+l, Xn+O-g(n,X.), l<n<_N 
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Then 

E 
N 

with {~-,} as before. This equals 

N 

E Xm, ~m(Xm)) + ~ p(Xm,j, ~m(X,~))g(m + 1,j)--g(m, Xm) ) 
j~S  

= E Xm, U)fflm.xm(dbl)Ar- ~, g(m+ 1,j) 
j~S  

�9 ~p(Xm,j, u) qJm,x,,(du)-g(m, Xm))] 

(by the definition of Ore, i) 

= 0  

by (4.2). Thus 

E 
N 

= ~ [g(1, x '~ ) ]  

=E[~= f ( n X  ~ ,  ,,' ,'(X))],' . 
n 1 

The claim follows. QED 

Theorem 4.1. For a fixed initial law, ~=NMR and is compact convex with its 
extreme points in NM which itself is compact. 

Proof This follows along the same lines as Theorems 3.1, 3.2 in view of the 
preceding lemma. The only significant change required is in the part of the 
proof of Theorem 3.2 where one proves v 2 =~= 113 . Instead of considering bounded 
f:  S ~ R  as there, consider now bounded f :  B x S ~ R  and then further restrict 
them to those which vanish outside {re+l}  x S for m as in that proof, The 
rest is easy. QED 

Theorem 4.2. The control problem with (C2)  as the cost criterion has an optimal 
Markov strategy with the property that for any me B, the restriction of this strategy 
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to the time interval {nlm<n<N} is optimal for the control problem with the 
cost criterion 

,] E l(n, X, ,  4, (X,)) + h(Xu 
n = m  

with arbitrary initial data. 

Proof Define f :  B x S x D --* R by 

f(m,i,u)=l(m,i,u), l < m < N  

f(N,  i, u) = h (i). 

Then (1.3) equals NSfdv.  Now argue along the lines of Theorem 3.3. QED 

Corollary 4.1. For {x .} ,  {x;} as in Lemma 4.I, the laws of X n, X'n agree for 
each n, 1 < n <_ N. 

Proof Take f(m, i, u) =f( i )  for m = n, 0 otherwise, f being an arbitrary bounded 
map S ~ R .  Then E[f(X,)]  =E[f(X',)] by Lemma 4.1 and the claim fol- 
lows. QED 

Repeating this argument on successive time intervals { j N + I  . . . .  , ( / '+I)N}, j 
=1 ,2 ,  ..., it follows that for any controlled Markov chain governed by an 
arbitrary CS, there exists another controlled Markov chain governed by an 
MRS having the same one dimensional marginals. 

5. Control Up to an Exit Time 

Let A, z be as in (C 3). (See (1.4)). Before establishing the analogs of the results 
of Sect. III, IV for (C 3), we shall first establish certain uniform moment  bounds 
on ~. Note that without any loss of generality we may assume the initials law 
to be supported in A. 

Lemma 5.1. There exists an N>= 1 and ~ ( 0 ,  1) such that 

sup P(z > N) < c~ 

where the supremum is over all CS and all initial laws supported in A. 

Proof Suppose not. Then there exists a sequence of controlled Markov chains 
{X2}, m = 1, 2 . . . .  , governed by CS {{~'}, m = 1, 2 . . . . .  resp. with initial laws sup- 
ported in A and satisfying: If zm=min {n> 1 rX'2r (=  oo if X2eAVn), then 

P(~m>m)> 1 - ~ 1  , r e = l ,  2 . . . .  
m 

By dropping to a subsequence if necessary and invoking Skorohod's theorem 
as in the proof  of Theorem 2.1, we may assume that these chains are defined 
on a common probability space and there exists a controlled Markov chain 
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{X, ~} governed by a CS {{[} with initial law supported in A such that 
[X'~,X"d, ..., ~ ,  {"d, ...]--+[-X~, X~, ..., {~, {~, . . . ]  a.s. Since 

J 

�9 1 re, j =  1,2 . . . .  , 

a straightforward limiting argument shows that ~c~ = min {n > 1 [X~ r A} (=  oo 
if X2  eAVn) satisfies 

P(z~  > m ) >  1 - 1 ,  m =  1,2, ... 
r n  

This implies that -c~~ a.s., i.e., X , ~ A  for all n, a.s. This is possible only 
if there exists a nonempty subset G of A such that for ie G, jq~ G, 

infp (i, j, u) = 0. 
u 

Given our hypotheses on p(i,j,.) and D, this infimum is a minimum attained 
at some point in D. But this means that one can construct an SS V {~} under 
which a chain starting in G never leaves G, contradicting our assumption of 
a single communicating class. The claim follows. QED 

Corollary 5.1. For n = 1, 2, ..., 

sup E [(z)"] < 0% 

where the supremum is overall CS and all initial taws supported in A. 

