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Summary. Let B be a uniformly convex Banach space, X a B-valued random 
variable and k a given positive integer number. A random sample of X is 
substituted by the set of k elements which minimizes a criterion. We found 
conditions to assure that this set converges a.s., as the sample size increases, 
to the set of k-elements which minimizes the same criterion for X. 

1. Introduction 

Sometimes we are confronted with situations in which we must choose a simple 
random variable (r.v.) in instead of a more complexe one (for instance a continu- 
ous r.v.). This happens, e.g., when we try to transmit a continuous signal through 
a channel which only admits a finite number of states. 

The general problem is of the following type: Given the r.v. X, at the first 
stage, we choose a finite set, H, (with a previously given number of elements) 
and then to each value x, of X, we must associate an element H(x) in H. 
Both choices must be made in such a way that the mean discrepancy between 
x and H(x) becomes as short as possible. This process is sometimes called 
quantization. 

To be more precise: Let B be a Banach space, k a fixed positive integer 
number and X a B-valued r.v. defined on the probability space (f2, a, #). Let 
H =  {ha . . . .  , hk} c B  and 50= {S 1 . . . .  , Sk} a Borel-measurable partit ion of B. Now 
we define the map Fin; so: B--+ B by 

k 

Fire so (x) = ~ hi" Is, (x) 
i=1 

(where 1 A denotes the indicator set function of A) and the discrepancy between 
x and Hmso(x ) by g)(l[x-HH;so(x)[]). Where ~: N. + --+N+ is a suitable nondec- 
reasing function. We try to select Ho and 0% which minimize the mean value 
of ~([Ix-Ilmso(x)ll), i.e. 

q~([IX-Fi//o; soo(X)]l) d/t--  inf ~ q'(llX-Flmso(X)H ) d/t (1) 
//;so 
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Note that the nondecreasing character of 4~ implies that for each set H 
={hi . . . .  ,hk}cB there exists a best partition 5Pn={S1 . . . .  ,Sk} with a minor 
discrepancy given by 

SI -- {xeB/l[x-h~ll < Ilx-hjrl ; j= 1,..., k} 

S i -={xeB/ l lx-h[[<l lx-hf l ; j - -1  .... .  k}-Si_~; i = 2  . . . .  ,k. 

Consequently it is sufficient to consider the set H and we can ignore Sen 
in the notation. A set H0 verifying (1) will be called a k-mean or 4~k-quantizer, 
indistinctly. 

A study of the quantization problem appears in [8] which is a special issue 
devoted to this topic. 

Moreover, if X is #-essentially bounded, we can consider a different method 
of quantization: choose the set H o =  {hi . . . . .  hk} which minimizes the maximum 
discrepancy, i.e. H0 should be that 

ess sup II x - / 1 ~  o (x)II = inf(ess sup/I x - / ~ ( x ) / I ) .  
H 

This expression coincides with 

ess sup( inf I IX-  hll) =inf[ess sup(inf IlX-h]l)]. 
h~Ho H h~H 

(2) 

Such a set is called a best k-net (see Garkavi [5]) for all cases of k but 
if k = 1 it is called a Chebysev Center (CH-center in shortened form). Best k-nets 
can be considered as a particular case of k-means despite of the difference be- 
tween (2) and (1). 

In this paper we prove the Strong Law of Large Numbers (SLLN) (i.e. 
the a.s. consistency) for a wider class of k-means and for best k-nets. The tech- 
nique employed is that of Cuesta and Matran [2] which relies on the Skorohod 
Representation Theorem for weak convergence of measures in Polish spaces. 

We know some references about the SLLN for k-means for N~"-valued ran- 
dom variables (Pollard [10] and Cuesta [1]) and for r.v. valued on compact 
metric spaces (Sverdrup-Thygeson [13]). Our results, perhaps with some minor 
technical modifications, cover both cases. 

At present we do not know of any references on the SLLN for best k-nets. 

2. Notation and Preliminary Results 

In this paper, (f2, a,/~) is a probability space, (B, H-  IP) is a uniformly convex 
Banach space and fl is the Borel a-algebra on B. The term/3-valued random 
variable (r.v.) will be reversed for denoting a strongly measurable B-valued func- 
tion (see Diestel and Uhl [4], p. 41) defined on some probability space. Let 
Px be the probablity measure induced by a B-valued r.v., X, on (13, fl). It is 
well known that there exists a unique smallest closed set in B with Px-probability 
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one. This set is denoted by S(X) and is called the support  of Px, or even, with 
an abuse of language, the support of X. Recall that S(X) is separable. 

