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Summary. Consider  a r a n d o m  walk S, on the integers, where the steps ~ 
have mean  0 and variance a 2. Let T be the time of first self-intersection of  
the r a n d o m  walk. It is shown that, as a ~ o o ,  T grows at rate a 2/3. More  
precisely, T/~ 2/3 has a non-degenerate  limit distr ibution which can be 
described in terms of  Brownian  mot ion  local time. 

1. Introduction and Summary 

For  an integer K > 1 consider the r andom walk on the integers 

S O = 0; Sn = ~ -i?(K) 
i = 1  

where (m ( ~ i )  are independent  and uniform on the integers { - K , - K +  1 . . . .  , K 
- 1 ,  K}. Let T~ (x() be the time of the first self-intersection of this r a n d o m  walk:  

Tl(~a=min{n: S , = S  m for some 0_<_m<n}. (1.1) 

Certainly ET(~ ~ is finite, for T~(K)<min{n: ~ , = 0 }  implies ET(~K)<2K+I. What  
is the behavior  of  T~ (K) as K ~ o o ?  Pollard (1979) raised this problem in the 
context  of a computer  algorithm, and suggested ET(~m~cK 2/3 for some con- 
stant c. Shepp and Steele (unpublished) have shown that  ET(1 ~) is asymptot i -  
cally in an interval (c I K 2/a, c2 K2/3) for certain constants  0 < c  I < c  e < oo. Our  
main result, Theorem 1.8, implies that  the limit 

c = lim K -  2/3 ET(I~:) (1.2) 
K ~ c o  

exists, and that  c ~ 0.99. 
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It is easy to see informally why 2/3 is the correct exponent. The mean 
number m(K, n) of self-intersections up until time n is 

m(K,n)= Z ~  P(Si=S;)= ~ (n+l-i)P(S~=O). (1.3) 
O < i < j < n  l < i < n  

Let o-2=var(~(lk))~3-1Ka. Now var(Si)=io -2 so the naive Normal approxi- 
mation suggests P(S~ = O) oc i- ~ OK ~ (where oc means "is proportional to") and 
then the sum (1.3) gives 

re(K, n)ocn 3/2 aK 1. 

Thus re(K, n)= 1 for some n of order o 2/3, which suggests that the time of first 
self-intersection is of this order. 

The purpose of this paper is to prove the natural limit theorem underlying 
(1.2). As the sketch above suggests, the uniformity of the distribution of ~]~) is 
not essential. Suppose that for each K > I  we have an i.i.d, sequence ~1, ~z . . . .  
of integer-valued random variables (the subscript K will be suppressed). Sup- 
pose E ~ = 0 ,  E ~ = o 2 < o o  for each K, and suppose o-~oo as K---,oo. Let S, 

= ~ ~. Define the normalized partial sum process S*(t), 0 < t <  0% by 
i=1 

S* (t) = o -  r SEtup/a]" (1.4) 

Under the condition 

l i m l i m s u p E  l(l~d>Ha)--*0 as K--*m; (1.5) 
H~oo K~oo 

we can apply the "weak convergence" version of the Lindeberg-Feller Central 
Limit Theorem (Billingsley 1968, p. 77) to conclude 

(S*(t), 0 < t < ~ )  ~ ~(W(t), 0 < t < o o )  as K ~ o o ,  (1.6) 

where W(t) is Brownian motion, in the usual sense of weak convergence on 
D[0, oo). 

It is convenient to study the entire process of self-intersections: 

To=O , Ti=min{n>Ti_~:  S.=S m for some OGre<n}. 

Define normalized variables 

~ ,  = ~ -  2/3 ~ .  

We want to extend (1.6) to show that (S*; T 0, T*, ...), a random element of 
D[0, oo) x [0, oo) ~, converges as K---, oo to some limit (W; U1, Uz, ...), where the 
(Ui) are some process of pseudo self-intersections of the Brownian motion W(t) 
(necessarily pseudo because of course Brownian motion has real self-intersec- 
tions almost everywhere). Let L(t,x) be local time for W(t). Then L(t, W(t)) 
indicates the "density" of past time that W has spent at its present position. 
Define 0 < U 1 < U 2 < . . .  by 

conditional on W, the times (U~) are the times of the events (1.7) 
of a non-homogenous Poisson process of rate L(t, W(t)). 
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Informally, this means P(some Ui~(t, t + dt) l W(u), 0 < u < t) = L(t, W(t)) dt. Here 
is the result of this paper. 

Theorem 1.8. Under technical conditions (1.5) and (4.2), 

(S*,T?,T~* . . . .  ) ~ , (W,  U1, U 2 . . . .  ) as K-~oo.  

The extra technical condition (4.2) is a type of "uniform non sublattice" 
condition on the distributions ~]K/ needed to obtain local limit estimates. The 
following sketch should make this plausible. Fix t o and condition on S n, 
n ~ t  o a 2/3. The chance of a self-intersection during t o a2/3 <=t<(to+6)a2/3 is 
about 

be2/3 xdensity of points {S,: n~to O'2/3} around Sttoo2/~ 1. (1.9) 

The normalized path S*(t), t <to,  of (1.6) approximates some Brownian path 
W(t) which has local time density L(t o, W(to) ) around W(to)~S*(to) .  Allowing 
for the space and time rescalings which relate S*(t) to S,, we see that the 
density in (1.9) is about a2/3L(to, W(to))/(a4/3). So the whole quantity (1.9) is 
about bL(t o, W(to) ), and this represents the probability of some T~* during 
( to , to+b)  given (S*(t), t<to).  Since S* converges to W, this suggests Theo- 
rem 1.8. 

In Sects. 4-6 this sketch is turned into an honest proof. Our proof is a 
rather complicated assembly of standard ideas - local Normal approximations, 
weak convergence, and construction techniques. Rick Durrett (personal com- 
munication) observed that for certain special sequences of distributions ~ ) ,  e.g. 
simple symmetric random walk stopped at geometric times, Theorem 1.8 can 
be deduced simply from known results about convergence of local times of 
random walks. This is described in Sect. 3. 

The most notable consequence of Theorem 1.8 is the asymptotic distribu- 
tion of T 1. 

Corollary 1.10. Under the hypotheses of  Theorem 1.8 

a - 2 / 3 T l J ~ U  1 as K ~ .  

For the special case where ~ )  is uniform on { - K  . . . . .  K}, the hypotheses of 
Theorem 1.8 are readily verified, and then 

31/b K-2 /3T1-  ~ , U 1. (1.11) 
Note also that 

P(T  1 > m + n l T z > m) < P(S,~, Sin+ 1 . . . . .  S,~+, all different] T~ > m) 

= P ( T ,  >n). 

This subexponentiality property implies convergence of all moments in (1.10), 
in particular r I. To investigate the distribution of Uz we in- 
troduce the random variable 

Y =  i ~ L2(m,x)dx,  (1.12) 
- - o o  
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which is studied in Sect. 2. From the definition of (U~), 

P ( U l > t l W ) = e x p ( - i L ( s , W ( s ) ) d s  ) . (1.13) 
0 

Lemmas 2.2 and 2.3 imply 

t 

L(s, W(s)) ds& �89 3/2 Y. (1.14) 
o 

Thus the distribution function of U 1 can be expressed in terms of the Laplace 
transform of Y: 

P(U 1 > t )=E e x p ( - � 8 9  3/2 Y). (1.15) 

Unfortunately no formula for this Laplace transform is known, although the 
variable Y has been studied by Borodin (1982). An expression for EU 1 can be 

co 

obtained by writing EU 1 = ~ P(U 1 >t)dt  and using (1.15) and the fact (change of 
variables) o 

~exp ( -  a t 3/2 y) dt = a- F(5/3) y -  2/3. 2 /3  

0 
This gives 

EU 1 = 22/3 F(5/3) E Y -  2/3 -----  1.433 ... E Y -  2/3 

Proposition 2.4 establishes the values of EY and EY e, and a Taylor series 
expansion (2.12) leads to an approximation 

E Y - 2 / 3  ~,~ 1.00 (1.16) 

which is supported by computer simulations. Thus 

EU 1 ~ 1.43. (1.17) 

In the case where ~:) is uniform on { - K ,  ..., +K},  we see from (1.11) and 
(1.17) that 

lim K -  2/3  ET(K) = 3- 1/3 E U  1 ~ 0.99. 
K ~ c o  

Other natural questions concern the position St, of the first self-intersec- 
tion, and the range of the random walk before the first self-intersection" 

M(+ ~) = max Si, M(_ r) = min S i. 
i<=Tl i<=TI 

Theorem 1.8 yields 

Corollary 1.15. Under the hypotheses of Theorem 1.8 

a-*/3(S(K) M~),M(r_)) t TI '  >(WuI, M+,M_)  as K ~ o o ,  

where M+ = sup W(t), M_ = inf W(t). 
t<U~ t<U~ 

Since U1 is a (randomized) stopping time for W(t), the martingale optional 
sampling theorem and maximal inequalities give some information about the 
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limit distributions: for instance, 

ewg 1=eel 
E{max(M+, M )}2 <_4EUI. 