Proof Let {X,} be a controlled Markov chain governed by a CS {4,} with 
X l e A  a.s. and let z be its first exit time from A. Then for N, e as in Lemma 
5.1, 

nN 

= e  e Fl I{Xm~x}/g~._l~N 171 I { X m ~ A }  
k L r a = ( n - - 1 ) N + l  i = 1  

= e [P(~ > nN/~-c ._  ~)~)/{~ > (n - 1 )N}]  

<=c~P(~ >(n--1)N) 

where {~,~,} are defined as before. Iterating, 

P('c>nN)<=~". 

The claim follows easily from this. QED 
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In particular, E [z] < oo. Thus given a controlled Markov chain {X,} gov- 
erned by a CS {~,} with X l e A  a.s., we can associate with it the 'occupation 
measure up to the first exit from A', denoted veM(A x D), by 

s..=.[5/I-..,.<,,].,.,-,, (5.1) 

for bounded continuous f :  A xD--+R. Let v'eM(A) be the image of v under 
the projection A x D-+A and disintegrate v as 

~f dv= ~ v'(i)~f(i, u)O,(du ), 
i~A 

f being as above, where the map i-+Oi: A-~M(D) is any representative of the 
regular conditional law (defined v'-a.s.). Let ~=Fliq)ieM(L) with @~=g'i for 
leA, arbitrary otherwise. Let {X',} be a controlled Markov chain with the same 
initial law as {X,} but governed by the SRS 7[-~], with {4',} denoting the 
actual control sequence. Let z' = min {n > 1 IX', q~A} (=  oo if X', e A for all n). 

Let h4(A x D) denote the space of finite nonnegative measures on A x D 
with the coarsest topology that makes the maps # e M ( A  x D)--+Sfd#eR continu- 
ous for continuous f :  A x D--+R. For v as in (5.2), define ge~r(A x D) by 

5f dg= (E [z] -- 1)~f dv (5.2) 

[" ] =E ~ f(X,,~,(X,)) , (5.3) 
-n  = 1 

f being as before. 

Lemma 5.2. g defined by (5.3) is unchanged if {X,}, {{,}, z are replaced by 
{X'}, {{;}, *' respectively. 

Proof Let f :  S x D ~ R be bounded continuous. Define g: S--* R by 

"~51 f iX , ,  ~n(Xn))/X1 g(i) = E . . . .  = i], i~A 

= 0, otherwise 

Then for ieA, g(i) satisfies 

g(i)=Sf(i, u)~i(du)+ ~, g(j)Sp(i,j, u)@i(du) 
jeS 

Define 
Z1 = g(XO 

n - - 1  

Z. = ~ f(Xm, 4,. (X,.)) + g (X.) 
m = l  

W,=Z,+I - Z ,  
=f iX, ,  {,(X,)) + g(X,+ ,)-g(X,). 

(5.4) 
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Then 

�9 -1 ))] 
E[~=f(X,.,~m(X,. - E  [g(Xl)] 

= 1  

"c - -1  

T - 1  
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by a straightforward application of the optional sampling theorem, since 
n 

(W,.--E[W,,/~]), n =  1, 2 . . . . .  is an {~,~+ 1}-martingale. The right hand side 
m = l  

equals 

E ~ (f(Xm, {,,(Xm))+ ~ g(j)p(Xm,j, ~,,(X,,))-g(Xm)) 
- m  = 1 j e S  

~--1 

(by the definition of 4~) 

= 0  

by (5.4). Thus 

= E [g  (x ' , ) ]  

'~ ' -  1 

The claim follows. QED 

Let N, NsR, ~ s  denote the sets of attainable g as the control strategy varies 
over all CS, all SRS and all SS respectively, with the initial law being held 
fixed at some I/eM(A). 

