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Summary. Robust multivariate prediction and interpolation problems for 
statistically contaminated vector valued second order stationary processes 
are considered. The statistical contamination is modeled by requiring that 
the spectral density matrices of the processes lie within certain nonpara- 
metric classes. Both prediction and interpolation are then formalized as 
games whose saddle point solutions are sought. Finally, such solutions are 
found and analyzed, for two specific multivariate spectral classes. 

1. Introduction 

The prediction and interpolation problems for stationary processes have re- 
ceived considerable attention for a number of years. The bulk of the work 
concentrates around scalar processes and the parametric model. The assump- 
tion there is that the measure generating the stochastic process is well known. 
The initial significant results on prediction and interpolation for the parametric 
model were given by Wiener (1949) and Kolmogorov (1941). 

Strictly speaking, the term prediction refers to the extraction of a datum 
from the process, when a number of past process data have been observed 
noiselessly. The term interpolation refers to the same extraction, when past as 
well as future noiseless process data are available. The two terms are extended 
sometimes to include noisy observation data. Some results on those extended 
problems, and for the parametric model, can be found in the papers by Snyders 
(1973) and Viterbi (1965). We point out here that the majority of studies on the 
extended problems consider asymptotic and linear prediction and interpolation 
operations. 

The last few years considerable attention has been given to the robust 
extended prediction problem. Some attention has also been given to the robust 
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nonextended interpolation problem. The robust model is nonparametric, and 
the assumption is that the measure that generates the stationary process is not 
well known. The existing work on robust extended prediction and interpolation 
concentrates around scalar stationary processes, linear asymptotic prediction 
and interpolation operations, and noisy observation data. Representative re- 
sults here include robust Wiener and Kalman filtering for scalar stationary 
processes (Masreliez et al. (1977), Kassam et al. (1977), Martin et al. (1976), 
Cimini et al. (1980), Poor 1980). Related work on time series outliers can be 
found in Martin et al. (1977). Hosoya (1978) considers the robust nonextended 
prediction problem, for scalal stationary processes and the additive contami- 
nation model. The robust solution is found there within the class of asymptotic 
linear prediction operations. A more general theoretical treatment of robust 
filtering problems for scalar processes can be found in the recent papers by 
Franke and Poor (1984), Franke (1985) and Vastola and Poor (1984). 

A survey of most of the up to date existing results in minimax robust 
methods can be found in Kassam and Poor (1985). A game theoretic for- 
mulation on the measures of the stochastic processes is presented by Papanto- 
ni-Kazakos (1984), for the robust extended prediction problem. Chen et al. 
(1981, 1982) consider robust multidimensional matched filtering, for classes 
with identical eigenvectors. Regarding the robust nonextended interpolation 
problem, for scalar processes, the interested reader may look into the works by 
Taniguchi (1981) and Kassam (1982). 

The prediction problem for vector processes is considerably more involved 
than that for scalar processes. The difficulty is mainly due to the cross cor- 
relations among the component processes, which have a direct impact on the 
complexity of the correlation matrix, and the spectral distribution matrix of the 
vector process. Important questions regarding the structure of a vector process 
such as rank, regularity, and non-determinacy are treated by Wiener et al. 
(1957, 1958), Helson et al. (1958), Hannah (1970), and Zasuhin (1941). 

In the present paper, we consider the robust nonextended prediction and 
interpolation problems for vector stationary processes with absolutely con- 
tinuous spectra whose spectral density matrices lie within certain well defined 
classes, and we will formulate these problems as games with saddle point 
solutions. Then, we will find those solutions for two specific classes of spectral 
density matrices. One of the classes represents additive contamination of a 
fixed nominal spectral density matrix and includes a power constraint. The 
other class includes the set of all spectral density matrices with fixed power on 
prespecified frequency quantiles (p-point class). Vector processes have not been 
treated in these cases (some limited consideration can be found in Taniguchi 
1981), and they  present interesting peculiarities both theoretical and practical. 