The distribution of M+ is in principle susceptible of exact analysis by diffusion 
techniques, but I am unable to carry through this analysis to an explicit 
conclusion. 

In Sect. 7 we discuss three topics related to Theorem 1.8. 
(a) Iterates of random functions. 
(b) Self-avoiding 1-dimensional random walks. 
(c) First self-intersections of random walks in d dimensions, and on ab- 

stract groups. 

2. Some Distributions Related to Local Time 

We define local time L(t, x) as occupation density" 

y t 

L(t, x) dx  = ~ l(wc,~<=, ds, 
--co 0 

thereby disagreeing by a factor of 2 from some other definitions. Define 

Y, = ~ L2(t, x) dx  (2.1) 
- o o  

so that I11 is the variable Y of (1.12). Lemmas 2.2 and 2.3 were used to establish 
(1.14). We remark that the process L(t, W(t)) has been studied for different 
reasons by Barlow (1982). 

Lemma 2.2. 

Proof  Fix co. Let t 1 < t 2. Let 

t 

J L(s, W(s)) ds =�89 
0 

(a ,b)=(  inf W(s), sup W(s)). 
< s < t  < s < t  t t :  = 2 t l =  = 2 

Then Yt2-Y,I---S{L(t2,x)-L(tl  , x)} { L ( t 2 , x ) + L ( t l , X ) }  dx  where we need only 
integrate over (a,b) because L ( t > x ) = L ( t l , X  ) outside that interval. Since 

{L(t2, x) - L (q ,  x)} dx  = t 2 - t I, we obtain 

2 inf L(t 1, x)N(Yt-- Yt~)/(t2-tl)<2 sup L(t 2, x). 
a<<_x<_b a<_x<_b 

As tl, t2--+t we have a, b-+W(t )  and so by joint continuity of L 

Yd 
---' = 2L(t ,  W(t)), 
dt  

establishing the lemma. 
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Lemma 2.3. Yt ~'~'~ t3/2 ]71. 

Proof This is just the scaling property that Y, inherits from W(t). Fix a>0 .  Let 
W(t) = a- ~- W(a t), so !2r is another Brownian motion. Then # has local time 
L(t, x )=a-*L(at ,  a~x), and so 

Yt = jL2(t,x) dx 

=a-lSL2(at ,  a�89 dx 
=a-  3/2 j L2(at, z) d z = a -  3/2 yot. 

But ~---~ Yt, so setting a = t-1 gives the result. 
Now set Y= I11. The next result has been obtained independently by Bo- 

rodin (1982) using Fourier methods, but it seems interesting to give a more 
probabilistic proof. The process L(1, x) has been studied by Perkins (1982a) for 
different reasons. 

Proposition 2.4. 
(a) EY=(32/9~z) ~=1.064 ... 

(b) E Y  2 = 11/9.  

Proof Brownian motion has the time-reversibility property 

(W(s), O<s<t)3~(W(t - s ) -W( t ) ,  O<s<t) 

which implies that for fixed t 

L(t, W(t))9~ L(t, O) 

~lW(t)l  by the L6vy representation of L(t,O). 
So 

1 

EY = 2 S EL(t, W(t)) dt by Lemma 2.2 
0 

1 

=2~EIW(t)ldt 
0 

1 

= 2 5 (2 t/70 ~ dt, 
0 

(2.5) 

which gives (a). For (b), 

Yt 2 = i 2 Y~dYjds ds 
0 

= i 4 Ys L(s, W(s)) ds 
o 

Taking expectations and differentiating, 

by Lemma 2.2. 

d ( E y t  2) = 4EYt L(t, W(t)). 
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But Lemma 2.3 implies 

Taking derivatives, 
EYt 2 =/;.3 E Y ? .  (2.6) 

d EYt 2 = t/3 ~ (EY~ z) 

= 4t/3 EY~ L(t, W(t)) 

= 4t/3 EY t L(t, 0) (2.7) 

using the time-reversibility property (2.5). Now let T z be an exponential, rate )~, 
variable independent of W. From (2.6) and (2.7) we get the scaling property 

Yt L(t, 0)~---~t z ](1L(1, 0) 
and so 

EYT~ ~ L(T~, 0) = 22-  2 EY1 L(1, 0), 

whence (2.7) gives 

EY2=Z22EYT~L(T~,O)=Z22E ~ L2(T~,x)L(T~,O)dx. (2.8) 
- -  ~t3 

To evaluate this, fix x and let H,  be the first hitting time of W(t) on x. Define 
p = P(H x < Tz) 

=E e x p ( - 2 H x )  by conditioning on H x 

= e x p ( -  x ]/2-~.) (2.9) 

where the last identity is classical (Williams (1979) p. 85). A standard result 
from local time theory is 

L(Hx,O ) has exponential distribution, rate (2x) -1. 

A proof is given in Williams (1974) Theorem 4.2; the same argument applied 
to Brownian motion killed at rate 2 yields 

L(H x/x T z, 0) has exponential distribution, rate q=(1 __p2)-1 r  (2.10) 

Now consider the accumulations of local time at 0 and x over the interval 
up to the first hit on x, then the interval until the next hit on 0, then the 
interval until the next hit on x, and so on. We see from (2.9), (2.10) and the 
strong Markov property that 

(L(T z,O),L(Tx,x))&( ~ X~, ~ X~) 
l < _ i < _ N  l < _ i < _ N  

i odd i even 

where (Xi) are independent exponentials, rate q, and N is independent of (Xi) 
with P(N=n)--(1-p)p n-l, n>=l. Routine tedious calculations enable us to 
evaluate ELZ(Ta, x)L(T,, 0), and then to obtain (b) from (2.8). 

We can use Proposition 2.4 to estimate EY -2/3, needed at (1.16). For  a 
random variable Y with mean # and variance s 2, and for a smooth function f, 
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the Taylor series expansion 

f (y) = f (# )  + (y _ g) f , (g)  + �89 (y _ #)2 f , ,(#) + r (y) (2.11) 
gives 

E f ( Y )  = f ( # )  + �89 2 f " (# )  + E r(Y). 

In our setting, with f ( y ) = y - 2 / 3  and the numerical values given in Proposition 
2.4 we get 

E Y -  2/3 = 1.002 ... + E r(Y). (2.12) 

Computer simulations give E y - 2 / a =  1.01 +0.02. Jensen's inequality gives the 
rigorous lower bound 

E Y- 2/3 ~ (E Y)- 2/3 = 0.96 ... 

but a good rigorous upper bound seems harder to find. 

3. A Special Case of the Theorem 

Brownian motion local time can be obtained as a limit of simple random walk 
local times. Rick Durrett  (personal communication) suggested this could be 
used to establish Theorem 1.3 for the special case of simple symmetric random 
walks stopped at geometric times: this section shows how. Unfortunately, it 
seems impossible to use this method more generally, even for the uniform case. 

n 

Let (th) be independent, P(t/i= 1)=P( th=  - 1 ) = � 8 9  Let S ,=  ~, t/i. For  each K 
define i i= 1 

L (K) (i/K, j / K  ~) = K -  + y" l(s s = j) 
s=o  (3.1)  

W (K) (t) = K -  ~ S[Ktl. 

By interpolating, for each co we can define L(K)(t, x) as a continuous function on 
[0, oo)x(- -o% oo), so that L ~ becomes a random element of C([0, oo)x(  
- 0% oo)). It is a standard result (Perkins 1982b; Borodin 1981) that 

(W (K), L (~'~) ~ (W, L) (3.2) 

where L = L(t, x) is local time for Brownian motion W= W(t). 
Let (AK, i) be independent events with P(AK, i )=K-3/4,  independent of (th). 

Let Xr ,  . be the time of occurrence of the n th event of (As, i: i_>1). For  future 
reference, note that the L 2 martingale maximal inequality implies 

sup I K - 1 X K , , - - K  + n l ~ O  as K ~ o o .  (3.3) 
n ~ K 3/8 

Now define S (K)- S For  each K, to,'~ n > 0) is a random walk whose step 
n - -  g K , n "  

distribution ~(r) is that of the simple random walk stopped at the geometric 
time XK, 1. So E ~(r)= 0 and 

a 2 = var(~ (K)) = EXK, I = K 3/~ . (3.4) 
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Now define 

TK=min{n: 

We shall prove 

where U is the variable 
(S,K: n > 0) is such that 

there exists m < n, S~ = S,, and A K ,  m and AK, , occur}. 

