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Summary. A distribution function is said to have an exponential tail F(t)
=F(t, c0) if e F(t+u) is asymptotically equivalent to F(t), t— oo, for all u.
In this case F(Int) is regularly varying. For two such distributions, F and
G, the convolution H=F *G also has an exponential tail. We investigate
the relationship between H and its components F and G, providing con-
ditions for lim H/F to exist. In addition, we are able to describe the
asymptotic nature of H when the limit is infinite, for many cases. This
corresponds to determining both the domain of attraction and the norming
constants for the product of independent variables whose distributions have
regularly varying tails.

In addition, we compare the tails of H=F %G with H, =F, * G, when F
is asymptotically equivalent to F and G is equivalent to G,. Such a
comparison corresponds to the “balancing” consideration for the product
of independent variables in stable domains of attraction. We discover that
there are several distinct comparisons possible.

1. Introduction

Assume that F and G are distributions on [0,c0] and let H=F =G be their
convolution. We use the common convention to denote distribution tails,
namely F()=F(t, c0). We will also write F, ~kF for asymptotic equivalence,
that is, for

. F@
lim 2= =ke(0, oo0).
Hm F — ke
Definition 1. A distribution function F has exponential tails with rate
a>0(FeZ) if _ ‘
F(t—u)

li = =™ .
tirg Fo) e for all real u. 4
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Such a distribution has the representation
t
F(t)=a(t) exp [—jcx(u)dv], where a(t)—a>0,a(t)—0o, as t—oo. (L1)
0
The convergence is necessarily uniform for u<u,,.

A complimentary definition is the {f8llowing:

Definition 2. A measurable function U is regularly varying with exponent p

(Ue,) if
i Uyt)
m
oo U(D)

=y* forall y>0. =

Such a function has the (Karamata) representation
¢ p)
U(t)=a(t) exp [j — dv], where a()—a>0, p(t)~p, as t—ooo. (1.2)
0

Clearly Fe %, if and only if F(Int)eZ _,. For excellent discussions of regularly
varying functions see de Haan (1970) and Bingham, Goldie and Teugels (1983).

The class Z,, of course, can be defined as in Definition 1 with o=0. This
class in fact has received more attention in the literature on convolution tails.
Chistyakov (1964) and Teugels (1975) have studied a subclass of %, known as
the subexponential distributions, with a view toward applications in branching
processes and renewal theory. In some sense, %, is a wider class of distri-
butions than is &, for o>0. However, we are interested in applications which
require F(Int) to be regularly varying with exponent —a<0. We will therefore
concentrate on, but not limit our attention to, these cases. The foundation of
our work includes Chover, Wainger and Ney (1973) and Embrechts and Goldie
(1980, 1982) which extend the work of Chistyakov and Teugels to the cases
o>0.

We have three main objectives in this paper. Our primary objective is to

describe the asymptotic behavior of H(t)=F * G(t) when F and G each have
exponential tails. For example, we will provide conditions for which H ~kF. In
addition, lim H(¢)/F(¢) is infinite in many cases and for these it is often possible
to describe the behavior of H in terms of the tails and the truncated transforms
of F and G. Our second objective is to consider when it is possible to compare

two convolution tails H=F G and H, =F, * G,, assuming F ~F, and G~G,.
Finally, we want to apply these results to problems involving the weak
convergence of sums (or extremes) of products of two independent variables. If
X and Y are independent random variables whose distributions have regularly
varying tails, then it is readily seen that, with F(f)=P[X <¢] and G(t)
=P[Y<e"], we need to describe the asymptotic nature of H(f)=F % G(t) in
order to establish the attraction corresponding to XY and in order to calculate
the necessary norming constants. In addition, if the problem involves the sum
of variables like XY, then convergence to a stable distribution (@ <2) requires
showing that the tails P[XY < —¢] and P[ XY >t] balance. Accomplishing our
second objective enables us to determine when this is possible. Specific appli-
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cations for partial sums of products may be found in Davis and Resnick
(1984 a, b) and in Cline (1984). In these applications, an additional requirement
is that lim P[ XY >t]/P[ X >t] either exists or is infinite.

One crucial consideration in these problems is the transform (moment

generating function)
0

my(y) = [ e F(du),
0

which has a singularity at y=o. In fact mg(y)<oo for all y<a and my(x) may
or may not be finite (cf. Embrechts and Goldie, 1982, Lemma 2.4 and remark
following).

An casy solution occurs when F and G have exponential tails with different
rates. We repeat a lemma first proved (in a different form) by Breiman (1965,
Proposition 3).

Lemma 1 (Breiman, 1965). If Fe%, and mq(y) < oo for some y>a, then

. H()
2 e #

The proof is quite direct, using the representation (1.1) for F and dominated
convergence.

Since the situation with different rates is easy, we will concentrate on the
case where both Fe ¥, and Ge¥,. Embrechts and Goldie (1980, Theorem 3)
have shown that He %, follows. Under certain conditions we can have H~kF
for some ke(0,00). This is the situation which has been most extensively
studied in the literature. We will present the major results and will weaken
known conditions in Sect. 2. This situation requires my(«) < co, but as we show,
it is not nearly sufficient.

In the third section we will investigate H without requiring H ~kF. Instead
we will impose some regularity (but not absolute continuity) on F and G. We
find that the asymptotic nature of H is quite varied, depending on which
conditions we impose. Some specific examples we will investigate include

F(ty=b()e~*, bed, (Theorem 4, Sect. 3),

F(t)y=e*=% yed, 0<p<l (Theorem 3, Sect. 2)
and ~
F(ty=er== ye#, O<p<l (Theorem 5, Sect. 3).

We return to our second objective in Sect. 4, where we are again obliged to
consider separate cases. The final section briefly considers application to the
product distribution given by H(In1).