The organization of the paper is as follows. In Sect. 2, we summarize the 
classical results on multivariate prediction and interpolation. In Sect. 3, we 
define the spectral classes under consideration, and we formalize the prediction 
and interpolation games. In Sects. 4 and 5, we find the saddle point solutions 
for the prediction and interpolation games respectively. Finally, in Sect. 6 we 
present some conclusions and a brief discussion. 
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2. Preliminaries 

Let {_xk, keZ} be an n-variable, discrete-time, second order stationary process 
whose spectral distribution matrix is absolutely continuous with respect to the 
Lebesgue measure in the interval [-zc, ~]. Let f(o)), o)e[-zc, rc], be the spectral 
density matrix of the process. Note that f(o)) is nonnegative definite and 
Hermitian for all co. 

We consider the space L2(f(o))do) ) of all n xn  matrix valued complex 
functions A(o)) on [-~z, re], for which (1) below is true. 

tr i A(~ do) < oQ (1) 

where, the symbols tr and Tstand for trace and conjugate transpose respective- 
ly. Considering any two elements Al(o) ) and A2(o) ) of L2(f(o))do) ) as equiva- 

lent if tr i (Al(~ rdo)=O, then, L2(f(o))do) ) is 

made into a Hilbert space (Hannan 1970), with inner product and norm 
defined respectively as follows. 

(A 1 (co), A 2 (o))) f (a))dco = tr i A1 (co) f (o9) AzT(o)) do) 
- - / r  

Let Sp 
the form. 

II A1 (O))II f(~o)am = (A1 (co), A1 (O3))1/2. (2) 

be the convex set of all matrix trigonometric polynomials, gO(o)), of 

N 

gO(o))=/+ ~ Aie~O,i (3) 
i = 1  

where N runs over all positive integers, A t , A  2 .... are any n xn  complex 
matrices, and I is the n x n  identity matrix. Then, it is obvious that S v 
cL2(f(o))do) ). Let Sp be the closure of Sp in L2(f(o))do) ). The one step linear 
prediction problem for the process {_xk, keZ} is defined as the problem of 
minimizing the functional 

e(f(o)), g(o))) =(2re) -1  tr  i g(o))f(o))gr(o)) do) =(2~z)- 1 ]lg(o))]l}(~,)d ~ (4) 
- / r  

over all g(o))eSp. Since Sp is a closed and convex subset of the Hilbert space 
L2(f(o))do)), it contains a unique element of minimal norm (unique in the 
equivalence sense defined above), and that element is the optimal predictor. 

For reasons that will be explained below, we are going to consider a more 
general prediction problem, by enlarging the set Sp, to contain all matrix 
trigonometric polynomials gO(o)) of the form, 

N 

g~ =A o + ~ A, e j~ (5) 
i = 1  
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As before, N runs over all positive integers, and A1, A2, ... are any complex n 
x n matrices. A o, however, can now be any n xn  complex matrix, whose 

determinant is constrained to be equal to one. Let S ~ be the set of all 
polynomials of the form (5). The convex hull S ~ of S o contains all polynomials 

N 
of the form B 0 + ~ B i e ~ ,  with det (B0)> 1. This follows from the inequality, 

i = l  

det(2A+(1-)~)B)>(det(A))X(det(B))t-a; 0_<2<1 (Bellman 1970)�9 If we take 
the closure ~S~ of S ~ in L2(f(o~)do)), we can define the new pre- 
diction problem as follows. 

min e(f(co), g(co)) = (2~) -1 min [Ig(~o)jl}(~)ao. (6) 

As a result of the derivation of the optimal predictor in Helson et al. (1958), 
the minimum in (6) has a closed form expression. In particular, 

min e(f(co),g(~o))=nexp[(2=n)-~ i trlogf(co)dco]. 
g( o~)~S~c( f ( co )doJ) - 7z 

(7) 