(w (K), K -~ 7~) ~ (w, u) (3.5) 

U 1 of (l.7). But the first self-intersection time T(1 K) for 

and so from (3.5) and (3.3) we get 

(W (K), g -~ T} K)) ~ , (W, U). 

In view of (3.4) this is just the assertion 

(W(m,a;z/aT(1 K)) ~ ,(W, U). 

The full form of Theorem 1.8 can be proved similarly. 
To prove (3.5), fix t and consider the event {TK>tK}. This is the in- 

tersection over j of the events: 

there do not exist times O < m < n < t K  such that SIn=S,= j 
and such that events AK,,, and AK, . occur. 

Now conditional on the path (Si), these events are independent as j varies. So, 
conditional on the path, 

P(TK>tK)=I]  P(there do not exist O < m < n < t K  such 
J 

that S , ,=S ,=j  and At,,, and AK, ~ occur) 
t K  

Z ~ " " =I]P(Z~=<I)  for j=Bmomlal(Nj,  K-3/4), Nj= ~ l(ss=j) 
j s=0 

= [-1 {1 - - � 8 9  3/4 Nj) 2 ~b(K- 3/4 N)} 
J 

where qS(x)-~l as x~.0. Now Nj=K~L(K)(t,j/K~), so 

P(TK>tKI W(m)= I~ {1 --�89188 
) 

But I-I 1 2 { 1 - ~ x j  qs(x)} = e x p ( - � 8 9  x 2) where 6=  6((x))-~0 as max lxj]~0. 

And i3.2) implies maxK-�88 as K- ,oe ,  so 
J 

P(7"K > t K I W (K)) = exp(-�89 - AK(t)) Y(K)(t)) (3.6) 

where Y(K)(t)=K-~L2(~)(t , j /K~) and AK(t ) p ,0 as K ~ .  
J 

From (3.2), 
(W(K), L(K), y(K)) ~ , (W, L, Y) (3.7) 
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where Y= Y(t) is defined in Sect. 2. By (1.13) and Lemma 2.2 

P(U > t l W)= exp ( - � 89  Y(t)) 

and then (3.6) and (3.7) imply (3.5). 

D.J .  A l d o u s  

4. Some Estimates for the Random Walks 

Sections 4-6 contain the proof of the general case of Theorem 1.8. In this 
section we specify technical assumptions on the random walks, and give local 
limit theorems, conditioned limit theorems and bounds on mean numbers of 
self-intersections. These results are fairly standard, so the proofs are merely 
outlined. 

Here are the hypotheses for Theorem 1.8, as stated in Sect. 1. For  each 
K>I_ we have an i.i.d, integer-valued sequence oi?{K) with E~K)=O and var (~  K)) 

" )  "} = a~, and with partial sums S, = (The superscripts K will generally be 
i = l  

suppressed.) Assume that as K ~ o o  we have a-~ oo and (repeating (1.5)) 

lim lim sup E(~ i/a) 2 1(1~11 >~} = 0. (4.1) 
H~ct) K~{x) 

We also impose the technical hypotheses 

a2 /3maxP(~ l= j ) -+0  as K ~ o o ;  (4.2a) 
J 

there exist e, [1 > 0 such that for all K 

min P(~ 1 =J) > c~/a. (4.2 b) 
IJl</~a 

To see why, first consider self-intersections of the form Sm+~ =S~; it is easy to 
see that 

a2/3P(~l=O)---~O as K ~ o o  

is a necessary condition for Theorem 1.8, so hypothesis (4.2a) seems reason- 
able. Second, Theorem 1.8 will not hold if ~ is supported on some sublattice 
of the integers, and our proof uses a local CLT, Lemma 4.3 below. Hypothesis 
(4.2b) is used only in establishing Lemma 4.3, and could be weakened (at the 
expense of requiring more complicated Fourier analysis to establish Lemma 
4.3). 

Let 0(1, x) be the standard Normal density. 
�89 Lemma4.3. suplon-P(S,=j)-c)(1, ja- ln-~)l~O as K~oo,  n~oo. 

J 

Outline of Proof By easy Fourier analysis, the Lemma is true in the special 
case where ~K) is uniform on { - r ~ ,  - r k + l  . . . . .  rt(}, for some rK~oo as K ~ o o .  
Second, in the presence of the global CLT, the local CLT (4.3) is equivalent to 
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the "local smoothness" property 

a n ~ [P(S n = J t ) -  P(Sn =J2)[ ~ 0 
(4.4) 

- - 1  - - •  �9 as K--,ov, n---,~, a n ~[jl-j2l--~O. 

Hypothesis (4.2b) implies we can write 

where gl,i is uniform on { - [ f l a ] ,  ..., [fla]}. So we can write S,=-SI,N+S2,,_N, 
m 

where Sq,m= ~ ~q,i and N has Binomial(n,d) distribution. By conditioning on 
i = 1  

N and (S2,m; m>0), we see that the smoothness property (4.4) for St,,, (which 
holds by the "special case" above) implies the same property holds for S,, thus 
establishing the lemma. 

For the next result, let qS(s, x) be the density of W(s) and let 

a(t, x)= i 4(s, x) ds= EL(t, x) 
0 

where L is local time for Brownian motion W(s). Let 

re(K, n, j)= ~ P(Si=j).  (4.5) 
i = 1  

Lemma 4.6. Fix 0 < s < t. 

(a) sup sup]a4 /3p( s i= j ) - ( ) ( ia -2 /3 , ja  4/3)]--+0 as K-->oo. 
s~r 213<i<t~ 2/3 j 

(b) sup sup [a 2/3 re(K, ua2/3 , j ) -G(u,  j a  4/3)[--,0 as K--)oe. 
u<--_t j 

Outline of Proof. Assertion (a) is just a reformulation of Lemma 4.3. To prove 
(b), sum (a) over s a 2/3 < i <__ t a 2/3 to get 

sup I~r 2/3 {re(K, t ~r2/3,j)-m(K, s ~r2/3, j)} - {G(t,j ~r- 4/3) _ G(s, ~-4/3)} I -~0. 
J 

From this and monotonicity of rn(K, .,j) it suffices to prove 

lira lira sup sup ~2/3 re(K, s ~r2/3, j) = 0. (4.7) 
s , [O  K ~ c o  j 

But we can use Lemma 4.3 to show that, for any i(K)---,oo as K--+oo, i (K )<sa  2/3, 

lira lira sup sup a 2/3 {m(K, s a2/3,j)_m(K, i(K),j)} =0. 
s $ 0  K ~ o o  j 

Then taking i(K)--* oe sufficiently slowly, 

a 2/3 re(K, i(K), j) < ~2/3 i(K) max P(~I =J) 
J 

~ 0  by hypothesis (4.2a), 

and this establishes the lemma. 
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Our next result is a conditioned limit theorem. Recall the definition (1.4) of 
the renormalized random walk S*(t). Let d be a metrization of weak con- 
vergence on D[0, oe). 

Lemma 4.8. Let O(K, i,j) be the conditional law of (S*(t), 0 < t <  oe) given Si= j. 
Let q~(t,y) be the conditional law of (W(s), 0__<s<c~) given W(t)=y. Then for 
fixed 0 < s o < s 1 and J < o0, 

lim sup sup ~l(O(K,i,j),~(ia-2/3,ja-4/3))=O. 
K ~ m  80<=iff-2/3Nsi Ija-4/31<=J 

Outline of Proof It suffices to prove that, if i=  i(K) and j = j (K)  satisfy 

ia-2/3--.to>O, ja-4/3--.y 
then 

O(K,i,j)~q~(to,y ) weakly as K ~ o o .  

Write Si for the conditioned random walks, ;~*(t) for their normalized versions, 
and write IV for the conditioned Brownian motions. The basic weak con- 
vergence result (1.6) shows 

(~*(t), t>=ia -2/3) ~ )(iv(t), t>=to) 

and so the issue is proving 

(S*(t), t ~ i a  -2/3) ~ , (W(t), t<=to). 

But convergence of finite-dimensional distributions here can be deduced from 
the local CLT (4.3). And tightness follows because the processes (Su; u >  i) have 
exchangeable increments, and for such processes tightness in D is a con- 
sequence of tightness of f.d.d.'s (this last fact can be deduced from Billingsley 
(1968) Theorem 24.2). 

The final results of this section give bounds on mean numbers of (pseudo) 
self-intersections. We first treat the Brownian motion case. Fix t o and a 
continuous function w(t), O<=t<t o (which is to be thought of as a typical 
Brownian path) such that 

w(') has an occupation density f(x) such that F_= sup f (x)< ~ .  (4.9) 

Let W(t), t>O be Brownian motion with W(0) arbitrary. Define N(t), t>O, by: 
conditional on W, the process N is the non-homogeneous Poisson process of 
rate f(W(t)). 