Before we continue to Sect. 2, we will prove a simplifying lemma.

Lemma 2. [f Fe¥,, Ge ¥, a>0, then for any s(t)— oo, t —5(t)— <0,

s(t) t—s(t)

Ho)~ [ Ft—u)Gduw+ | G(t—u)F(du).
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Proof. Since

s(t) t—s(r)

H)= [ Ft—wG@du+ [ G(t—w)F(du)+F(t—s(1) G(s(0),
0 0

then it suffices to show that the third term is asymptotically negligible when
compared to H(1).
Assume first that G is absolutely continuous with the property
. G(1)
lim —==u. 1.3
- G(1) (13
We note that (1.3) is sufficient for Ge%,. Changing variables and then
using Fatou’s lemma,

0 F(t—u)G(d 0 F (- G'(s(t)—
et T ) )

) R 660 PR

= ojo(e‘m‘)(oce"“‘) du=oco.
0

This shows that the first term dominates the last and hence

i P50 G6()

=0,
t— o H()

If G does not satisfy (1.3), then by the representation (1.1) for G, G(t)
=a(t)G (1) where a(t)—1 and G, does satisfy (1.3). In fact we can always
choose a(t) to satisfy

a(t)

t
< —-<2 forall ¢
0= or a

NSRRI

_ 0) -
Then it is easy to show that H (r)ga2—) H,(t), where H, =F = G,. Therefore

F—s@)Gem)_ . Ft—s0)G, (@)
hm =g =M T=eE G -

And this verifies the lemma. #

We will ordinarily choose s(t) =t —s(t) =t/2.
When both F and G are absolutely continuous,

2 12

H' ()= | F(t—u) G(du)+ | G'(t —u) F(du).

Thus a simple consequence of Lemma 2 is that H satisfies property (1.3)
whenever both F and G satisfy it. We note that (1.3) is stronger than the
statement Ge ¥, and G is absolutely continuous.
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2. Convolution Equivalency

In this section we are interested in conditions for which H ~kF. Chistyakov
(1964) and Chover, Wainger and Ney (1973) introduced the following class.

Definition 3. A distribution Fe.%,, « =0, is convolution equivalent (Fe.%) if

FxF(t)
zirg F(t)

This class has also been examined in Teugels (1975) and in Embrechts and
Goldie (1982). The class & is called the subexponential class. We summarize
the primary result, which combines results from the second and fourth papers
mentioned above.

Theorem 1 (Chover, Wainger and Ney, 1973; Embrechts and Goldie, 1982).
Suppose Fe %, then

exists finite. #

=2mg(a) < co. (2.1

. Gy(1)
Furthermore, if k;=lim =
Fh=lm 7

exists finite for distributions G, and G,, then

G, %G, (1)
lim —— 2%
S TE O

And if k;>0, then G,e5,. #

=k, mg, () +k,mg (o).

The proof of the limit (2.1) provided by Chover, Wainger and Ney is quite
involved and uses Banach algebra techniques. A real analytic proof may be
found in Cline (1985). The second part of Theorem 1 is Lemma 2.7 in Em-
brechts and Goldie, when k;>0. The limit holds for k;=0, also, as can readily
be seen by taking F,=(1 —¢)G,;+¢F, considering F, « F, and letting ¢ tend to
ZEero.

Returning now to our original question, we see that if Fe&, and G~kF,
0<k<oo, then H~(mg(e)+kmp(x)) F. However, Theorem 1 does not explain

. - . G
the asymptotic nature of H when both Fe¥,, Ge¥, and lim _—() does not

exist. = °°_F (t)

G()
Corollary 1. Let H=FxG where Fe¥,, Ge¥, and sup z—-<oo. Then
H(t)~mg(o) F(t) +mp(@) G(t) and He .. o F()

Proof. See Cline (1985, Corollary 3.2 and Theorem 3.4). An alternate proof
which requires G/F bounded away from zero is similar to that of Theorem 1 in
Embrechts and Goldie (1980). 4

We next provide conditions for F to be in &. This is a substantial
sharpening of similar results in Chover, Wainger and Ney and in Teugels.
Different sets of conditions appear in Theorems 3 and 4.
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Theorem 2. Suppose F(t)=a(t)e ¥® where a(t)—»a>0 and  is eventually con-
cave,
If there exists nondecreasing v(u)— oo, v(u) =2u, such that

; w is integrable on [0, o0

F(v(u))
and ii) lim (v(u)—zu)%@ B

then Fe¥, for some 0 =0.

uF(v(u)—u)F(u)
F(u(u

(v(w)

Conversely, if Fe¥,, 0>0, then lim =0, for any function

v(u)=2u. wm®

Proof. Because it is eventually concave, i is eventually absolutely continuous
with bounded, nonincreasing density . We may modify y(t) and a(f) on a
finite interval so that Y’ exists finite and is nonincreasing for all t. Let «
=lim y/'(¢). Then 20 and

F(t)=a(t) exp [ —gl//’(u)dv].

From (1.1) we see that this indicates Fe.?,. By the second part of Theorem 1, it
suffices to prove this theorem with a(f)=1 for all t. Thus F(t)=e~¥® and F has
density ¥'(£) F(t).