The right hand side of (7) is interpreted as zero if the scalar function 

trlogf(co) is not integrable (since i trlogf(co)dco is bounded from above, as 

can be verified by using Jensen's inequality, this can only happen if 

i trlogf(co)dco = - o e ) .  In the sequel, we will not be concerned with the latter 

case and we will assume that i t r logf (~o)dco>-oe .  An element g'(co) in 

S~ that attains the minimum in (6) is such that, 

g'(co)(g'(co))r = exp [(2g n) -1 i trlogf(co)dco]f-~(co). (8) 

It has been proven by Helson etal. (1958) that if g'(~o) exists, then 
g'(co)eS~ i.e., the determinant of the leading Fourier coefficient of 
g'(co) is equal to one, or, equivalently, the minimum in (6) over 
g(co)ES~ exists, although S~ is not convex, and it is attained 
at g(co)=g'(co). 

Consideration of the prediction problem in S~ or equivalently in 
S~ has the remarkable advantage of a simple closed form expression 
for the minimum error, given by (7), which is a direct generalization of Szegb's 
formula (Grenander et al. 1958), for scalar processes. 

The linear interpolation problem for the process {_xk, k~Z} is less difficult, 
due to the lack of a causality requirement of the associated minimization 
problem�9 We will denote by S i the convex set of all matrix trigonometric 
polynomials of the form, 

N 

h~ ~ Aie j~ (9) 
i = - - N  

i + O  
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where, N runs over all positive integers and {Ai, i:#0} run over all complex n 
x n matrices. Let Si(f(Co)dCo) be the closure of S i in L2(f(co)dco ). Then, the 

interpolation problem is defined as follows. 

min e(f(co), h(co)) =(2re)- 1 min II h(co)ll 2. (10) 
h(o))e,~i(f(m)dco) h(co)~S~(f(o))d~) 

As derived in Hannah (1970), the minimum in (10) is given by 

(2~) -1 min I] h(co)ll}(o~)e~ = 2~ tr 1(Co)riCo (11) 
h(co)eSi(f(m)d~) 

and it is attained at some h'(Co)~S~(f(co)dCo), such that 

h'(Co)=27c ( j  f - l(Co)dCo)- l f  - l(Co). (12) 

In (12), f-l(Co) is the Penrose-Moore generalized inverse off(Co), and it is 
integrable for full rank processes. 

3. The Robust Formalization 

We now look at the above problems from a different point of view. We assume 
that the spectral structure of the observed process is only vaguely or incom- 
pletely specified. This corresponds to a more realistic situation, since the 
procedures for obtaining the spectrum of a process always involve errors. This 
applies even more to vector processes, where the increased complexity results 
in larger errors. With the above in mind, it is clear that a new formalization of 
the problems considered in Sect. 2 is needed. Such a formalization is given 
below, where the spectral density matrix of the process is assumed to be a 
member of a whole class of spectral density matrices. For the purpose of this 
work we are going to consider two different types of spectral classes, denoted 
by F L and F~, which are defined as follows. 

/ 

(a) FL=~f (co) : f ( co  ) =(1--e)f0(co)+eP(co), co~[--~, ~z~, e fixed, 0 < e <  1 
k .  

fo(C~ known nominal spectral density matrix, 
p(Co): arbitrary spectral density matrix satisfying 

(27c) -1 tr -~i P(Co)dCo =(2n) -1 -~i fo(Co) dco = w > 0 ,  w fixed}. 