Theorem 5.1. ~ = N s n  and is compact convex with its extreme points lying in 
~s which itself is compact. 

Proof Lemma 5.2 implies that N = NsR. Convexity of ~ is immediate from 
Theorem 2.2. Let {X,"}, {4,"}, m =  1, 2 , . . . ,  oo, be as in the proof of Theorem 
2.1 with the initial law now set equal to q. Define r", m = 1, 2, ..., 0% correspond- 
ingly as in Corollary 2.3. Let f :  A x D--+R be continuous. By Corollary 2.3, 

g m -  1 1:~176 -- 1 

y" f (X . ,  ~. (X~)) ~ f (X2,  ~2 (X2)) 
n = l  n = l  

a . s .  
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By Corollary (5.1), {z", m >  1} are uniformly integrable. Thus we can take expec- 
tations in the above to conclude that 

r,~- 1 m m m ] ~ [ - ~  - 1 oe ] 
E [ E f ( X , ,  ~, (X,))l E / Z f ( X , ,  ~,~ (X,~)). 

k n = l  A k t t = l  

The compactness of ~ follows. That of Ns follows by the same additional obser- 
vations as in the proof of Corollary 2.1. The proof that the extreme points 
of ~SR lie in Ns follows along the lines of the proof of Theorem 3.2 with some 
important modifications, which are given next. Let PI [(b] denote the matrix 
whose (i,j)-th element equals that of P [ ~ ]  when i, j e A  and is zero otherwise, 
where A ~ A  is the set {ieA] the i-th component of t/P'~[~] is >0  for some 
m > 1} ( = {i ~ a I P (X,,A, = i) > 0 for some m > 1 } where {X,,} is the chain governed 
by ~ [#]  with initial law t/). Clearly, tt is supported in A. Note that the transition 
probabilities p(j, ' ,-) for j r  may be changed arbitrarily without affecting v. 
In particular, they can be set equal to those corresponding to some SS. Thus 
we only need repeat the argument of Theorem 3.2 for A, P1 [-~] replacing S, P [~b] 
respectively with fl = 1 (which is okay because P~ [#]  is a strictly substochastic 
matrix). The details are omitted. QED 

Theorem 5.2. For the control problem with cost criterion (C3), an optimal station- 
ary strategy exists which is optimal for arbitrary initial data. 

Proof Define f :  A x D ~ R by 

f(i, u) = k (i, u) + ~ p (i, j, u) h (j) - h (i) (5.5) 
j s S  

Then 

i [k(Xm, ~m(Xm))+ h(Xm+ ~)- h(X.,) - f ( X m ,  ~,,,(X,,,))-], 
r n = l  

for n = 1, 2 . . . .  , is an {~+  ~}-martingale with zero mean and a simple application 
of the optional sampling theorem shows that (1.4) equals ~fd ~ - E  [h(Xa) ]. The 
rest of the proof follows along the lines of that of Theorem 3.3 with a few 
minor modifications. QED 

For {X,}, {X',}, z, z' as in the proof of Lemma 5.2 and f as in (5.5) with 
k identically equal to zero, we have 

l - ~ - 1  1 I - r ' - I  1 

E / 2  f(xm, / Z(x-, 
k i n =  1 �9 L m =  1 A 

It is easy to see that this leads to 

E [h (X33 = E [h (X;,)] 

implying that X~, X'~,, have the same law. (Compare this with Corollary 4.1). 
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6. Applications 

In this section, we shall briefly indicate some situations, several of them arising 
from multiobjective or constrained optimization problems, where the foregoing 
theory offers some immediate insight. We shall confine ourselves to the dis- 
counted cost set-up. The analogs thereof for the other two (or even mixed) 
situations will be self-evident. Let v denote the discounted occupation measure 
for some tie(O, 1), defined as in Sect. III. 

Let ki: S x D -~ R, 1 __< i _-< n, be bounded continuous and F: R" --. R continuous. 
Suppose we want to minimize F(Skdv .... ,Sk, dv) over all CS. By Theorem 
3.1, an optimal SRS exists. If we are able to show the extreme point property 
for this SRS by some means, an optimal SS will also exist. 