Since ¥’ (1)},

ausSY () =yt —w=sy(s)—y(s—u), s=t
This translates as

F(t—u)F(u)(l*:(s—u)F(u)

e Fu) < o = o) , SXt (2.5)
Define
s(t)=sup {u: v(u) <t}
Then s(f)=u if and only if t Zv(u). From (2.5),
PO FW_Few—oFw

Foy = Fow)

The rightmost quantity is integrable by assumption.
This says

M (o) =Ojoe““F(du) =}O¢'(u) e F (1) du

F(u(u) —u) F(u)
F(v(w)

du < c0o.

gu&f
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We may also apply dominated convergence,

0 F(t—u) ) F(t —u)F(u)
tim | Fan = [y im [FEEEE @ o
! = j W' (u) e F (u) du =m (o). (2.6)

Now for s(t) Su <t ~s(t), the concavity of ¥ implies

Yt —u)+y @)z Yt —s@)+¥(s)
That is,

F(tiu)F(u) F(t—s() F(s(1))
F(t) = F(t) ‘

Hence,
t—s(t) F([ )

f Fle=s(0) Fs(0)
s() F(t)

F(t)

Fdu)=¢'(0)(¢ —2s(t))

Changing variables, t =v(u), s(t) = u,

— " F(t—u) P F(o(u) —s(o@)) F (s(v(w))
lim s(ft) o Fldu = !P(O)tlirg (0() =2s(v (1)) Foow)

<y'(0) EnT(u(u) —2u) E_(L(;_)(U—_%F_(ﬂ

~0. 2.7)

Applying Lemma 2 in concert with (2.6) and (2.7) we finally have

FxF() . O F(—u) s F(r—u)
lim = 2hm | g P+ lim S(I,, Fo @)
=2mp(e).

To prove the partial converse, assume Fe%,, a>0. Again, it suffices to
assume ¥(f) has bounded, nonincreasing density y'(¢) for all ¢ and that a(t)=1.
From Lemma 2, with s(t) =t/4,

FxF(t)~ t/jAF(t—— ) F(du)+ 3tf/4F(t—u)F(du).

/4
But by Fatou’s lemma and the fact that Fe %,

— U F(t—u)
lim .
I (j) F(t)

Fldu)= Of e™ F(du) =mpg(a).

From Theorem 1,

. FxF
zlir?o T(t)(i)zsz(a)'
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Therefore, we must have

lim J/F;f(_ S F @) 5 2m,(0) =2 (0) . 23)
t—o0 ¢4

Now since y is concave,

Y(t—uw)+y22y(t/2) for t/4§u <3t/4.

That is,
F(t —Fzg)ﬁ( ):F(t/é;)z, t/A<u<3t/4.
Using (2.8),
e e
st [yl e

=0.
Changing variables, t =2u, and using (2.5) with v(u)=2u

(Fw)? _— Fv(u)—u) F(u)
“Faw EIm YR

(F/2)y
25

=lim «

t

If «=0 we may replace ii) in Theorem 2 with

F(v(u) —u)ﬁ(u)] 0
F(v(w) ’

which is weaker, since ¥/'(#)—0. When «>0, it is simplest and generally
sufficient to take v(u)=2u. The conditions in Theorem 2 can be further weak-
ened to include cases where  is not concave.

lim [l//’(u)(v(u) —2u)

t— 0

Corollary 2. Suppose F(t)=a(t)e ?® where a(t)—a>0 and Y(t) is eventually
absolutely continuous with the property that lim t{y’ (¢) —y ()] =0 for some yr,

t— 0

. which is eventually concave. Then both statements in Theorem 2 hold for F.

Proof. The proof proceeds by first showing Fe#, and then that the dominated
convergence argument of Theorem 2 is valid. The details are straightforward so
we do not present them here.

Intuitively, one would suspect that if y()eZ,, 0<p<l1, then F(t)=1
—e~ =10 woyld be in . The following counterexample illustrates that this is
not the case. Let y(¢)=(1 —b(t))t” where 0<p<1 and

b)=1°_ i +1StSt,=¢"
e (1 —(1—ef)(t—1)), t,<t<t +1.
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Note that x() is both absolutely continuous and nondecreasing. In order to
have Fe¥,, we must show

lim [x(6) = x{t —u)] =0, for all u.

t—

But this is not case. With ¢, =e",

lim (x(t, + 1) —x(t,)) = lim ((t, + 1)? = £2) + lim (b(t,) 2 —b(t, + 1)(z, + 1)")

n— n— h— 0

=0+ lim (1 —e~?"* V(e 4 1)) =1 —e~">0.

n— 0

Therefore F¢.Z, and hence F¢.%,.

We can, however, provide a subclass of & which contains many examples
with regularly varying y(z).
Theorem 3. Suppose F(t)=a(t) e~ %9, g(t)—a>0, a=0, x(t)1 0. Assume there
exists p<1 and s20 such that

N {01
! 2 20 =

and i) e~ @22 g integrable on [2, 0].

forall y=1, t=s

Then Fe..

Proof. As before, we may assume a(t) = 1. First note that

1) _ ()" tals) _x(s)
=\s

=< forall t=s.
t s s

— -1
Thus Tim 29 <26 1 m(i)p o,
10 L S tow \S
Now fix u<s and let t =s.
0510~ -0 50— -u) x0 20 us?

This shows that y is absolutely continuous with bounded density ¥'(¢), t=s. It
also demonstrates

7()

Tim |y () — 7 (t —w)| <u lim 2= =0.
t— o t— o0
F(t—u)

And this is equivalent to Fe.Z, since =™ 10-10-) Fyrthermore, the

F(t)

convergence is uniform for u<s. Hence

. S F(t—u s
1 — =|e™ . 29
,ilf) { o) du) £e F(du) (2.9)
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On the other hand, for uz=s, u<t/2,
x(6) =yt —u) =y (W) = (1 = (1 —u/1)*) 3 (£) — x (1)
=[a-a—won () -1]xw
S —@2-2%) x(w).
Since e~?~271® ig integrable, dominated convergence assures

12 F_ t— /2
lim | (F (t)”) Fduy=lm [+ y (u)) e¥0 - xé=0-x gy
tmo0 s to0 g

~J ) ey
] e F(du). (2.10)

Limits (2.9) and (2.10) are sufficient to have Fe%,. 4
Although cach of our sets of conditions have required x(t) (or ¥(f)) to be

absolutely continuous, it must be remembered that (1.1) requires F to be
asymptotic to just such an example.