(b) FQ =If(Co): (2~)- 1 tr ~ f(Co) dCo -- c i > O, i = 1 . . . .  , k, c l , . . .  , c k fixed 
L Di 

DI,  . . . ,  D k fixed Lebesque measurable subsets of [ - ~ ,  ~l with positive measure 

each, and D i ~ D i = O ,  i 4:j, i=1 ~) D i = [ - ~ ,  re]}. 
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F L is called the additive contamination class, or e-contamination class, and 
it corresponds to the case where the observed process {_xk} is of the form 

where, {_x ~ is a process with spectral density matrix fo(r and {/)k} is a noise 
process uncorrelated to {_x~ whose spectral density matrix is known only to 
satisfy a power constraint, being arbitrary otherwise. FQ is called the p-point 
class, and it contains all the spectra, whose power is specified by a positive 
number, on a finite collection of mutually exclusive and exhaustive measurable 
subsets of I - n ,  7cJ, with positive Lebesgue measure. 

In pursuing a robust formalization for prediction and interpolation, it will 
be necessary to restrict the classes S~ Si(f(co)doo), for the simple 
reason that instead of a single f(co) a whole class of those is considered. In 
particular, we will consider the following classes of predictors and interpo- 
lators: 

SpL= ~ S~ S,L= ('] Si(f(m)doo) 
f(oa)eFL f(go)~Fg 

SpQ= ~ S~ 
f(m)~Fo_ 

Sio= 0 S,(f(co)dco). 
f(o))~Fo 

(13) 

A predictor (or interpolator), ge(co), is called robust, for the corresponding class 
of spectral density matrices F L or FQ if the following inequality holds. 

sup e(f(oo),ge(oo))< sup e(f(oo),g(co));Vg(co)eSRr 
f (  fo)~SR T f(~o)eSR T 

( T = L ,  Q. R =p, i). (14) 

Furthermore, a pair (if(co), ge(co)eF T x SRr (T---L, Q. R =p, i) is called a saddle 
point solution of the game on F T x SRr with payoff functional e(f(co), g(co)), if 

e(f(oo), ge(r __< e(fe(m),  ge(cO)) < e(fe(o0), g(co)) 

Vf(r  , Vg(co)eSRT. (15) 

If a saddle point, (fe(oo), ge(oo)), satisfying (15) exists, then, ge(oo) is a robust 
predictor or interpolator satisfying (14). The opposite is not in general true, i.e., 
the existence of a robust predictor or interpolator does not guarantee the 
existence of a saddle point. However, as we will show, the specific games that 
we consider here have saddle points. Therefore, the problem of finding robust 
predictors or interpolators can be reduced to the problem of finding saddle 
points of the corresponding games. 

In Sect. 4, below, we solve the prediction games on F L x Spy and FQ x Spo .. 
In Sect. 5, we solve the interpolation games on F L x SIL and FQ x Sic. In all 
cases we state the solutions and prove them directly by construction. 
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4. The Solution of  the Prediction Games  on F L x S~, L and FQ x SpQ 

Let {2/~ x~ i = 1, ..., n} be the ordered eigenvalues of 
fo(O)(2~176 1(co), i =  1 . . . .  , n - l ,  V o o e I - = ,  =]), and the corresponding nor- 
malized eigenvectors. Since 

(27c) - l t r  i (1-Ofo(co)dco=(2rO -~ i ~,(1-02~ 1 - ~ ) w < w '  

there exists a positive number c such that, 

(2~) -1 i ~, max((1-02~ dco=w" (16) 
--'/r i =  1 

Let us define the set of functions, 

2~(co) =max  ((1 -e)  2~ c), 

and the matrix 

i=1  . . . .  ,n (17) 

f[(co) = ;e(CO) _xO(CO)(_xO(CO)K. (18) 
i = 1  

f[(co) is Hermitian and positive definite, for all coe[-Tc, rc], since its smallest 
eigenvalue is uniformly larger than c>0.  Furthermore, f[(co)~FL, since f[(co) 

- ( 1 - 0 f o ( c o )  = ~ (2~(co)-(1-02~ x~176 T is nonnegative definite for 
i = l  

all co, and (16) holds. We also note that (f[(co))-i exists for all co and it is 
integrable, and that the scalar function tr logf/(co) is integrable as well. 