Lemma 4.10. (a) EN(t) ~ F t. 

(b) EN(t) <_ P(N(t) >= 1) + (F t) 2. 

Proof Assertion (a) is clear, since f(W(t))<=F, so N is stochastically dominated 
by the Poisson process of rate F. For the same reason we have 

E(N(t)-N(s)[ W(u), u<=s)<=Ft; s<=t. 

By conditioning on the time of the first event of N, 

E(N(t) - 1 ] N(t) >= 1) = F t. 
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(a) 

(b) 

Proof 

for m as at (4.5); 

S o  

E N ( t ) -  P(N(t) >_ 1)= E ( N ( t ) -  1) l(u(t )>__ ~) 

<=FtP(N(t)>_ 1) 

< (F t )  2 by(a) ,  

and this establishes (b). 
We now give the corresponding random walk result. For each K let si, 

i< t  o a 2/3 be a sequence of integers (to be thought of as a typical path of the 
random walk). Let A = {si}. Let 

s*(t)=a-~13 s[~2/3l t<_to, 

be the normalized path. Let S i be the random walk with S o arbitrary, and let 
M(K, n)= I{i: 1 <_i< n, Si~A}I be the number of visits of S i to the set A. 

Lemma 4.11. Suppose s * ( ' ) ~ w ( . )  in D[0, to] as K- ,oo ,  for some w(.), F as at 
(4.9). Then 

lim sup EM(K,  t a2/3) <_F t. 
K ~ c ~  

lira sup { E M  (K, t a 2/3 ) - P( M (K, t a 2/3) >= 1)} < (F t) 2. 
K ~ o o  

EM(K,  t62/3) < ~ m(K, ta2/3, s i -So )  
i <= to ff 2/3 

E G 2 / 3 G ( t , ( 7 - 4 / 3 ( s i - - S o ) ) - t - ( ~ K  
i < to 2/3 

where 3K~0, by Lemma 4.6(b); 

= ~ a-2/3G(t,s*(icr-2/3)--aK)+6K, 
i <= ta 2/3 

= i G(t ,  s*(u) - aK) du + c~ K. 
0 

Now s*(')--*w(') and G(t, ") is continuous. So 

for some aK; 

t 

lim sup EM(K,  t 6 2/3) <- sup ~ G(t, w(u) -- a) du 
K ~ o o  a 0 

< ~ G ( t , x ) F d x  

since w ( ' ) - a  has occupation density f ( x - a )  bounded by F; 

= F t .  

This is assertion (a), and part (b) follows in the same way as in Lemma 4.10. 

5. A Construction 

The Skorokhod representation theorem says that, given random variables X, Y 
whose distributions are close in the sense of weak convergence, then we can 



572 D.J. Aldous 

construct a joint distribution which makes the variables close in probability. 
More sharply, let S be a Polish space with bounded complete metric d. For 
distributions g, v on S let 

d(~, v)= infE d(X, Y) (5.1) 

where the infimum is taken over all joint distributions (X, Y) with marginals 
#, v. Then d is a metrization of weak convergence. Further, the inf in (5.1) is 
attained. See Pollard (1984) for discussion. 

In the proof of Theorem 1.8 we encounter a complication. Associated with 
X (resp. Y) are events (Ai) (resp. (Bi)), and we need to construct a joint 
distribution such that not only are X and Y close, but also the events A~ and 
B i almost coincide for each i. Proposition 5.2 gives conditions under which we 
can make such a construction. 

Notation. In this section X, Y denote S-valued random variables; A,B,A  de- 
note events; #, v denote (sub)probability distributions on S; ~ (X)  and ~ ( X [ A )  
denote distribution and conditional distribution. 

Proposition 5.2. Suppose we are given families (X; A1,A2, . . .  ) and (Y; 
B 1, B 2 . . . .  ). Suppose that for some c~, e, 2, 0>0.  

(i) ( I+e)-I<P(Az) /P(B~)<I+e for alli. 

(ii) ~ P(Ai)<O; ~ P(B~)<O. 

(iii) ~ P ( A i ) < P ( U A ~ ) + 2 ;  2P(B~)<P(UBi )+2 .  

(iv) d(2f(XIA~), ~(YlBi))_-<~ for all i. 

Let 0 <r I <�89 Then we can construct ()~, Y, di, Bi, A)such that 

(a) (J~, A1,/12, ...)--~ (X, A 1, A 2 . . . .  ); (Y,, Bl, B 2 . . . .  )=(Y, B 1, B: . . . .  ). 
(b) Outside A we have: AI=B~ for each i, and these sets are disjoint as i varies. 

(c) P(A)<=4(2tl+~)O+4(2+e)2t1-1 +22. 

(d) E d(X, f~) la~ < a(~Lf(X), ~Lf(Y)) + 2(1 - 2t/) -~ 0 a. 

Remarks. (a) We apply this in the next section, where X and Y will be 
segments of Brownian motion and the rescaled random walk, and the events Ai 
and B~ will be the events that self-intersection occurs in some small space-time 
region. 

(b) When doing constructions we assume we can find random variables 
independent of any given family of random objects. The pedantic reader may 
add "enlarging the probability space if necessary". 

(c) The rest of this section is devoted to the proof of Proposition 5.2. We 
first state six lemmas; the first three are obvious, and the second three will be 
proved later. 

Lemma 5.3. "Family extension". Let (X~: 7~F) and (YT: y6FoaF) be such that 
(X~: ~ro)=(Y~:  7~F0). Then we can construct (Y~: 7 r\ro) such that (X~: 
7~r)=(Y, :  ~ r ) .  

Lemma 5.4. "Domain extension". Let I~ be a probability distribution. Let X, 
defined on f2oaf2, be such that P(f2o,Xe.)<=#(. ). Then we can define X on 
f2\f2 o such that X has distribution #. 
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L " lic' " emma 5.5. Sp mg . Let (Xk, Yk), k >= 1, be such that Yk-~- Y1 for each k. Then 
we can construct (X1, X2 .. . .  , Y) such that (Xk, ^ ~ Y ) =  (Xk, Yk) for each k. 

Lemma 5.6. Suppose we are given random variables X, Y and events Ao c A ,  B o 
c B  such that P(XolA)<=t 1 and P(B~oIB)<rl . Then we can construct A 1 ~ A  o and 
B~ c B o such that 

(a) P(A 0 = P(B~) >= (1 - 2r/) min(n(A), P(B)). 

(b) d ( S ( X I A 1 )  , ~(YIB1))<(1 - 2q) -1 d(SC(XIA), ~(YIB)). 

Lemma 5.7. Suppose variables X, Y are defined on A, B ~ ( 2  respectively, and 
suppose P(A ,X~ ' )<I~( ' )  and P(B, Y~ . )<v( . )  for probability distributions #, v. 
Then we can extend X, Y to all (2 and construct A such that 

(a) 5f(X) =/~; 5~ v. 

(b) A w B ~ A  and P(A)<=P(A)+P(B). 

(c) Ed(X,  Y) l~o<d(#,v). 

For the final lemma, note that we can extend cl to subprobability distri- 
butions #,v with equal total mass [#]=[v]=p as follows: d(#,v) 
= i n f E d ( X ,  Y) 1A, where the infimum is taken over all (X, Y) defined on some 
A~s such that P(A)=p  and P(A, X~-)--#(.) ,  P(A, Y~')=v(-). 

Lemma 5.8. Suppose the probability distributions #, v can be written as #=#1 
+#2, v = v l + v 2 ,  where #1,#2,vl ,v2 are subprobability distributions with I#j[ 
= [vj[. Then 

(a) cT(u, 0__<c7(~1, v0+d(#2, vg. 
(b) c!(#2, v2)<d(/~, v ) - [ - d ( # l ,  ~21)" 

Proof of Proposition 5.2. Let I be the set of i such that P ( ~ A j [ A i ) < t  1 and 
J < t  

P(UBi[BI )<r  1. For i~I let Ai, o=AI \U.A~ ,  and similarly for Bi, o. By Lemma 
J<~ J<~ 

5.6 and hypothesis (iv), for i~I we can construct Ai, l c A i ,  o, Bi, l c B i ,  o such 
that 

d(SC(X] A~, t), oL'W(YIBi, 1))<(1-2t/)  -1 a (5.9) 

n(Ai, 1) = P(B~, 1) > (1 - 2t/) min (P(Ai), n(ni)). (5.10) 

By construction the events (Ai,1) are disjoint. Le t (J / ;  i~I) be disjoint events 
with P(J+)=P(Ai,1)=P(Bi,1). For i~I construct (X, Y) on J,. such that 

~ ( X I J 3 = S ( X [ A ~ , I ) ;  ~ (YIJ~)=S(YIBi ,1 ) ;  
(5.11) 

E(d(X, Y)IJ i )=J(~(XIAi ,1)  , ~(YIBi ,1)  ). 