We now present a counterexample which helps to illustrate some of the
problems encountered in attempting to show Fe.%,. Note that this is a new
example for which Fe %, my(a) < 00, but F¢%, (cf. Embrechts & Goldie, sec. 3,

1980). Let F(t)=e~*~*®, where a>0 and
g (f)=ri2Focosnn o r> 1 0<d<1/2.
Again, y is absolutely continuous, but not monotone
¥ (®)=(1/2+6cos(lnr)—5Int sin (In )yt~ /2 F9cosilan)

Since lim y'(t) =0, Fe.%,. Furthermore, my(y)< oo if and only if y <a. However,

t— o

setting t, =e*"", it is not difficult to show that

20(6,/2)  2(1/2¢3mm)l/2+dcos(in2)
R
éze—ZEnn(lwcos(an])_)O.
Therefore
T FaF @) (F(2)*

lim —= >lim ~—= lim e*®) = 2x0n/2) — o
t-w  F() Tine F(?) tor 0

3. More on Convolution Tails

In this section we will investigate the asymptotic nature of H without requiring
Fe¥,. As far as we know, this has not been pursued before. Unfortunately, we
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are unable to present a general pattern. Indeed, the very results depend heavily
on the conditions assigned to F and G. The conclusions obtained in Theorems
4 and 5 below are concise and provide simple formulations of the tails of H.
But these conclusions are at variance with each other and with Corollary 1
and offer little suggestion for a unified theorem.

Theorem 4 is characterized by the assumption that e*F(¢) is regularly
varying, while Theorem 5 assumes In(e* F(t)) is regularly varying. For the first
result we need the coefficients

L s —1
— 1/2

I, =
Prl 2t [ (A =pfyrdy,  y>—1
4]

Lemma 4. Assume that F, Ge¥,, a>0, and that b(t)=e*F(t)eR, and c(1)
=e"G(t)eR,, where f§ and y are any real values. Then

_ _y2 _ t/_2
H(ty~I, F(t) | e G(du)+1, ,G(1) | ™ F(du).
0 0
Proof. In light of Lemma 2, it suffices to show

t/2

/j w)G(du)~1, F(1) [ e™G(du). (3.1)
(o] 0

For large t, u<t/2, the Karamata representation (1.2) applied to b yields

(1—e)(1 —u/t)”<b(£(t) ) (1 o)1 —ur)
Therefore,
t/jz Fle—u) G(dv)zl/jz U G
o F() o b()
NI/fa —uft)? ™ G(du). (3.2)

V]
Of course, (1 —u/t)? <21 If mg(a)< oo (requiring y< —1) then dominated
convergence proves
Y2 F(t—
lim | 2L—Y
- o F(0)

G(du )—je““G du) =mg (%),

This satisfies (3.1).
Assume instead that mg(x) =00, which requires y= —1. Then we first define

t
C(ty={e™G(du).
0
Integrating by parts and recalling c(t) =e* G(t),

c@)=1 —c(t)+ocjc(u)du
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t
Since | c(u)due#, ,, (de Haan, 1970, p. 15) and
0
t
1
lim —— u=——-
t— C() f ( ) 1“"))
then it follows that C(f) is also in A, ..,. Furthermore,

t/jz(l—u/t)ﬂe“"G(du) =2- ﬁC(t/2)+ﬁ t/jz(l—u/t)”*1C(u)du
0

1/2

=27PC@t/2)+pB [ (L—yff~* C(yr)dy.

Since C(t) is nondecreasing, then dominated convergence gives

1 2 1/2 C
M e fU o= “3112!3} - e

=277+ g (L—yy=1@y *1dy

1/2

=(1+7)2""7 | (l—y)ﬂy”dyzlﬂ’y. (3.3)
0

The last equality is integration by parts.
Combining (3.3) with (3.2) we have

t/2

) 1
tlil'g W j F(t G(du) IB ",

which is our result as stated in (3.1). #

As corollary to Lemma 4, we have Theorem 4 to distinguish cases accord-
ing to the finiteness of the moment generating function.
Theorem 4. Assume F and G are as in Lemma 4.

i) The result in Lemma 4 can be simplified according to

me (), if mg(a)<oo

t/2
/2 ed73 -
Iﬁ,yrg e G (du) ~ g e“G(du), if y=—1 and my(e)=c0, a>0

12
( fa —y)”yydy) ate*G(), P> -1, a>0.
)

In particular,
ii) If mp(0) < o0, then Fe¥,
iti) If myp(a) < o0 and mg(o) < oo, then He %, and

H ()~ mg(o) F () +my () G ().
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iv) If mg(o)<oo, mp(a)=c0, and B>y, then H()~mg(@)F(t). This is not
necessarily true when f=y=—1.

Fra+pra+y
Ir+p+y
Proof. 1) The first two expressions, corresponding to y< —1, are obvious.

When y> — 1, then as shown in the proof of the lemma,

v) If f> —1 and y> —1, then H(t)~ ate®F() G(b).

t
Clt)y=Je ()
0
and Ce#, , . Therefore
12
Mfeauc;(du) =1y, ClUD ~53 €1+ > c(t)

1/2
( [a—yy ydy) ate™ G(t).

ii) With F =G, we have F « F ~2m(«) F.

iii) Clearly, H~mg(®) F+mp(a)G. By ii), F+F and G«G satisfy the con-
ditions of Lemma 4 so that this applies to H=H as well. Using the same
argument as at the end of the proof of Corollary 1, it follows that He%,.

iv) Define B(t)= je“"F (du) and C*(t)= je““G(du) Similarly to the remarks

in i) and in the proof of Lemma 4, B(t)a%lﬂ, and B(t)~m th(t). In the

same manner we can show C*eZ,,, and C*( te(t). Note y< —1<8.