]L -II  
Convergences in B will be denoted by ~ ,  or simply ~ for strong 

w 

convergence and ~ for weak convergence. The topological dual space of 
B is represented by B*. 

A property of uniformly convex Banach spaces is the existence and unique- 
ness of CH-centers for bounded sets in B: Given the bounded set A in B, 
there exists a unique Xo in B such that sup HX-Xo][ = inf(sup Nx-yH) (see Holmes 

x~A yEB xEA 

[7], p. 187). According to the introduction, for a #-essentially bounded r.v. X, 
their CH-center coincides with the CH-center of S(X) (which is, of course, 
bounded in this case). Note that the CH-center of X is defined as the only 
element H~ in B that verifies 

ess sup k[X--/7oo ]L = min (ess sup 11 X -  h [I). (3) 
hsB 

If we denote by Loo(B)-Loo(f2, a,#,B) to the Lebesgue-Bochner space of 
essentially bounded B-valued r.v. and by II-  [1 ~ to its usual norm, then from 
(3) we obtain that H~  is the unique L~-metric projection of X onto B, i.e. 

IlX-lI~ll~<llX-hlloo; h~=II~. 

From now on ~ : IR + ~ IR + will be considered continuous and nondecreasing 
such that (w.l.o.g.) ~ ( 0 ) = 0  and a k-mean will be a "k-set" H = { h l ,  ..., hk}cB 
verifying (1) or, what is the same, 

I4~(inf JlX-hill)dl~<=I~(inf JbX-gill) d# 
higH gieG 

for all k-set G = {gl, --., gk} c B. 
If we assume that ~ ( i n f  IlX-g~ll)d~(oo for some k-set, G, in B it is easy 

gi~G 

to show, with similar techniques to those which will be employed in the proof  
of Proposition 2, the existence of k-means. For  k = 1, the existence of 1-means 
(or best ~-approximants) was proved by Herrndorf  [6] for a large class of 
Banach spaces and functions ~. 

The minimum values in (1) and (3) will be denoted by vk(x) and vk(X) 
respectively. 

The Skorohod Representation Theorem for weak convergence of measures 
on Polish spaces (see Skorohod [12]) will be the key in all the proofs in this 
work. 

Skorohod's Representation Theorem 

Denote by (W, e,/) the probability space where W= (0, 1), e consists of the Bore1 
subsets of (0, 1) and 1 is the Lebesgue measure. Let {P~}, be a sequence of proba- 
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d 
bility measures with separable supports defined in the Borel sets in B. If P, > Po 

(this denotes for weak convergence of measures) then there exists a sequence 
Yo, Y1, Y2 . . . .  of B-valued r.v. defined in (W, ~, l) such that 

a) Py=P,;  n = 0 , 1 , 2 , . . ,  and 

b) I1, ~ Yo l-a.s. 

3. SLLN for k-Means and Best k-Nets 

In this section we prove the SLLN for k-means and best k nets (thus for CH- 
centers). The proofs will be based on the Skorohod Representation Theorem 
(and more specifically in Proposition 9 below) adding a "~-continui ty" similar 
to that Lp-continuity employed in [2] to prove the SLLN for the p-means. 
In fact, the results in subsection A tend to establish this ~-continuity while 
subsection B is devoted to establishing the SLLN's quickly. 

A k-mean (resp. a best k-net) of X exists as long as ~ ~(inf  HX-g[[)d# < oe 
g ~ G  

for some k-set G in B (resp. as long as S(X) is bounded, see Singer [11]). 
In particular this guarantees the existence of sample k-means and sample best 
k-nets. 

Recall that ~: IR + ~ R  + is assumed to be nondecreasing, continuous and 
such that ~(0)=0.  

A. Auxiliary Lemmata 

Some additional notation for this subsection is the following: {Z,}~=o, Z,:  f2 
~ B ,  is a sequence of B-valued r.v.'s for which vk (z , )<oe ;  n=0 ,  1,2, . . . .  A 
k-mean (not necessarily unique) of Z ,  will be denoted by H,  = {h7 . . . .  , hl} and 
we say that H,  converges (resp. converges weakly) to Ho when there exists 
a labeling h7 . . . . .  , hi"~ of the points in H,;  n = 0, 1, 2, 3, such that h". -----~h9 

. . . . .  z j  n -~  o~ " " t j  

(resp. weakly) for j = 1, ..., k. 
The following lemma shows that the defined convergences verify the, some- 

times called, Urysohn condition. We use it frequently. Note that the proof 
remains valid for any Banach space. 