Let KeL~=exp[(2~n) -1 i trlogf[(co)dco]. We consider the matrix 
--)T 

K e CO - - 1  eL(f[()) , which is easily recognized to be equal to the right-hand side of 
Eq. (8), in Sect. 2, for f~ = f  and which satisfies the requirements of Theorem 
7.13 in Wiener et al. (1957, 1958). From that we conclude that there exists a 
factorization of ~ - K~L(f [ (co)) of the following form. 

e e T e - 1  gL (CO) (gL ((1))) -- KeL (ff~ (CO)) (19) 

e CO where, if {A~, ndZ} are the Fourier coefficients of gL(), then A~=0 for n<0,  
and detA~ =1. According to the derivations in Helson et al. (1958), g~(co) is the 
element of S~ that minimizes e(f[(CO),gL(CO)), with respect to 

gL(co)~S~ That is, 

e(f[(co), geL(~176 < e(ff(co), gL(CO)); 

V gL(CO)~ ~(f,~(CO) dco). (20) 

In Lemma 1 below, we prove that g~(co)eSpL. Theorem 1 establishes that the 
e c o  e ( t )  pair (f[(),  gL() )  is the solution of the prediction game on F L x SpL. 
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L e m m a  1. g~(go)eSpL. 

Proof  From (19) and ( f [ ( g o ) ) - l < c - l I ,  we conclude that each entry of g~(go) is 
essentially bounded (de)). From its Fourier coefficients A~, A], . . . ,  we form the 
sequence {G}(eJO)} of the Fej6r-Cesaro partial sums, 

1 N 

G }  (e j~ ) - N + 1 k ~To S~ (e ~ ) 

where 
N 

S}(ej~O) = ~ ~ jo~i e flo 0 /% e . Evidently, GN(e )~Sp. 
i = 0  

By the usual theory of this sum, each entry of G}(e j~~ converges a.e. (de)) to the 
corresponding entry of g~(go) boundedly, since g~(go) is bounded. Put hN(go ) 

e jo) e =GN(e )--gL(go)- Then, for anyf(go)~F L we have: 

�9 h 2 i t  r II NKgo)llf(~o)d~o = hN(go)f(go)hr(go) dgo 
- - / t  

< i 2ma• hN(go)) trf(go) dgo. 

where 2re,x(" ) denotes maximum eigenvalue. Since hN(go)~0 a.e. (do)) bounded- 
ly, it is implied that 2m,x(hr(go)hN(go))~0 a.e. (dgo! boundedly. Now, since 
trf(go) contains no singularities, due to the assumed absolute continuity of the 
members of FL, it is concluded that 2max(hr(go) hN(go))~0 a.e. (trf(go)dgo). 
Application of the dominated convergence theorem on 2ma• yields" 

lim i 2max(h~(go) hN(go)) trf(go) do) 
N ~ o o  --~z 

= i lira 2m,x(h~(go)hN(go))trf(go)dgo=O , which implies 

II hN (go) II l(~o~do~--'0. 

The preceding arguments show that there always exists a sequence of 
e go elements of S ~ which tends to gL( ) ,  under any norm II" [li~do. f(go)efL" Thus 

g~(go)eSpL. 

Remark. The basic constituents for the proof of Lemma 1 are: 
1) The fact that the eigenvalues of ff(go) are bounded away from zero 

which implies the a.e. (do)) boundedness of g~;(go). 1) The absolute continuity of 
the members of the class F L, which permits the transition from the a.e. (d~) to 
the a.e. (trf(co)dgo) convergence. Those requirements are satisfied for all the 
other games we consider in the sequel. 

e (/)  e g  o Theorem 1. The pair ( f [ (  ),gL( )) is a saddle point solution of  the prediction 
game on F L x S pL. 
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Proof. We have to prove: 

e(fL ' e~<e(fe e < e  e . gL,= WL, gL)= (f[,gL), VfLEFL; VgLeSpL �9 (21) 