In case of equality, the asymptotic expressions above hold if treated in the
obvious manner.
Now H ~mg(o) F if and only if

— 11 G([) i3 ou ( )
0=lim 5 [ o Fidw=im b()B(t/2)
~(1/2)"* lim bi ; B(#), (3.4

When y< —155, °B isin £, ,, and thus (3.4) is automatically true. When 7y =
—1<p, then )

lim &9 g L im cx(9=o0.
lim oy BO= 1+ﬁ lim €*(0

However, if y=f= —1, we will show that (3.4) does not have to hold and
that in fact even if _
G(t t
i GO c)

m — =0,
o F(@) e b(D)
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the limit in (3.4) does not have to exist. To see this let d(f) be any noninte-
grable function in £ _, such that td(z)—0. Define

b(t)=d(t) exp [}d(u)du]. (3.5)

t 4
This implies | b(u) du=exp [jd(v)dv]—»oo and beZ _,, so (3.5) describes a class
0 4] t

of functions b which satisfy our conditions. Since B(t) =1 —b(t)+« | b(u) du then
0

b(H)  ab()
"B

d() =+
[bw)du
0
On the other hand, we may choose c(f) to be any integrable £_, function
since mg(a)<oo if and only if c(f)—0 and c(f) is integrable. This means we
must have

@

— c(t .
But it is not necessary that lim —Q is even finite (e.g. c(t)y=c(t)=

1o d(1) t(Inoy?’

1
1+ (1 —?) sin(Inln)

I > Hence (3.4} does not have to hold when f=y=—1.
n

v) Define C(t) and B(¢) as in the proofs for i) and iv), respectively. Then
Be#, 4 CeR, ., and
2 ath(t)
B(t/2)y=| e*F(du)~————
)= ] &)~ ey
ate(t)

2
C(t/2) = £ e” G(du)~W

Therefore, by Lemma 4,

eazH(t)~Iﬂ’yb(t) C([/Z)-}-I%ﬂ c(t) B(t/2)
~ Iﬂ”’ IvsB
ot ((1+5)21+ﬁ +(1+y)21+y>b(t)c(t)

_T(1+pIr(1+y)
T TR+B+y)

ath(t) c(2).

rd+pria+y

Thus H(t)~ 2t E)

ateF()G(t). #
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An intriguing consequence of part v) is, if F(t)=b(f)e™*, b()eZR,, B> —1,

then
@ (1+p)y

PRI " e ™, n=x1.

F—*"(t)
The formulation of the tail in Lemma 4 is not unpleasant and seems to
agree reasonably well with Corollary 1. The difference is that moment generat-
ing functions are truncated and that additional coefficients are included. The
value of the coefficients, however, depend on the specific regularity of F and G.
Our next theorem will provide a different looking formulation for another class
of distributions. For this result we need a lemma which is easy to prove,
although we have not seen it elsewhere.

Lemma 5. Suppose y(t) has derivative y'(t). Then for any real p,

. tx(®)
lim = 3.6
t— o0 %(t) P (3.6)
if and only if
i XA —y@)
100,720 nx(1)
If 5" (t) exists, then
AU
lim =p(p—1 3.7
Im—3 plp—1) (3.7)

if and only if

lim X((1+ﬂ)t)—2zx(t)+x((l~11)t)
£ 00, =0 020

Proof. Assume that (3.6) holds. Clearly, ye#,. Then

=plp—1).

2(L+m ) —x®) T vy 1) x(ve) )
x2(t) v @

The integrand converges uniformly in {v|<1/2 so that

lim K(A+m—x@) 1 1f"pv,hldv:(l+n)"—_1
. nx(t) U

uniformly for |y <1/2.
Therefore, the double limit is the iterated limit,

t+nt)—x(t 14y —1
TGt/ Ll A O NP U it NN

£ 00,70 (1) =0 1

Conversely, suppose
t )—ylt
i AEEnD—x(®)
1= 0,10 nx ()
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x(E+n0)—x(®) ty'(®)

Since lim = exists for all ¢, then it follows that
nso  nx(t) x(t)
S { (L ey (I Y 4 1)
p=lim lim =—— 2~ =1im % -,
mw ne0 N - A1)

The proof for the second assertion is handled in much the same way.
Assume (3.7) holds. Then

x(L+m) D) =23 @)+ x(1—n)t)

lim

10 n?x(t)
_ PR (en)?y(et) x(et)
335* P ey s @
= 1;:1 [ plp—1)e~2dedv= _dtn” 1722+(1*;7)ﬂ’ (3.8)

uniformly for |y| £1/2.
The converse is also as simple. #

The uniform convergence in (3.8) can be stated more strongly. Indeed, for 5
=n(t) such that n(t)—0 and 1 —|n(t)| t— oo,

x(E+n(0) ) =2x (O} + % —n @O Dl (p(1 —p) — &) n* (1) x(¢) (3.9)

whenever ¢ is large enough.
One important conclusion we may draw from Lemma 5 is, if p>0 and g

=n(t)=

y
740} . :
lim eXE+¥X@—x0 v g]] y.

t— 0

1
This places e*® in the class of I
(cf. de Haan, 1970, pp. 43-50). We exploit this fact in the next theorem. £ ®)

Theorem 5. Suppose F(t)=a(t)e~*+*® where a(t)—a>0, a>0 and x(t) is even-

tually twice differentiable and lim 2 (())
t— 0 X

T t —
F*F(t)~§|/p(1 s 1/2(t/2)F2(t/2)'

Proof. The given condition implies (3.6) and (3.7) hold. We may modify a(t)
and y(¢) so that y is twice differentiable for all ¢ and (by (3.6) and (3.7)) so that
¥ 18 both monotone and concave for all ¢.