Let J = U J~" By disjointness, 
I 

Y((Jf; Ji, i6 I IJ )=  Y ( ( X  ; A~,I, i~I)l U A,, 1) 
I 

and similarly for Y, B~, 1. By Lemmas 5.3 and 5.4 we can construct Ai~J~, 
/~=J~ and extend the domain of J~ to A = ~ I  ~ and the domain of Y to B 
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= U /~i such that 
i > 1  

2f((Jf, J/, A~, i > 1)LA ) = ~ocf ((X, A,. 1 , A,, i > 1)[ U Ai) (5.12) 
i > l  

and similarly for f" and the B's. Interpret J~, Ai. 1, Bi, 1 a s  empty for id~I. Note J 
c A c~/3. Applying Lemma 5.7 conditionally on jc, we can extend )( and f" to 
the remainder of f2 such that 

~ ( 2 l J C ) =  S ( x I ( y  A,,,)c); 5e(f'lJC) = ~ ( Y l ( y  B,,1) ~) (5.13) 

^ A 

and such that for some J ~ A I  ~J~c~(AwB) we have 

E d(X, Y) l a ~ g  <d(P(J ~, X~  .), P(J~, Y~ .)) (5.14) 

P(A ~) <= P(J~ n A) -4- P(J~ n B"). (5.15) 

From (5.12) and (5.13) we get conclusion (a). Define A to be the union of A~, 
the events A~ ABi for i ~ 1, and the events A~ (~ A i for i # j  and the events B~ n Bj 
for i# j .  Then conclusion (b) holds by definition. We now have to estimate the 
quantities in (c) and (d). 

First, by hypothesis (ii), 

P(J) < ~ P(J,) < y" P(A,) < O. (5.16) 

Next, set N A = ~ 1A,, and similarly for N B. By definition of A, 

P(A)<P(A~)+~,[P(A,)+P(B~)]+~P(A,  AB~)+P(NA>2)+P(NB>2 ). (5.17) 
I c I 

But by hypothesis (iii), 

P(NA > 2) <= EN A - P(NA > 1)<2 (5.18) 

and similarly for N B. Next, since Ji c ~i (~/~i, 

P(A, AB,) <= P(.4,\ J~) + P(B, \  J,). (5.19) 

For each i6I 

P( fi~,\ J~) = P(A~) - P(A,, 1) 

< P ( A i ) - ( 1 - 2 r / - e ) P ( A ~ )  by (5.10) and hypothesis (i) 

< (2t/+ e) P(A,), 

and so using (5.16) 

and similarly for/~i. Next, 

P(,~,\J~) <= (2~/+ e) 0, (5.20) 
I 

p(jc ~ A) < ~ P(.,4,) + ~ P(.,ti\ Ji) (5.21) 
I c I 
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and similarly for 8~. By hypothesis (iii), 

2>= ~ P(A~)- P({_) A~) 

= ~_, P(Ai)P(.U.AjlA~) 
i ~ 1  J<~ 

>= rl Z P(Ai) 
s~ 

where I A is the set of i such that P(U.AilAi)<rl. Thus ~P(A~)<2r/-~,  and 
J < *  I ~  

similarly ~, P(Bi)< 2 t/-1. But Y =  13 u I~, and so using hypothesis (i) 

2 P(A~l< 2rl-~(2 + e) 

and similarly for B i. Combining (5.15), (5.17-5.22) gives 
estimate (d), 

Ed(X, r l~.<=ed()(, r 1j + Ed(X, Y) l x ~ .  (5.23) 

Ed(X, r  Y)1~ 
I 

=<~(1-2,D-~=P(4) by (5.11) and (5.9) 
I 

=<(1-2t/) -~ ~0 using (5.16). (5.24) 
And 

(5.22) 

conclusion (c). To 

E d()~, f') 1jC~Ac < d(P(J c, X e  "), P(Y, f'e .)) by (5.14), since A = A s, 

__< d (~ (2 ) ,  ~ ( ? ) )  
+d(P(d,X~.),P(J, f'~')) by Lemma 5.8 

<= d(~(X),  ~(Y))  + Ed(X, Y) 1 s. (5.25) 

Combining (5.23-5.25) gives conclusion (d). 

Proof of Lemma 5.6. Construct (Jr, f') with marginals s S(YIB), and 
withAjoint distribution such that Ed(X, Y)=d(~(XIA) ,  ~(Y]B)). Construct 
Ao, Bo such that 5e(~, do )=  5~ A o I A) and 2~(f;, 80)= 2~((Y, Bo)IB ). Then 

P(.4o n Bo) >= 1 - P(.4~o) - P(B~o) = 1 - P(X o I A) - P(B~o I B) 

> 1 - 2t/ (5.26) 

by hypothesis. Without loss of generality, suppose P(A)<=P(B). Let 
/11 = Ao n/~o and /~1 = Ao ca/~o ca/), where /) is independent of everything pre- 
vious, P(/))= P(A)/P(B). Then 

d ( ~ ( s  I fi0, 2f(?181)) = d(2f(R t ~/o n Bo), f ( ~ l  do n 80)) 
<E(d(X, ?)ldo caSo) 
< E d(X, ?)/P(A o n 80) 

<(1-2 t / )  -~ d(~(X]  A), L,C(YI B)) (5.27) 
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using (5.26). Finally, construct  A 1 c A  o and B 1 ~ B  o such that 

Lf((X, Ao,A1)LA)= Lf(X, Ao,AI) and ~((Y, Bo,B1)IB)= Sf(Y, Bo,B1). 

Then (5.27) gives conclusion (b). And 

P(A1) = P(AI [A) P(A) = P(fi~) P(A) = P(-4o n JBo) P(A) >= (1 - 2/7) P(A) 

by (5.26); similarly 

P(BO = P(-4o n J~o c~ 15) = P(-do n J~0) P(/)) P(B) = P(A O, 

and this gives conclusion (a). 

Proof of Lemma 5.7. Construct  (.~, ~') with marginals/~, v and joint  distr ibution 
such that  Ed(X, ~')=d(/~,v). Const ruct  .4, J~ such that  ~ (XI .4 )=~ ,~(XIA)  and 
~Lf(YL/3)=~(YIB ). Take  A ~ . 4 ~ J ~  such that  P (A) - -P ( / i )+P( /3 ) ;  unless this 
sum is greater  than 1, in which case the L e m m a  is trivially true with A =E2. 
Construct  A ~ A u B  such that  P(A)=P(A). Construct  X and Y on A c such that  
o,qa((X, Y)IAC)--~(()( ,  ~')lzl~). N o w  X has been defined on AuA c, and P(A~A ~, 
XE ' )=P( f iu~  ~, ) ~ ' ) < / l ( ' ) ,  so by L e m m a  5.4 we can extend X to all of (2 to 
make s #. Similarly for Y. Then  

Ed(X, Y) l~o=Ed(J~,  Y) l~<Ed(J~, f ' )=d (# ,  v), 

which gives the conclusion of the Lemma.  

Proof of Lemma 5.8. Conclusion (a) is straightforward. To prove (b), observe 
first that  any distr ibution can be approx imated  by distributions uniform on 
finite sets. Thus we may  suppose # l , # 2 , v l , v  2 are uniform on {x 1 . . . .  , N M }  , 

{XM+ 1, "",  XN}, {Yl . . . .  , Y~t}, {YM+, "",  YN} respectively. In this case, 

} d(#, v ) = m i n  d(x~, y,,)):  rc a permuta t ion  of {1 . . . .  , N} , 

because every doubly-stochast ic  matr ix  is an average of permuta t ion  matrices. 
Similarly, 

c!(#l, Vl )=min  d(xi, yp,)): p a permuta t ion  of {1, . . . ,  M} 

c/(#2, v z ) = m i n  N 1 y' d(xi,y~,)): o- a permuta t ion  of { M + I  . . . . .  N} . 
i = M + I  

Thus it suffices to show that, given permuta t ions  u of {1 . . . . .  N} and p of 
{1 . . . .  , M}, we can construct  a permuta t ion  a of { M +  1, ..., N} such that  

N N M 

~, d(x,, Y~u)) <= ~, d(x,, y~,)) + ~ d(x,, You))" (5.28) 
i = M + I  i = 1  i = 1  

To do the construction,  fix M < i < N. Define inductively 
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Ji, 1 : i  

Ji,2n=g(Ji,2n-1); Ji,2n+l = P -  l(ji, 2n)' 

terminating at t i=min{2n:  J i ,2 ,>M}. Let a(i)=ji, t ~. It is easy to check 

(i) a is indeed a permutation of {M + 1 . . . . .  N}. 