The right-hand side inequality in (21) follows from (20) and S~ 
Also 

ee  [ ; ] (f{, g~) = n exp (2~ n ) ,  tr logf/(o)) do) = nKeL (22) 
--7C 

and 
e e T e(fL, g~) =(2;z) -1 i tr [gL(gL) fLl do). (23) 

Combining (23) with (19), we get, 

e(fL, g~) =(2~Z)- 1 gel i tr [fL(f[)- 1] do) 

=(27z)- 'K,L i ~ ('~'e(O)))-*(X--O(O)))TfL(o))x--O(O))do)" 
- - n i = l  

(24) 

Put #i(O))=(X~ ). Since fL(o))eFL, fL(o))--(1--e)fo(o)) should be 
nonnegative definite which implies that 

#i(o)) > (1 _e))oo(o)); Vo), i=1  . . . . .  n (25) 

Also 

(2")-1 i trfc(o))do)=(2") -I i ~ #i(o)) do)=w" (26) 
- - ~  - - ~  i= I 

From (24) and (22) we obtain, 

e(fL, g~)--e(f[,g~)=KeL((2n) -~ -~i i=1 ~ ~do)-n#i(o)) ) 

KeL ~ [  !1 #i(o))--(1--~)2/~ #~(o))--c de)] 
- 2re ( 1 -  e))~~ do)+ ,So c i= 1 (1-s)2i((o)=>c (1-e) i t i (o)<c 

i [ ; c 
> - i i= 1 (1-~)Ai(o))=c (1 ~) (o))<c 

g e L  ~ i # i ( O ) ) - - ' ~ e ( O ) ) d o )  g e L  i - 2~ c = ~ c  tr(fL(o))--f[(o)))do)=O 
i= 1 - ~  - ~  

and the left-hand side inequality in (21) follows. 
We now proceed to the solution of the prediction game on FQ x Spo. We 

define the spectral density matrix 

) f~(o))= ~ cilo~(o))m-l(Di) .I (27) 
i=1  
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where 1D,(e) ) is the indicator function of the set D~, and m(') is the Lebesque 
measure in [ - n , n ] .  It can be seen by inspection that fd(e))eF o. Since q > 0 ,  
m(Di) >0, the eigenvalue off,(e)) is bounded away from zero and from infinity, 
by 

- -  mln - -  , -  max - -  
1"/ i = 1  . . . . .  klm(Di); n i=1 ..... k m(D i) 

respectively. It follows that (f~(e)))-i and trlog(f~(co))-i both exist and are 
integrable. We thus conclude that there exists some geo(e))eS~ such 
that 

e e T 
go(go) =k~o(f~)-* 

where 
keo=exp[(2~n)_, i trlogf~de)]" (28) 

where the Fourier coefficients of g~, {A~, isZ}, vanish for i<0,  and where 
det A~=l .  Exploiting the assumption of the absolute continuity of all the 
members of Fe, we can argue exactly, as in Lemma 1, and establish that 

g ~ S p e = f ~  Q S~ Also, go is the element of ~ e S v (f~ de)) which minimizes 

e(f~, go.)" We conclude this section with the following theorem. 

Theorem 2. The pair (f~, g~) given by (27), (28) is a saddle point solution of the 
prediction game on F o x Spo. 

Proof We have to prove that, 

e ~ e e(f , e(f , go)= e(f , go); V fo Fo; Vgo Spo 

The right-hand side inequality follows from the fact that o Spo ~ Sp (fd doJ), and 
that go is the minimizing element of e(f~, go) for o e gQ@Sp (fdde)). We thus have: 

e(f~, g~2)= ~ tr i ~ ~ r  ga fo(go) de) 

-k~o i tr[fQ(fd)-l]de)=keO ~ nm(Di) I trfr2do ~ 
2re _,~ 2re i= 1 2rcCi D~ 

=nkeQ = e(f~, g~). 