Since x(£)=0, then mg(x)=o00. Let F,(t)=e-***® By Theorem 6, in the
final section, F % F () ~a? F, = F,(t). It suffices then to assume a(t)=a

Note that

=p—1 with 0<p<1. Then

Iimy'#)=0 and limty(t)=0o0

t— o0 t— 0
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1
As remarked above, b(f) =e*® is I'-varying with auxilary function f(f) =——.
Consequences of this include (cf. de Haan, 1970) 40

i K (t+uf (1)
im —————~
o0 %' (t)

. blyy
,132 b(1) =%

=1, all u,

all y>1,
and .
fb(u)du

0

J©b()

lim
1— o0

t

Also, {b(u)du is I'-varying with auxilary f(¢), as is
(4]

t

B(1) =}e°‘“F(du)=1 ~b(f)+a [b(u)du.
0 0

Note that B(t)~af (¢)b(t). Thus for y>1

tim 0t () (RE5) () =

Now, to apply this to our problem,

t/2 t/2

ﬁe"’F*F(I)rval?e“t (j) F(t —u)F(du)~ g b(t —u) B(du)

=TbO—WW—xw»dew (3.10)

0

Changing variables and applying Fatou’s lemma,

02 p(t—u) 1 20 p(t—u) 1

li B(du)=1i B
L R TR 110 Rt M T Ty e
by )\ (SOOI,
2 1m | (555) (Taitg ) emroron]o
={(e™")(o0)(0)dy = c0. (3.11)
But
f@
{ b(t ) B(du) <b(t) B(f (1), (3.12)

Thus, using (3.10), (3.11) and (3.12),



546 D.B.H. Cline

357 "“F*F(t)fvt/fzbt—u)B(du sz(t—— ) B(du)

FAG)
t/2

—f{:)b(t —u) (oc —?(—)) b(uydu

t/2

~o | b(t—u)b(u)du.
J@®

The final equivalence occurs since f'(¢)— co.
Define

t—f(20)
dity= [ bt+u)b(t—u)du,
0

i
= | bQ2t—u)b(uw)du.
el
We have, then,

F«F(t)~20a%d(t/2) e~ *. (3.13)

(Note that up to this point we have used only the facts that b(f) is monotone
and I'-varying with auxilary f(¢) and that f(t)—~o0.)

Let n(t)=yy(t)~ Y2, for fixed y, and s(t)=ty(t)~ /2. By Lemma 5, since (3.7)
holds and since #(t)—0,

lim [y (e +ys(0) =270+ 2 (¢ —ys@)]

t— 0

—lim [x(t+17(t) £) =2y (6)+ x(t —n() t)]

P n’(t) x(t)

=—p(L—p)y™. (3.14)

. t—f(2t
Furthermore, (3.9) holds since if y_gr(t)z—f(v—) $ 2
Hence t

(t), then t—|n(t)lt— co.
PP ORI —exp Lo+ -2200 + 2t =001

<exp| ~(1- p—S)tx(t)T)]
<expl—(p—a)(1—p—9y], y<r()

We can therefore use dominated convergence and (3.14) to obtain

o 22040 @) b bt —u)

e O 0 b*(t) a
K b(t+ys(1) b(t —ys(1)
£ tir?o [ b* (1) 1[0,(35)(01]61
7 1—p)y _1 n
g)e (1-p)y? dy 2|/p(1—p)' (3.15)
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From (3.13) and (3.15),

— 7 t/2 5 o
F*F(t)%azb o —p) 1) e
o i t —
~—|/———-~#F2 2).
2V p(1=p) x"2(2/2) 2. *

Corollary 3. Properly interpreted, the conclusion of Theorem 5 also holds if

" [
i) p=0, ty'(t)—»o0 and tX, ()—>—1
1 ()
t 1
or i) p=1, 710 and LY 0
% ()

ty(t
}){(/(E))_) —1=p—1, both (3.6) and (3.7) hold. In addition,

ty (t)— oo implies y(t)— co. However, we still need to check that b(f) =e*® is I'-

Proof. 1) p=0. Since

. 1
varying with auxiliary f(f) =——

. Yy
. Since y'(t)e# _, and ———0,
0 A
"(t "(t .
lim ﬂ—%zl, locally uniformly in y.
tow bé

Thus

lim [0+ /7' (0) — (0] =lim [ ZUTLO) 4,

t— o0 t—o 0 x (0

which is sufficient. The proof then follows through, using Fatou’s Lemma in
(3.14) rather than dominated convergence. That is

F«F (0 1"(t/2)

ma PR

ii) p=1. Again (3.6) and (3.7) hold. Also, b(t) is I'-varying. The only
condition still required for the proof to go through is y'(1)|0. Again Fatou’s
Lemma is used for (3.14). #

Corollary 4. Suppose F(t)=a,(t)e %10, G(t)=a,(t)e~*+ %" each satisfy the
conditions of Theorem 5. Assume also that

lim [X;/z(t) (28 - 1)] —k, K< co. (3.16)

= o T t — —
Then F» G(t)~3 |/ =5 0 Ft/2) G(/2).

Proof. Let b(t)=e**® and c(t) =e**®. Also define

B(t)=l—b(t)—|—oc§b(u)du, C(t):l—c(t)+ajc(u)du.
0 0
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Note that (3.16) implies y; ~ 5 and y, ~y,. Therefore b, ¢, B, C are all I'-
(cf. de Haan, 1970, p. 45).