(ii) The ordered pairs (Jl,2,-1,J~,2,), 2n<tl, M < i < N  are distinct elements 
of the set {(i, ~(i)): 1 _< i < N}. 

(iii) The ordered pairs (J~,2,,J~,2,+1), 2n<t~, M < i < N ,  are distinct elements 
of the set {(i, p -  1(i)): 1 _< i_< M}. 

But this establishes (5.28), since by the triangle inequality 

2n<~ti 2n<ti 

6. Proof  of Theorem 1.8 

We shall construct Brownian motion W(t) and the normalized partial sum 
processes S*(t), together with their self-intersections U~, T~*, such that as K ~ o o  
the sample paths W(.) and S*(.) become close, and the positions and times U~, 
T~* of self-intersections become close. The construction will be done inductively 
over successive intervals of length 3. That is, having constructed (W(t),S*(t); 
t<m3) we shall use Proposition 5.2 to describe a joint distribution for 
(W(t),S*(t); m3<_t<_(m+l)3) and their self-intersections conditioned on the 
past processes w('), S*(-), on [0, rob]. As a preliminary, we describe the 
conditional increments of the processes separately. 

Let 3 >0,  m > 1 and K > 1 be fixed until further notice. Let a = a K. To ease 
typography, we write 3o -2/3 where we should write the integer [3a2/3]. 

(6.1) The Conditional Increment of (W,, Ui) 

Fix a path w(.) on [0, m3]. Condition on W(. )=w( . )  on [0, m3], and let 
(17V(t), 0=<t<3; 01, 92 . . . .  ) denote the conditional distribution of W(m3+t) and 
of the pseudo self-intersections U -  m b for which UE [m 3, (m + 1) 3]. 

Of course I7r is just Brownian motion started with lYV(0) = w(m 3). The point 
process 0 can be regarded as the superposition of two independent processes 
U ~ U § where U ~ represents the pseudo-intersections of IYV with w(.), and U § 
represents the pseudo self-intersections of l~. Let f(x), -oe  < x <  oo, be the 
occupation density (i.e. local time at time m 3) of w('), and write 

f = sup f(x). (6.2) 
x 

Conditional on 17V,, the process U ~ is a Poisson process of rate f(lfV(t)). Now we 
can write f =  ~ f/, where f~(.) is the occupation density of the path segment 
(w(t); i o -  2/3 < t_< (i+ 1) a -  2/3). Thus we can regard U ~ as the superposition of 
processes U ~, where conditional on ~ the processes U ~ are independent Pois- 
son processes of rates f/(l?V(t)). 
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Let I K be the index set of all (i,j) such that O~i<--m60- 2/3 and O<j<ba 2/3. 
For such (i,j) let B~,j be the event that some point of the process U z occurs 
during the interval [j a -  2/3, (j + 1) a -  2/3]. 

(6.3) The Conditional Increment of (S, Ti) 

Fix a path s(i), O<_i<_m6a 2/3, which is a possible path of the random walk 
S/. Condition on Si=s(i), i ~ m 6 a  2/3, and let (S(i), 0<i<_6a2/3; Tt, Ta . . . .  ) de- 
note the conditional distribution of S(m6a2/3+ i) and of the self-intersections T 
- m 30 -2/3 of S for which Te [m 30- 2/3, (m + 1) 60-2/3]. 

Of course S is just the random walk started with S(O)=s(m6a2/3). The 
point process T=(T/) is the superposition of two processes T ~ T +, where T O 
represents the intersections of S with s(') and T + represents the self-in- 
tersections of S. 

For (i,j)eI K let Aid be the event that S~=s(i). Let s*(t) and S*(t) denote the 
normalized paths, as at (1.4). 

(6.4) The Conditional Joint Increments 

Now suppose we are given a path w(.) as in (6.2), and for each K we are 
given a path s(i) as in (6.3), such that the normalized paths s*(t) satisfy 

s*( . )~w( . )  in O[0, m6] as K--*m. (6.5) 

We shall use Proposition 5.2 to construct for each K a joint distribution for 
(S;Ai,~, (i,j)eJK) and (I7r Bi, ~, (i,j)sJt~), where JKClK will be specified later 
(6.14), and events A 1 (depending on K) such that: 

the marginal distributions are as specified in (6.1) and (6.3); (6.6) (a) 

outside A t we have: Ai,j=Bi, j for (i,j)sJ~, and these events are disjoint as 
(i, j) varies; (b) 

lim sup P(A 1) <= 16(6F) 3/2 + 2(6F) 2 (c) 
K ~ o o  

for F defined at (6.2); 
lira E d(S*, ITV) lay = 0 (d) 

K ~  

where d is a bounded metric on D[0, 6]. 

The details of this construction will be given later (6.14). 
Next, by Lemma 5.5 we can splice these joint distributions into one col- 

lection encompassing 17~ and all the random walks ~(K), K > 1. Next, for each K 
the family (VV;Bi,~, (i,j)eJr) constructed above can be extended by Lemma 5.3 
to a family (W; Bi, j, (i,j)~IK; 01, 02 .. . .  ) with the distribution prescribed in 
(6.1). Similarly, for each K we can extend (S; Ai,j, (i,j)~JK) to a family (S; Ai,~, 
(i,j)elK; T t, T 2 ....  ) with the distribution prescribed in (6.3). 

This finishes the construction of the conditional joint increments. We now 
wish to estimate the distance between the conditioned processes S* and 17r and 
between the conditioned times ~ and ~*. Here are some Lemmas, to be 
proved later, of similar format: we define a "bad"  event A (depending on K), 
and give a bound on P(A) as K~oQ. 



Self-Intersections of 1-Dimensional Random Walks 579 

Lemma 6.7. Let A2= ~ (Ai,iw Bi,j). Then P(A2)---~0 as K ~o~. 
( i , j ) e l x  ".. J K  

Lemma 6.8. Let A 3 be the event that either the process T + of (6.3) or the 
process U + of (6.1) has at least one point. Then lira sup P(A 3) <= 263/2. 

K ~  ao 

Lemma 6.9. Let A 4 be the event that the process U ~ of (6.1) has at least two 
points during an interval [j0.-2/3,(j+l)0.-2/3], for some j<=b0. 2/3. Then 
P(A,O--*O as K--, oe. 

Finally, it is immediate from (6.6)(d) that we can find events A s such that 
5 

as K---,oe we have d(S*, W) I A g ~ 0  a.s. and P(As)---,O. Now set A= ~ Aq. 
q = l  

Combining the estimates in (6.6)-(6.9) gives the following bounds on the 
distance between the conditioned processes. 

Outside A we have [T~*-g/[~0. - 2 / 3  for all i; 

d(S*, W) l~c--,0 a.s. as K ~ o o ;  

lira sup P(A) <_ 16(c~F) 2/3 + 2(~F) 2 + 2~ 3/2. 
K~o~ 

(6.10)(i) 

(ii) 

(iii) 

Here (ii) and (iii) are clear. Property (i) comes from (6.6)(b). For matching events 
Ai, j and Bi, j is equivalent to pairing off self-intersection times T*, U such 
that each pair falls into some interval [j0.-2/3, ( j+ 1)0.-2/3]; and the other Aq 
are defined so that outside A no other self-intersections occur. 

(6.11) The Entire Processes 

In the previous section we have constructed Brownian motion W(t) and its 
pseudo self-intersections on the time interval m 6 N t < ( m + l ) 6 ;  the random 
walks S~ and their self-intersections on the interval such that the normalized 
walks S*(t) have time interval m~<<_t<_(m+l)c~; all this conditional on past 
paths s*(t), w(t), O<t<_m~ and supposing these paths were convergent as 
K--+oo. Now by (6.10)(ii) the paths S*(') converge to W(') on mg)<_t<_(m+l)6 
if we except certain "bad"  sets A. Thus by induction on m we can construct the 
processes over all time 0=<t<oe (the first step being similar to the general 
step). Then (6.10) gives the following estimates. 