A typical situation is F(xl, ..., x , ) = m a x { x l ,  ..., x,}. A related criterion is 
I/v-#ll  where #~M(SxD)  is prescribed and II" II denotes the total variation 
norm (i.e., we want the occupation measure to approximate a prescribed distribu- 
tion as closely as possible.). This can be rewritten as 

sup(~fdp-~fdv)  

where the supremum is over all continuous f :  S x D ~ R  satisfying sup~,,lf(i, u)l 
-- 1. Since this is a lower semicontinuous function of v, an optimal SRS exists. 

Another  analogous situation arises as follows: Suppose several optimal SRS 
exist for the cost criterion (C1) (with, say, bounded k for sake of simplicity). 
One may want to pick from among those the SRS that minimizes the 'variance'  
of the cost given as 

~k2dv-(~kdv) 2 (6.1) 

This fits the above framework with n = 2, kl = k  2, k2 = k and F(x, y )=x-y2 .  The 
set of v corresponding to optimal SRS is easily seen to be compact. Thus an 
SRS that further minimizes (6.1) exists. 

A somewhat different situation arises when for {ki} as above, one wants 
to minimize ~kl dv with the constraints ~k~ dveAi, 2 <i< n, for some prescribed 
closed subsets {Ai} of R. Again the existence of an optimal SRS follows from 
Theorem 3.1. 

Suppose instead that we have a vector cost [~k~ dr, ..., Sk, dr] and we know 
its value for a finite collection of CS. Then any value lying in the closed convex 
hull of these will also be attainable for some SRS by virtue of Theorem 3.2. 
Such considerations may be useful in implementational schemes which start 
with a few educated guesses and use some recursive adaptation to zero in on 
the desired strategy. For  a work in this spirit (albeit with a different cost criterion 
viz. (C4)), see [6-1 where a similar situation arises from a constrained optimization 
problem. 

When the only optimal SRS available is not an SS, one may still want 
to approximate it by a convex combination of finitely many SS in a suitable 
sense for implementational ease. For  example, one may want to approximate 

the v corresponding to the above SRS by ~ a~v~ where cq~[-O, 1], l<=i<=n, 
i=1 
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, ,  
wi th  ~ 0~i~--1 and  v i are  the  d i scoun ted  o c c u p a t i o n  measures  c o r r e s p o n d i n g  

i=1 
to some SS 7{~i}, 1 <iNn, respect ively.  One m a y  then  e i ther  p ick  SS 7{r wi th  
p r o b a b i l i t y  ei based  on  some r a n d o m  expe r imen t  pe r fo rmed  be fo rehand  o r  in ter -  
lace the  7{~i}'s a long  the t ime axis in a su i tab le  m a n n e r  ( ' t ime-mul t ip l ex ing ' )  
to o b t a i n  the des i red  result .  (Again,  see [6]  for a represen ta t ive  s i tua t ion  in 
connec t ion  wi th  (C4).) T h e o r e m  3.2 m a k e s  such a p p r o x i m a t i o n s  possible .  

T h e o r e m  3.1 a lso  gua ran tees  an o p t i m a l  CS for genera l  cost  cr i ter ia  of  the  
type  

E I F ( I X  1 , X2,  . . . ,  ~, ( X 0 ,  r (X2) . . . .  ])3 (6.2) 

for a lower  s emicon t inuous  F :  S ~ x D ~~ ~ R  such tha t  (6.2) is finite for a t  least  

one CS. 
F ina l ly ,  the  a u t h o r  w o u l d  l ike to m e n t i o n  tha t  the p r inc ipa l  r a i son  d 'e t re  

for this  w o r k  is the  hope  tha t  the  techniques  of  convex  analys is  can  be m a d e  
to  have  a d i rec t  a n d  fruitfuI bea r ing  on  the  difficult p rob Iems  of  M a r k o v  dec is ion  
processes  such as mul t i c r i t e r i a  and  cons t r a ined  op t imiza t ion .  The  resul ts  here 
are  only  a smal l  beg inn ing  in this  d i rect ion.  
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