1
varying with the same auxilary function f(f)=— 0
X2
Replacing b with ¢ and B with C where appropriate, we follow the proof of
Theorem 5 and find

t/2 _
e* [ F(t—u)G(du)~aa, a,d,(t/2),
0
where

t—f(2n
di(t)= | b(t+uyet—u)du

From (3.14), applied to ¢(z) in place of b(?),

lim C(t-l-yS(t)) C(t —yS(l)) :ehﬂ(l_p)yz
1o c*(®)

t—f (21

and these sequences are bounded by e~ =2 y<p(ry="—"7 y12(1). We

will show that t
i b(t+ysr)  c(t) — ko
oo D(t) c(t+ys(t)

(3.17)

and that the sequences are bounded by €7, k; < oo, y<r(r). We can therefore
use dominated convergence as before to obtain

i L0020 TP b+ ys@) et —ys()
o DO w0 b ()

= [0(@)e =)y,

Thus
12 . ;P
[ F(t—u) G(du)~2 (jekﬂy o1 =py dy)WF(t/2)G(t/2).

0

Similarly,

t/2

J Gt~ Fan ~4(je—'w o1 P)yzdy) 1/2t(t/2) Ft/2)G ).

Finally, since y; ~y,

t/2

g~}F@—mem+§Ga— ) F(du)

~§<.f ek”y“’(l_”)yzdy—{- j e—kpy~p(1—p)y2dy) F(I/Z)G t/2
0

o o B
ZE‘/,,(T) S20) F(t/2)G@)2).

212 (/2)
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Now to show that (3.17) holds, first note that (3.16) implies

(L+nyt ’
B4 =0 ()10 = ] [xé”(v)(%%~1)]é§§())dv
<2(k2) (2 (L+ ) ) = 1370

Using the alternate inequality and applying Lemma 5 to x5/*(?),

o 210 =10~ 1oL +m) D+ 1,00

t—o0,q—0 nXZ/Z(t)
12((1 ¢ 12(;
~2k Lm %2 (( +’71)/2) X2 ()=kp.
1—00,1-0 nys <0

Letting n=5(t)=yx,(&)" 1%, s(t)=ty,()~ "%, this is (3.17). Recalling the bounds
in the proof of (3.6), we see we can take the bound k, to be

k,=4lk|(272 —1). #

4. Comparing Convolution Tails

In this section we return to the second objective stated in the introduction,
namely, if F,~bF and G,~cG can we write F; *G, ~kF %G for some k? In
fact the answer is no, in general, even if F and G are reasonably regular. As an
example, suppose Fe¥,, GeS, but

G() — G
0<lim z<lim zro<co.

By Corollary 1, H(t)=F *G(t)~mG(oc)F () +mg(x) G(t). Now suppose also that
F,(t)~ F(t) and let G,(t)=G(t). Then H(t)=F, # G (t) ~mg (@) F(t) + mp, (0) G(2).
Because F and G are not asymptotically equivalent to each other, it is clear
that H; and H will also not be, except in the special case my, («) =my(q).

We can, however, provide three distinct situations in which the result does
hold. It is of special interest that the value of lim H,/H differs between the
three cases.

Theorem 6. Let I and G be distributions on [0, co] such that Fe¥,. Let F, and
G, be any distributions such that Fy~bF, b>0 and G, ~cG, c¢=0. Define H
—F*G H =F «G,.

i) Suppose Fe&, and G ~aF for some a=0. Then

y H, () mei(oc)—i-acmFl(oc)
o HO) | me(a)+emg(®)
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ii) Suppose mg(2)< oo and H ~m(a) F. Then

. H@® _bmg, (o)
MR me(e)

iii) Suppose Ge%,, ¢>0 and mg{o) =mg(0) =00. Then

- 1(®
im 7o

=bc.

Proof. 1) This follows automatically from Theorem 1.

ii) We need only to show that H1~mel(oc)F . We will first show that

F G ~mg («) F. Assume, without loss of generality, that F(0)=1. For large
enough s,

t—s

jF(t~u)G (dw)+G, (¢ j G, (t—u)F(du)+G,(s) F(t—s)

t—s

g(c+8)[ | G_(t—u)F(du)-i—G(s)F(t—s)]

—(c+e) [} G(du)+G(t)]

Therefore,
— tF(t—u) 1(9) . [LF(—u) G(1)
fim | Gta F()]é("”)fi‘?o[f Fo S0+
H s F(t—
_(c“)flw[ﬂ(tt) " o]

=(c+e) j ™ G(du).

And this is arbitrarily small for s large enough.
On the other hand, by the uniform convergence,

.S F(t—u) :

lim G,([du)y={e" G, (du)

lin [ =gy 6140 =fe,

and this is arbitrarily close to mg, (o), if s is large enough. Thus we must have

FxGy~mg, () F. This allows us to use dominated convergence next, since we
can choose k>0 such that F () SkF(1), all t. Therefore,

7 F,(t—u) L B
w F() _i }fg F  Cr@dw=b ge G, (du)=bmg, ().
1ii) Since mg(e) = oo, then Fatou’s lemma shows

lim ==zmg(a)=o0
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As a consequence, for any s>0,

— 3 F(t—uw) — F(t—s) — F(1)
lim - Gdw<lim ——~-=¢™ lim —-=0.
o 00 g H(1) ( )_Hw H(t) 10 H(t)
Similarly, lim | G(f(_)”) F(du)=0.
= O

Therefore, if £ 225,
t)=i t—u)G(du)—l—(sj)G(t——u)F(du)-i—sTF(t—u)G(du)+F(s)G(t—s)
~ [ Fe—) 6w+ F(5) Ge—s),  all s>0. (4.52)
Likewise, S
H, ()~ jFl(t W) G, (du)+F,(s)G,(t—s), all s>0. (4.5b)