Proposition 6.12. Let ~ > 0  be fixed. We can construct the Brownian motion 
process (W; U1, U2, ...); the normalized random walk processes (S*; TI*, T2* . . . .  ) 
for all K >= 1 ; and events A (K, m) such that 

(i) outside A(K, m) we have [Ti*-Ui[__<o .-2/3 for all i such that Ui<:m6; 

(ii) sup [S*(t)- W(t)[ l~qn,m)~0 a.s. as K - - , ~  (m fixed); 
t < : m  

(iii) lira sup P(A (K, m + 1)[~m)l~o(n, m) --< ~(6, m fi) a.s., 
K~o~ 

where ~(6, t)= 16(6Ft) 3/2 +2(6F~) ~ +263/2, Ft=sup L(t,x), and ~ is the 0.-field 
~z 

generated by the processes S*, W on [-0, t] ; 

(iv) A(K,m)~.~m and A ( K , m ) ~ A ( K , m +  I). 
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This Proposition almost completes the proof of Theorem 1.8. Fix t. By 
considering (i) and (ii) above for m = It/6], we see that to prove Theorem 1.8 it 
suffices to prove 

lira lira sup P(AC(K, It/6]))= 0. (6.13) 
6,~0 K~co 

(Note that A(K, m) depends also on 6, though the notation suppresses this.) To 
prove (6.13), fix e>0.  By (iii) and the fact that ~(6, m b ) e ~ , , ,  

lim sup P(A (K, m + 1)\A (K, m), e(6, m b) < e 61 ~ , , )  < e 3. 
K ~  

Since a(6, t) is increasing in t we have, for m<t/b,  

lim sup P(A (K, m + 1)\A (K, m), ~(6, t) < e 3) < e 3. 
K ~  

Summing over m < t/g, 

lim sup P(A (K, [t/b]), b-  1 e(b, t) <= e) <= m ~ b < ~ t. 
K~oo 

But from the definition of e we see that b -~ e(6, t ) ~ 0  as 6 ~ 0 ,  so 

lira lira sup P(A (K, [t/b])) < e t. 
6~,0 K~c~ 

Since a is arbitrary, this proves (6.13). 

(6.14) Details of the Construction of  Joint Increments 

The proof of Theorem 1.8 is now complete except for the details of the 
construction which yields properties (6.6) and Lemmas 6.7-6.9. We return to 
the setting of (6.4). We are given paths s*( ' )~w( . )  in D[O, mb], and we have 
the conditional increments of the separate processes prescribed by (6.1) and 
(6.3). Fix L <  ~ and 0 < z < b .  Let Jr, be the set of (i,j)~l K such that 

j~z  0 "2/3 and 

Proposition 6.16. As  K ~ 0% 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Is*(irr 2/3)-s*(mb) l~L.  

sup IP(Ai,j)/P(Bi,j)- 11--*0. 
JK 

sup 3(~(S* I A,,;), S(ITV] B,,j))~0. 
JK 

lim sup P( U A/.;) < P(sup I W(t)l > L) + F z. 
IK"-JK t~ 6  

lira sup P( U Bi,j) <= P(sup I W(t)l > L) + f ~. 
I K \ J K  t<6 

lim sup ~ P(Ai,~) < P(U  Ai.;) + (F 6) 2. 
IK IK 

lira sup ~, P(Bi,j) < P(U B~,;) + (F 6)2. 
IK IK 

(6.15) 
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(viii) lim sup ~ P(Ai,j)<F 8. 
I g  

(ix) lim sup ~ P(B~, j) < F 8. 
I K  

We defer the proof for a moment. Proposition 6.16 holds with Jr( defined at 
(6.15) for fixed L, ~. So we can redefine ark by taking LK~OO and ~ : ~ 0  
sufficiently slowly, and the assertions of the Proposition will remain true except 
that (iv), (v) are improved to 

(x) P([_)  A,,j)-*O; P( U B,,j)-*O. 
IlK \ J K  I K  \ J K  

This gives Lemma 6.7. And we can apply Proposition 5.2 to (S; Ai, j, (i,j)~J~:) 
and (IY:B~,~, (i,j)~JK). For Proposition 6.16 shows that the hypotheses of 
Proposition 5.2 hold with ( a s / ( ~  oo) 

z---~ 0 

2 < (F 6) 2 

O<F8 

c~-~O. 

Applying Proposition 5.2 with ~ =(F  S) }, we obtain a construction for the joint 
distribution which satisfies (6.6). (Proposition 5.2 requires r/<�89 if not, assertion 
(6.6) is trivial for A I = ~2.) 

Proof of Proposition 6.16. Assertion (i) follows from (1.6). Assertions (vi)-(ix) 
are rephrasings or easy consequences of Lemmas 4.10 and 4.11. 

Proof of(iv). [9 AI, j~DI~D2, where 
I K  "-. J K  

D 1 = {sup IS*(t)-S*(0)[ >g}  
t_<g 

D2={SfiG for some l <j<za z/3} 

G={s(i): O<_i<_mSr72/3}. 

Now P(D1)-*P(supIW(t)I>L) by (1.6). And limsupP(Dz)<=Fz by Lemma 
4.11 (a). ~ ~:~ ~ 

Proof of (v). Similarly, U Bi,jcD1 u D2, where 
I K \ J K  

D i = {sup I w ( 0 -  ~(0)l > L -  2dK} 
t<6  

D 2 = {some point of U ~ occurs before time z} 

dK= sup Is*(t)--w(t)l. 
t <n15 

Now P(DO~P(su p ]W(t)]>L) since dK-,O. And limsupP(D2)<Fz by Lemma 
4.10(a). ~ K~ 
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Proof of  (ii). P(Ai, ) = P(Sj = s(i)) = P(Sj = s(i) - s(m 6 a2/3)). 

So using Lemma 4.6(a), 

sup Io -4/3 P(Ai,)  - 6, (j a 2/3 G- 4-/3 (S (i) -- s(m a 0-2/3)))1 + 0. 
Y~ 

Since s*(')--, w('), 

sup la 4/3 P(Ai, ) - 4 0  o-- 2/3, w(i a -  2/3) _ w(m 6))1--,0. (6.17) 
JK 

Now consider Bi,j, the event that the point process U i of (6.1) has some point 
in the time interval j a - 2 / 3 < t < ( j + l ) a  -2/3. Since U i has rate bounded by F, 
we easily get 

P(B,,) < m,, 2 < P(B~,)/(1 - F a-  2/3), (6.18) 

where mid is the mean number of points in that interval. But 

(j+ 1)a 2/3 

rni,j= ~ dx 5 dt f i (x)(~(t ,x-w(m6))" (6.19) 
--o0 jo-- 2/3 

As K-+oo the probability measure with density 0.2/3fi(x)dx approximates the 
probability measure degenerate at w(i0"-2/3); and the probability measure with 
density _2/3 1 o~ 2/3<=t<=0+,> 2/3)dt approximates the measure degenerate at 
j a  2/3. Taking K-- ,m in (6.19), a weak convergence argument shows 

sup 10- 4/a ml, ~ -  ~b(j 0.- 2/3, w(i 0.- 2/3) _ w(m 6)) I -+0. (6.20) 
JK 

Putting together (6.18), (6.17) and (6.20) gives 

sup 0-4/3 iP(Ai,j) _ P(Bi,) [ --+0. 
JK 

This yields (ii), since (6.17) shows lim inf inf0.4/3p(Ai,)>O. 
K ~  oo JK 

Proof of (iii). The proof is similar to the proof of (ii) above, using Lemma 4.8. 

This concludes the proof of Proposition 6.16. 

Proof of Lemma 6.9. The process U ~ in (6.1) is stochastically dominated by the 
homogeneous Poisson process of rate F. So for fixed j, the chance of more than 
one point of U ~ during j a  -2/3 <-t<-(j+ 1)a -2/3 is at most  (Fo--z/3) 2. Thus 

P(A~)~6a2/3[Fa-2/312--~O as K ~ .  

Proof of  Lemma 6.8. The process U + of (6.1) is distributed as the process U of 
(1.7), restricted to the time interval (0, 6). So the chance of at least one point of 
U + existing is bounded by the mean number of points 

E~L(t,  W(t))dt=�89 by Lemmas 2.2 and 2.3 
0 

6 3/2 using Proposition 2.4. 
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Similarly, the process T-- of (6.3) is distributed as the process T of self- 
intersections of the original random walk S, restricted to the time interval 
0_<i_ < c~o 2/3. So the probabili ty of some self-intersection is bounded by the 
mean number  of self-intersections, which can be bounded by 

~ 2 / 3 m ( K , ~ r 2 / 3 , 0 ) ~ 6 G ( ~ , O )  as K ~ o o ,  by Lemma 4.6(b) 

= (2/rc)~ 6 3/2 < ~3/2. 

7. Related Topics 

( A )  Iterates of  Random Functions 

Given a function f from a set S to itself, and xeS ,  consider the iterates o f f :  

Xo=X 

Xi+ 1 = f ( x i ) .  

Let t = t(x, f ) =  oo if the sequence (xi) has all elements distinct, 

=ra in{ t :  x t = x  , for some r < t }  otherwise, 

and in the latter case let r ( x , f )  be the integer r such that x r = x  t. Plainly when 
t <  oo the sequence (xi) eventually cycles through (xr, xr+ 1 . . . .  , xt_l). Call t the 
cycle time. If we now consider a random function F and fixed x, then X i 
= F ( X i -  1), T =  t(x, F), R = r(x, F) are random variables. 