Lemma 1. Let {H,}~=o a sequence of k-sets in B. Then H,  converges (resp. weakly) 
to Ho as n ~ oo iff every subsequence of {H,} admits a new subsequence which 
converges (resp. weakly) to Ho. 

Proof Because the strong convergence, in the mentioned sense, is metrizable 
(it is equivalent to Haussdorff-distance convergence) we will only consider the 
case of weak convergence. 

The necessary condition obviously holds. Hence we assume that {H,} verifies 

the above condition for showing H,  w >Ho. 
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Let  H , =  {hT, . . . ,  h~}; n = 0 ,  1, 2, . . . .  F r o m  the H a h n - B a n a c h  T heo rem we 
deduce the existence of f l ,  . . . ,  fk e B* such that  

f~(h~ ~ for  j ~ i ;  i=1 ,  . . . ,k .  (4) 

We need to choose a good  labeling in each H , ,  n = 1, 2 , . . ."  Let  n > 1 and 
let n(1) be the smaller i such that  

Ifl(hT)-f~(h~ < [fl(h~)-fl(h~ for j=l= i. 

We  prove  that  

h~"(1) w hO" 

vp 

Suppose,  on the contrary,  tha t  h~(l~ / , h  ~ Then  there exists f eB* ,  e > 0  

and a subsequence which we denote  as the original one such that  

If(h~,(1))-f(h~ > e for all n. (5) 

F r o m  the hypotheses,  there exists a " sub-subsequence"  {H,r} such that  
W 'W 

n r  ~___ H,.  , H  o, hence for some labeling h,;(0 ,h/~ i 1, . . . ,  s But n,(1) coincides 

infinitely often with n'~(i) for some i, and so, we can consider a new "sub-subse-  

quence" ,  which we denote  also with the same notat ion,  such that  h",;(~) '~ >h ~ 

for some i. 
Moreove r  we have 

n r  0 n r 0 ]fl(hn~(x))--ft (hO[ _-< ] f~ (h , ; ( t ) ) - f l (h t ) [  ,_+~ O. 

,r ~ , h  ~ contradic t ing (5). Hence  i ~  1 by (4) and h,r(~ ) 

N o w  we define n(2). Let  n(2) be the smaller i such that  

[f2(hT)-f2(h~176 for j=#i. 

The same reasoning as above  allows us to conclude that  hn(2)  w ,hO. Then  

(4) implies that  there exists a positive integer number  N such that  for n > N :  
n(1) + n(2) and the labeling is correct  up to this point.  

We  define n(3), . . . ,  n(k) in a similar way and obta in  the lemma. 

Proposition 2. Assume that 

a) Z.  ~ Z o #-a.e. 
b) Ho is unique 
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c) ~ (  inf H/ , -h l l )  d ~ (  inf I I /o -h l l )d# .  
hello h~Ho 

Then 

H,  ~ ~ H o . 

Proof First note that: 

d e f  

~(oo) = lim ~P(x)=> ~P(y) 
x---} oo 

Moreover, by definition of vk(z , )  and c) 

for all y in IR. (6) 

lim V~ (Z.) < V~ (Zo). (7) 
n ~ o o  

Now choose a subsequence of {H,} which we denote as the initial one. 
We will prove that I =  {ie{1, ..., k}/lim JlhTPI < oe} +0.  

On the contrary, suppose I = 0. Since �9 is positive, continuous and increasing, 
applying Fatou's Lemma and (7), we have: 

V~(Zo)>l im~b ( inf prZ,-hTl[)dl~ 
n i = i ' " " k  

>~limg~( inf (rlhTfJ-IlZ.[l))dl~ 
n i = 1  . . . . .  k 

= ~ P (  inf {lim(IfhTll-I1Z, I I ) } )d#=~(oo )d~ .  (8) 
i= l , . . . , k  n 

And then (6) implies that Ho is not unique. (In fact it implies that every 
k-set is a k-mean of Zo.) To continue, since 1 4= 0, we can reach a new subsequence 
(which we also denote as {H,)) such that J = {i~{1 . . . . .  k}/{hT} converges weakly 
to some h~} is not empty and for i•J: I1h71] ~oo .  

We will prove J = I =  {1, ..., k) and {hi . . . .  , hk) =Ho .  
In fact, from a), for/~-a.e, coEt2: 

Z,(co)--h~ w ,Zo(o)_h i ;  ieJ.  