5. The Solution of  the Interpolation G a m e s  on F L • S~L and FQ x S~Q 

Let, as in Sect. 4, {2~176 .. . .  ,n} be the ordered eigenvalues and 
corresponding eigenvectors of the nominal spectral density matrix fo(e)). For 
each eigenvalue, we define the function, 

Ti(Y)=7 i [max (7, ( 1 -  8) 2~ (e)))] -1de), i=1  . . . . .  n. 
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It can be easily verified that T~(7) is continuous and strictly monotonic for 
0<y<esssup( (1-02~ Then, for any positive number c<2n,  there exists a 

6O 

unique Vi, such that, Ti(71)=c, i=1  . . . . .  n. We put y~(c)=Ti-l(c). The inverse 

mapping Ti-l(c)is  also monotonic and continuous. Now, since (2n) -1 i ~ (1 
--n i = 1  

- e) )o (co) do) = (1 - e) W < W, there exists a positive number c*, such that, 

(2n)-i i ~ max(T~-*(c*),(1-O )~~176 (29) 
--~ i = i  

Before we proceed further, we will make an assumption, concerning the 
eigenvectors of fo(CO ), {x~~ i =  1, ..., n}. For the purpose of obtaining closed 
form solutions, we will assume that {_x~ are constant, independent of co, for 
every i=1,  ... ,n. We denote them by _x ~ omitting their argument. Thus, we 
consider the class F L of spectral density matrices, such that the nominal fo(co) 
has constant eigenvectors. We note that this is different from requiring that all 
members of F L have constant eigenvectors. 

We define: 

)~f (co) = max (T i-1 (c*), (1 - ~) 2 o (co)) (30) 

f~(co) = ~ 2~(o)_x~176 T. (31) 
i = l  

The eigenvalues offi(co ) in (31) are bounded away from zero, since they are 
all uniformly larger than or equal to T/- l (c*) > 0. Also, f[(co)~FL, due to (31), 
and to the fact that f/(co)>(1-e)fo(co); Vco~[-n,  ~z]. We define 

hi(co ) =2n (f[(co)) - 1 do) (f[(co)) - 1 (32) 

which minimizes IIhL(o)llfs hL(co)eS~(f[dco ). Since (2n) -1 i her(~ dco=I' the 

Fej6r-Cesaro partial sums of the Fourier series of hi(co ) are trigonometric 
polynomials belonging to S i. Furthermore, since the entries of hi(c0 ) are 
bounded by (32), the sequence of the Fej6r-Cesaro sums will converge domi- 
natedly a.e. (de)) to h~(o)). The absolute continuity of the members of the class 
F L, together with the application of the dominated convergence theorem then 
implies, in a way similar to that in Lemma 1, that the above sequence will 
converge to h~(o~) in the norm II'llj-(omo~, for any f (o))eF L. Thus Wr(co)~S~L 
= (~ S~(f(co) do)). We now state the solution of the game on F L x Sic. 

f(co)SFL 

Theorem 3. The pair (f[(co), heL(co)) defined by (30), (31), (32) is a saddle point 
solution of the interpolation game on FL X S~L. 

Proof We restate the theorem, as follows. 

e(fL(o ), h~L(CO)) < e(f[(co), h~L(O)) < e(ff_ (co), hL(CO)) ; 

V fL(CO)ZFL, VhL(CO)eSIL. 
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The second inequality follows immediately from Sect. 2, and the fact that 

Sin c S i (f[(oe) de)). 