For a finite set S, # S - - N  say, we can consider the case where F is uniform 
over the set of all N N functions from S to S. In this case the problem of 
studying the cycle time T (=  T (N)) is just the classical "Birthday Problem",  
since it makes no difference if we take X 0 to be uniform on S, and then 
X o , X , , X  2 . . . .  are i.i.d, uniform on S until T = m i n { t :  X , = X ~  for some r< t} .  

So  t - i  

P ( T  (N) = t) = N -  1 t I ]  (1 - i/N) 
i=1 

P(R(N)=r]T(N)=t )=I / t ,  0 < r < t .  

And as N ~ o o  we have N - + ( R  (N), T ( N ) ) ~ ( R  *, T*), where 

P(T*  > t) = e x p ( -  t2/2) (7.1) 

and conditional on T* R* is uniform on (0, T*). 
Suppose now we wish to study random functions on the integers. Then we 

cannot pick a function uniformly. However, for fixed K we can define a 
random function F: 2E~Z such that the variable F(i) is uniform on { i - K  . . . . .  i 
+K},  and independent for different i. Informally, F is uniform on the set of f 
with I f ( i ) - i l  < K  for all i. In this setting the iterates X i = F ( X I _ I )  , Xo=0 ,  from 
precisely the random walk (S~) studied in this paper, with ~?(K) uniform, up until 
the time of first self-intersection. Thus the cycle time T (K) is distributed as the 
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first self-intersection time at (1.11), and so 

31/3 K -  2/3 T(K)_~+~ U1" (7.2) 

Many different problems concerning the uniform random function on a 
finite set have been studied by different authors: see e.g. Knuth (1981), p. 8 and 
518-520, Pavlov (1981), Pittel (1983). The same questions can be asked about 
the random functions F (K) of the integers defined above. Some of these ques- 
tions may be attacked using the methods of this paper: we shall state some 
results without giving details. 

One simple result concerns the analogue of (7.1). 

Proposition 7.3. 31/3 K-2/3 (R(K), T(K))_~(R,,  U1), where the limiting joint distri- 
bution is specified by (1.13) and 

P(R*<tIW, U1)=L(t, W(U1))/L(U1, W(U1)), O<_t <_ U 1. 

In other words, conditional on (W, U1), R* is uniform with respect to local 
time at W(U 0 on the time interval (0, U1). 

Another type of problem concerns components of random functions. For  a 
function f and initial point x, the component C(x, f )  is the set of points y such 
that the sequence of iterates of f started from y has the same ultimate cycle as 
the sequence started from x. In other words, it is the component of the 
directed graph which has an edge (i,j) if f(i)=j. Let C (n be the component of 
the uniform random function F of {1 . . . .  , N} which contains 1. Then 

(a) P(j~C(m)~2/3 as N ~ o o  ( j * l )  

(b) N ~ E ~ C (N~ ~ 2/3 as N (7.4) 

(c) N-I  ~ C  (m ~ ~ C*, where C* has density f (c)=3(1-e)  ~, 0 < e < l .  

(These results are sketched in Aldous (1985a), Sect. 11, but probably have 
appeared previously in the literature.) Now let C (K) be the component of the 
random function F (K) of the integers containing 0. We can say a little about the 
asymptotic behavior of C (K), analogous to (7.4). 

Fix x~R.  Let W~, W e be independent Brownian motions started at 0, x, and 
let L1,L 2 be their local times. Conditional on (W1, W2) let Ti, s ( i , j = l , 2 )  be 
independent, with T~, s distributed as the first event of a Poisson process of rate 
Li(t, Wi(t)). Let 

4(x)=P(TI,I> T1, 2 or T2,2>Tz,1). 

Proposition 7.5. 
(a) P(j~C(K))~(x) as K~oo,  3~K-4/3j-+x. 

(b) 34eK-4/3E~C(K)---~ ~ (9(x)dx<oo. 
- o a  

It seems hard to obtain any quantitative information about ~b. Simulations 
suggest q5(0)_~0.3. Also, it is not clear how to express the limiting distribution 
(which presumably exists analogously to (7.4c)) of K - 4 / 3 ~  C (K) in terms of 
Brownian motions. Heuristically, there is a limit process in which an infinite 
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number of independent Brownian motions start simultaneously from each 
point x~lR and interact with each other's local times (c.f. Arratia (1981) for 
simpler models in this spirit). 

(B) Self-Avoiding Walks 

There is a large literature on self-avoiding walks, and similar models for 
polymers, in d dimensions - see e.g. Freed (1981). The 1-dimensional case, 
though physically less interesting, is still mathematically challenging - see 
Westwater (1984). In the 1-dimensional setting of Theorem 1.8, let the step 
distribution be uniform on { - K ,  ..., K}. Let S 2 have the distribution of S, 
conditioned on {7"1 >n}. Given c>0,  let W~ A have the distribution of W(t) given 
{US>t}, where U( is the first event of the process (1.7) with rate cL(t, W(t)). 

In the case K = 1, obviously IS,a[ = n. I conjecture that the other conditioned 
processes also grow linearly; that is, 

n-lSAn ,aKg as n--*o% Kfixed, (7.6) 

where a K is constant, P(e= +_ 1)=�89 

t-iWt A ~>Cl/3e as t ~ w ,  cfixed; (7.7) 

the constants a K in (1) satisfy aK~3-1/3K 2/3 a s  K ~ .  (7.8) 

Let us make a few comments on these conjectures. If ~/~) is bounded, 
the self-avoiding walk S o, S1, S 2 . . . .  can cross a level L only finitely many 

n S, cannot converge to 0 as n~oo .  This times, so it is easy to see that - t  A 
suggests (7.6). I do not see how to prove (7.6), though subadditive ergodic 
theory might be applicable. 

For (7.7) there is a "physicist's argument". Let ((V(s), O<s<t) have the 
distribution of (W(s): O<s<t) given UC>t. By scaling, (t -~ l?V(s t): 0~<s< 1) has 
the distribution of (W(s), 0_<s_<l) given Ua3/~>l. In physicist's language, 
Brownian motion (W(s), 0 <_ s <_ 1) has density (proportional to) 

{ lilf'(s)12ds } A r g n i n g a s a t ( 1 . 1 3 ) , t h e e f f e c t o f t h e c o n d i t i o n i n g i s t o  exp - 2  o 

multiply this density by exp{-�89 where Y:= ~ L2r(1, x)dx and L:  is 
the occupation density of f So - ~ 

(t-~ITV(st); 0__<s<l) hasdensi tyocexp{ - 1  

Now Y: scales as Yar = a-1 y:. So dividing by t ~, 

where 

i If'(s)l cls -�89 t 3/2 Y:}. 

(t -1 l~(s t )=0  <s  < 1) has densityocexp { -�89 
1 

A(f) = S [f'(s)] 2 ds + c Yj.. 
0 

(7.9) 
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The functional A( f )  is minimized by f_+ (s)= ++_c 1/a s, 0_<s_< 1. So (7.9) suggests 
that as t--,oo, (t -1 17V(st); 0<__s_<l) converges in distribution to the process 
degenerate at f+,  f_ ,  and this gives (Z7). I presume this argument can be 
formalized, perhaps using the techniques of Westwater (1984). 

Finally, Theorem 1.8 says that for fixed K we can approximate 
(o 4/3St~2/3t~,~ 2/3T1) by (W t, U~), where a = 3 - ~ K .  Thus we can approximate 

W. A- (0 -r S A " t>0)  by ( ~ , t >0), with c=  1. Strictly, this approximation holds (o '2/3 t ] ,  ~_ 

on any [0, to] as K ~ o e ;  if the approximation held uniformly on [0, oo), then 
(7.6) and (7.7) would imply (7.8). 

( C) Discrete Groups 

It is natural to ask what happens to Theorem 1.8 if the random walks are d- 
dimensional, d>2.  More generally, suppose for each K we have a random 
watk S(f ) on a discrete group G (K~, and suppose that the time T (K~ of first self- 
intersection satisfies T(K)~+ oo. Then we can ask whether there exist normal- 
izing constants a r such that T(~)/aKg~ U (U non-degenerate). These questions 
are investigated in Aldous (1985b). Surprisingly, these more abstract problems 
are usually much simpler than the 1-dimensional case treated here. Typically 
the limit U is either exponential (e.g. in the d-dimensional analogue of Theo- 
rem 1.8), or Rayleigh (for rapidly mixing random walks on finite groups). 

Acknowledgements. My thanks to Mike Steele for suggesting this problem; to Rick Durrett for the 
idea in Sect. 3; to Martin Barlow for helpful remarks about the scaling properties of local time: to 
Persi Diaconis; and to a referee for his careful reading. 
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