Then a known property of weak convergence entails 

lim [[Z,(co)-hTH >HZo(co)-hi/I #-a.e. (9) 
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and a development similar to that in (8) shows that 

Vk(Zo)>S4)(  inf (limlIZ~-h~ll))d# 
i = l  . . . .  , k  n 

> ~ 4)(inf LIZ o - hl [1) d#. (10) 
i e J  

From which the uniqueness of Ho proves that J = l = { 1  . . . . .  k} and 
{hi . . . . .  hk} = {h~ ..., h ~ - Ho. 

Finally the application of Lemma 1 establishes the proposition. 
The following corollaries tend to show three situations in which we can 

also assure the strong convergence. 

Corollary 3. In the hypotheses of Proposition 2; if B - I R  ~, then H,  converges 
to H o. 

Proof. It follows, trivially, from the fact that in IR" both types of convergence 
coincide. 

Corollary 4. In the hypotheses of Proposition 2, if 4) is strictly increasing, then 
H,  converges to H o. 

Proof. In Proposition 2 we have proved that H ~ H  o. Hence we can write 

inequalities (9) and (10) for the whole original sequence and for any subsequence: 

lim HZ~(co)-hTL I__> ]LZo(co)-h~ #-a.e. (9*) 

vk(Zo)> ~ 4)( in f  ( l i ra  ]lZ,--h711))d# 
i =  l ' " " k  n 

->-$4)( inf IIZo-h~ (10") 
i= l , . . . , k  

But, by definition of vk(Zo), (10") is, really, an equality, so the strictly increas- 
ing character of 4) implies that (9*) is also an equality. 

From this, for i=  1 . . . .  , k (and relabeling if necessary), if we choose a subse- 
quence of {hT}, there exists a sub-subsequence (that we denote with the same 
notation) such that: 

w O 
Zn(co)-h~---~Zo(co)-h i 

I1 Z ,  (~o) - h 7 [I ~ ]l Zo (co) - h ~ II 

and a well known property of the uniformly convex Banach spaces allows us 
to conclude that this subsequence verifies: 

II- II 
Z.(co)-h~ ,Zo(co)-h ~ 

and then, 
II- Ik 

h~ , h ~ 

Once more, Lemma 1 implies the result. 
The following proposition is contained in Lemma 8 in [3]. 
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Proposition 5. Let Zo be a B-valued essentially bounded r.v. defined in (g2, a, #). 
Let C~a such that #(C)>0,  S be the support of Z o restricted to C and h o be 
the CH-center of S. 

Let 4 > 0  and denote V=ess sup{IlZo(co)-hol[; co,C}, then there exists t o > 0  
such that for all t <= t o there exists c~ > 0 (6 =- 6 ( t)) such that, if  h E B and [] h -  h o]l > 4, 
then 

~ {o~C/llZo(co)-hlP > V+ t} > & 

Corollary 6. In the hypotheses of Proposition 2; if ~ is a convex function, then 
H, converges to H o. 

Proof. Notice that �9 increasing and convex implies the existence of m > 0 such 
that �9 is constant in [0, m] and strictly increasing in (m, oe). 

As the case m = 0 was considered in the Corollary 4, here we suppose m > 0. 
As occurred in Corollary 4 inequalities (9*) and (10") are true for the whole 

sequence and every subsequence. 
Let ie{1 . . . .  ,k}. We denote Zi={co/~(l[Zo(co)-h~176 

j 4= i}. The uniqueness of H0 implies that #(Ei) > O. 
We have two possibilities: 

a) tz{coeZ~/llZo(co)-h~ >m} >0. 
strictly increasing in (m, oe) implies that there exists co o in Z~ such that 

(9*) is an equality for co o . Then, the result follows from the same reasoning 
as in Corollary 4. 

b) Z ~  {co/llZo(co)-h~ <m} #-a.e. 

F rom the uniqueness of Ho we obtain that: 

- e s s  sup{l[Zo(co)-h~ ; ~oeZ'i} --m 
(11) 

- h  ~ is the CH-center of S(Zo)nZo(Zi) .  