Put keL = (f[(oe))-ldoe . The following relationships are valid: 

e(fg(oe), h~L(oe)) -- e(f[(oe), h~L(oe)) 

=(2n) -1 i tr h~L(oe)(fL(oe)--ff(oe))(heL(oe))rdoe 

-----2n i tr [k'eL(f[(oe))- l(fL(oe ) --f[(oe))(k'eL(fi(oe))- 1)r] doe 

i=1 S (;e(oe))-ldoe - ~  
_ , g  

Since fL (oe) ~ FL, then fL (CO) > (1 -- e) fo (oe), which implies 

~_~fL(oe) _xi __> (1 - ~) _x~fo (oe) _~i = (1 - 0 ; o  (oe) 
and 

(2~)-' i trfL(oe)doe=(2n)-' i f x-ff(oe)x-idoe=w. 
Put Vi(oe)=x_YfL(oe)X_i>=(1--O20(O); Voea[- -n ,n] ,  i = l , . . . , n .  Then, from (33) 

and the equality Ti-l(c *) i (2~(oe)) -1 doe=c*, we get, 

e(fL(oe), hi(co))-e(f[(oe), heL(oe)) 

+ ~ ~(oe)-(i-~)xo(oe) ] 
~_,~<,)<~_.)~7~) ((l-O)~~ doe 

= ( C * )  2 i = 1  - 

The proof is now complete. 
Finally, we examine the interpolation game on FQ x S~Q. The result is here 

summarized in a theorem, whose proof is analogous to that of Theorem 2, and 
is omitted. 

Theorem 4. The pair (f~(oe), h~(oe)) which is defined by the expressions, 
k 

is a saddle point solution of  the interpolation game on F e x S~Q. 
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6. Conclusions and Discussion 

In this paper, we considered the prediction and interpolation problems for 
vector stationary processes with ill-specified statistical structures. We modeled 
the uncertainty in the statistical description of the processes, by assuming that 
their spectral density matrices lie within certain classes. Then, we formalized 
the problems as games, whose saddle point solutions were found for two 
specific classes of multivariate spectral densities. The first such class (FL) repre- 
sents additive contamination (or e-contamination) of a nominal spectral matrix, 
and it includes a power constraint. The second class (FQ) consists of all spectral 
matrices whose power is fixed on prespecified number of frequency quantiles. 

Both the F L and the FQ classes were assumed to consist of absolutely 
continuous spectra only. If these classes are allowed to include spectra with 
singularities as well, then the found saddle point solutions cannot be guaran- 
teed to belong to the appropriate product classes. There is an exception for class 
F L ,  where we can allow the nominal spectrum to include singularities, at a 
certain set of points. Then, each member of F L has singularities at exactly the 
same points, and the results we obtained can then be readily extended to 
include this case. However, when the contaminating spectrum is allowed singu- 
larities, then a robust solution does not generally exist. For  this latter case, and 
for scalar processes, an approximate solution is given by Hosoya (1978). 
Vastola and Poor (1984) consider classes with singular spectra, and they prove 
existence of robust solutions for classes that satisfy certain compactness re- 
quirements. 

All the derived solutions for the prediction and interpolation games cor- 
respond to the eigenvalues with the "flattest" possible tails, or equivalently to 
spectral measures with the most evenly spread power. For  the FQ class, we 
obtained identical spectral density matrices for both the prediction and the 
interpolation solutions, which are diagonal, with a single eigenvalue that is 
piece-wise constant. For the F L class, the spectral density matrices correspond- 
ing to the saddle point solutions of the prediction and the interpolation games 
are not identical (in contrast to the scalar case). In particular, each eigenvalue 
of the interpolation solution is determined by a different truncation constant 
(Ti-l(c*)) of the corresponding nominal eigenvalue, while the prediction so- 
lution has a single such constant (c), as we can see from Eq. (17) and (30). For  
dimensionalities higher than one, the solutions obtained for the ~ class are 
not unique. We then selected the simplest solutions. The solutions for the F L 

class are unique only with respect to the eigenvalues. That is, there may be 
more than one n-tuples of eigenvectors, which together with the fixed set of 
eigenvalues, yield solutions for the prediction game. All such solutions attain, 
however, the same value of the game. 
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