Let us suppose that II h~-  h ~ II +-~0. 
Then (w.l.o.g.) we can write that there exists ~ > 0  such that for every n e N :  

IlhT-h~ >4.  
Lemma 5 implies that there exists 5 > 0 and tl > 0 such that if 

c~,= {cosZl/llZo(co)-h~[I > m + t l }  

then/~(a,) > fi for every n in N. 
From the definition of Zi we deduce that there exists t2 > 0 such that: 

# {coeZ,/llZo(co)-h~ > m +  t2; j + i} > Iz(Ei)--6/2. 

We denote by Z* to this set. 
W.l.o.g. we can consider tl = t2 = t and 5/2 < #(Zi). 
From (9*) and the definition of S* we obtain that for #-a.e. co in S* there 

exists N(co) such that for every n > N(co): 

IlZ.(~o)-h~[I >re+t ,  j4:i. 
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Now let n ~ N  and define A, = {coeZ*/N(~o) < n}. As A~ 1" Z* #-a.e., there exists 
N1 e N  such that #(AN,)> #(Zi)--6/2 and, from the definition of AN, ", we have 

for all cosAN,; Vn>NI:  IIZ.(o~)-hyll > r e + t ;  if j ~ i .  

On the other hand applying Egoroff's Theorem we obtain a set C in a 
with # ( C ) > 1 - 6 / 2  and I [Z~-ZoI /~0  uniformly in C. I.e. there exists N2eN 
such that if n > N 2 ,  NZ,(co)-Zo(co)H <t/2 for every co in C. 

Let N = sup(N1, N2); n > N and co~% c~ AN~ c~ C. From the definition of these 
sets 

inf IIZ~(oJ)-h~ll >m+t/2. (12) 
i = 1  . . . . .  k 

Finally the same reasoning as in (8) leads us to the following inequalities: 

V~ (Zo) > lim Vg (Z,) 
n 

> lim ~ inf4~(llZ ,-h~]k) d # +  lim ~ inf~(NZ,-h~l l )d# 
n ~ J n ~ J 

> ~ inf4)( lLZo-h~ ~ infO(LlZn-h~[l)d#. 
Y.~ J n c~nnANI~C J 

Remember that q~ is equal to 0 in [-0, m] and strictly increasing in (m, oo). 
Then from (11) and (12) we can continue in the following way: 

inf~([lZ o -- h~ d # +  lim O(m+ t/2). ~(% c~ AN, c~ C) 
J n 

> ~ inf~(HZ o-h~ d # +  ~ q~(llZo-h~ d#-= V~(Zo) 
x~ J z~ 

which is impossible. Then Hh~-h~ ~0. 
n ~ o : )  

We end this subsection with a proposition devoted to best k-nets. It might 
be interesting to emphasize that this proposition is obtained trivially from Corol- 
lary 6 because the best k-nets are particular cases of k-means. 

Lemma 7. Let Z o be essentially bounded and such that there exists a unique 
best k-net for Z o" H o = {h ~ . . . . .  h~ Let 

Bi= {x6S(Zo)/[[x-h~ < ][x-h~ j + i} ; 

Then h ~ is the CH-center of B i and 

i=1  . . . . .  k. 

Proof. Both statements are obtained easily from the definition of V~ and the 
uniqueness of Ho by a standard reasoning. 

V~(Zo)=esssup{]lx-h~ x~Bi}; i=1  . . . . .  k. 
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Proposition 8. Let Z o be essentially bounded and such that it admits a unique 
best k-net: Ho. Suppose that: 

a) for every n: S (Z , )~S(Zo) .  

b) Z,  -+ Z o kt-a.e. 

Let H,  a best k-net of  Z,;  n = 1, 2,.. . .  Then: 

IF- II 
/ / ,  ,Ho. 

Proof Let q~ be a convex function such that ~ ( x ) = 0  if x<V~(Zo)  and ~0 is 
strictly increasing in the interval (V~ (Zo); oe). 

Lemma 7 and the uniqueness of Ho imply that H o is the only k-mean (for 
�9 ) of Z o. 

a) implies that H.  is a k-net (for ~) for Z, ;  n =  1, 2 . . . . .  
Then the result follows from Corollary 6. 
Note that the hypotheses of Proposition 8 do not imply the convergence 

in the Lo :norm of Z.  to Zo but they are sufficient to obtain the continuity 
of the best L~-metric-approximation. 

B. S L L N  Theorems 

As we have already mentioned, the propositions in the preceeding subsection 
allow us to obtain quickly (with the help, of course, of the Skorohod Theorem) 
the S L L N  both for k-means and best k-nets. 

As in subsection A we begin by presenting the peculiar notation for this 
subsection. 

From now on we consider a fixed B-valued r.v., Xo, with a probability 
distribution Po and a sequence {X,}n of independent B-valued r.v. with the 
same distribution as Xo (i.e. Px=Pxo=Po). Also, w.l.o.g, we suppose that 
Xo; X1 ; X2; ... are defined in (f2, o-, #) and we will use P,'~ to denote the empirical 
probability distribution (i.e. P,~ gives mass 1/n to each Xi(co ), i=  1 . . . . .  n). 

It is well known that # {~o/P 2 e,  Po} = 1 (see Parthasarathy [9], p. 53). There- 

fore, we have the following consequence of the Skorohod Representation Theo- 
rem: 

Proposition 9. For ~-a.e. ~o~(2 there exists a sequence Y~, Y~, Y~ . . . .  of B-valued 
r.v. defined in (W, ~, l) such that 

a) PY~=Po; Py,~=P,; n = l ,  2 . . . . .  

b) Y,'~ ~ Y~' l-a.s. 

The set of/~-probability one which this proposition gives, will be denoted 
in the sequel by ~*. 

Note that the k-means and the best k-nets of a random variable only depend 
on its probability distribution. Then the k-means (resp. the best k-nets) of Y~ 
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coincide with those of Xo. Moreover, if coeg2*, we can identify the empirical 
k-means (or the best k-nets) with the corresponding ones for the random vari- 
ables which we have obtained in Proposition 9 and we have the following theo- 
rem: 

Theorem 10. Let {H~} be a sequence of empirical k-means and suppose that X o 
admits a unique k-mean: H o. Then 

o w 

H. ---*Ho for #-a.e. cocO. 

Proof We obtain this theorem from Proposition 2 applied to the sequence { Y~}, 
and to the r.v. Yo ~- 

In fact, as we have noted previously, for every co~f2*; Y0 ~ admits a unique 
k-mean which is Ho. Then for any co in f2*, Yo ~ verifies the hypothesis b) in 
Proposition 2. 

The SLLN for real-valued r.v. permit us to conclude that 

~q)( inf [I Y~' - h ll ) d# -* ~ q~ ( inf Er Y~) - h rP ) d# 
hEHo h~Ho 

for #-a.e. co in f2*. 
From Proposition 9, a) is also true. 
Then Proposition 2 implies the result. 

Corollary 11 (Strong Law of Large Numbers for k-means), tn the hypotheses 
of the preceeding theorem, if B = IR n or 4~ is strictly increasing or q~ is convex, 
then 

II - I I  
H.  >H o for #-a.e. o~f2.  

Proof This corollary is obtained from Corollaries 4-6 with a similar reasoning 
to that in Theorem 10. 

Theorem 12 (Strong Law of Large Numbers for best k-nets). Let us suppose 
that X o is essentially bounded and {H,} be a sequence of empirical k-nets. I f  
X o admits a unique best k-net, Ho, then: 

II- [I 
H~ >H o for #-a.e. o E ~ .  

Proof The support of P,~ is contained, for all n~N,  in S(Xo) for # - a . e .  coEf2. 
Then this theorem can be proved analogously to the preceding ones. 

We end this paper with an example in which H o is not unique and the 
sequence of empirical k-nets (which moreover are unique/~-a.e.) does not con- 
verge for/~-a.e, cor This example shows that to obtain SLLN for k-nets without 
uniqueness in the theoretical best k-net requires some other additional hypothe- 
ses. Furthermore,  as the best k-nets are particular k-means, this example shows 
that this is also true for k-means. 
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Example. Let k = 2 and X o be a real-valued r.v. such that 

Pxo(A)=Po(A)= ~ 1/6dx+�89 IA (2). 
A n ([0, 2] u [3, 4]) 

Let {X,} be a sequence of independent, identically distributed r.v. whose 
distribution is that of X o and {F~} be the sequence of empirical distributions 
functions. Let 

M,=sup(X1,...,X,) and m,=inf(X~ . . . .  ,X,) ;  n = l ,  2 . . . . .  

Let co~(2. It is easy to prove that F2 admits a unique best k-net unless 
if there i<n such that Xi(co)=l(M,(co)+m,(o))); but this does not happens for 
/~-a.e. ~o in f2, from certain index onwards. Let H ,  -{h](~o), h~(co)} a best 2-net 
for F~, n =  1, 2, . . .  and suppose that h~ <h~. It is not too difficult to obtain 
the following' for g-a.e, o9 in f2, {hi} converges to 1 and {h~} has two cluster 
points: 3 and 3.5. 
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