But for s large enough, ¢ =2s,

t—s

[ Ft—uw)G (dw+F (G, (t—s)
§(1+a)b[trﬁ(t—u)Gl(du)—l—F(s)G_l(t—s)ﬂ
—(1+8)b [f W) F(du)+G, (S)F(t—s)

t—u)F(du)+G(s)F(t—s)

F(t—u) G(du)+F(s)G(t —s) |. (4.6)

<(1+¢)?be [
1+8)2bc[

mz-ﬁ| mt.—1|

Combining (4.6) with (4.5 a, b),
— H,(1)

(1+¢)be.

t— ) =
In the same manner of proof,
H,(1)
H() ~

Since ¢ can be chosen arbitrarily, this proves the result. 3

Ii (1—8)be.

t—»OO

5. Product Tails and Domains of Attraction

Suppose X and Y are independent nonnegative random variables such that
P[X>tle#_,, P[Y>t]leZ__, a>0. Define

— —

F()=P[X>¢], G@)=P[Y>¢'] and H()=F=G(t)=P[XY>e].
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Clearly, F,Ge¥,. From Embrechts and Goldie (1980, Theorem 3} we know
that He.#, and hence XY has distribution with a regularly varying tail. This
results in a simple proposition, based on standard results.

Proposition I. Suppose (X,,Y), i=1,2,3,..., are distributed independently like
(X, Y) above. Then there exists a,, b, such that

i) lim P[max(X;Y)<a,t]=exp(—t~%, 20

and

ii) hmP[Z(X Y)<a,t+nb )] =5(1),
where S is the fully asymmetric stable () law if a<2 and the normal law if
a=z2. #

The proposition itself is simple. The real problem is in calculating the
norming and centering constants, a, and b,, if one does not already have an
explicit expression for the distribution of XY. For example, a, should be
chosen so that

1 -
E~P[XY>an]=H(lnan), as n—oo. (5.1)

Our previous work has shown that it is often possible to approximate H/(t)
with only the tails and truncated moment generating function of F and G
(equivalently, the tails and truncated «-moments of X and Y). This eliminates
calculation of a convolution. While we cannot promise an easy solution, it will
generally be easier to perform the inversion required in (5.1) with the approxi-
mation than with the actual convolution. For example, if H ~mg(a) F +m(2) G,
one instead may solve

1 _ _
P mg(o) F(lna,)+mp(2)G(na,), n— 0.

Cline (1984) considers the joint convergence of (Z XY, Z X 2) When

a<2, this requires that H~kF, where k is possibly infinite. Clearly, if kis
flnlte the correct normalization is a,~k'/*a,, where @, is the normalization for

z X, (1e l~F (Ina; )) As another example, which includes cases where k is

mflmte suppose both F and G satisfy the conditions of Lemma 4. It is well
known that if a, satisfies

1 .
Z~F ’
” (Inay),

then a,€#, . In fact, since b(t) =e*F (1)eZg, we can further say

a,~[b(lna)n]**~[a=#b(Inn)n]*~
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Thus we have

Corollary 5. Suppose b(t)=e“’F(t)e%ﬁ and c(t)=e“’G(t)e,9‘2y. Let a, satisfy (5.1).
Then
1) if me(a) < oo and mg(o) < 00,

a, ~([oa= P mg(o) b(In m)+ o= my(e) ¢(In n)] n) =,
) if mg(o) < 0o and my(s) =00, f>7,
a, ~[o~? mg (o) b(ln n) n]*=.
iii) if mp() =mg(o) =00, B> —1, y> —1,
a,~[m(inn)b(ln n) c(in n)n]*",

FA+HIU+)
r2+p+y) '

Proof. These are direct applications of the remarks above and Theorem 4 iii),
iv) and v).

where m=

Another method for inverting distribution tails is given by the following.
Lemma 6. Suppose F(t)=e™=% where y(1)=0 and satisfies (3.6) with p<lL.
Choose j>1’%p. Define s;(t)=t, s,(t)=t+yx(s;_ (), i=2,...,j. If a, satisfies

1 _
ZNF (Ina)), then {
a, ~exp [X (Sj <& lnn))] ntf,

Proof. Since s —x(s)— oo there exists s(t) such that s(t) —x(s(¢)) =t. Then

t
lim —=1im (1

s 00 S(t) t—

2Ny
s )"1'

That is, s(t)~t and y(s@®))~y(?). It follows that for each iz1, s,(f)=t

+x(s;,_ () ~t. Let n,(2) :ﬂt)s——(;‘—(t—) Then by Lemma 5,
2(s(0) = x(3:(8) ~ p1:(2) x(5:(1))
x(0)

~p L2600 =s,0)

=0 X Gt5(0) 1650 )

Therefore, by induction,

7

t/

Hm [y (s(0)) —x(s,(£)] = lim p/ =0. (5.2)

t— oo t-— 0
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We now apply this to F. We can assume without loss of generality that

1 3 ’
" =F(lna))=exina(g)=2,
Thus,
1 1
Ina,=—Inn+y(na,)=s (_ In n)
& o

Using (5.2) we obtain

1 1
" ex(s(;lnn))nl/a - ex(sj'(zlnn)) nl/a,

a, #*

This lemma can be applied to H, for example, when F and G satisfy the
conditions in Corollary 4. This ends our discussion on the norming constants
a

As for the centering constants b,, we can take b,=0if o<1 or b,=EXY if
this is finite. The only real difficulty occurs when a=1 and EXY =co. In this

case one choice is
Ina,

b,=E[XYlyy, 1= { e“H(du).
0

(Actually, if EY <oc0, b,=E[X1y_, ] EY is satisfactory.)
However,

ie"H(du) =M, =M,(t), where
0
M, () =§e”F(du)=E[X1X§et],
0
M, (@) =;"e“ G(du)=E[Y1y.].
0

Since a=1, M,(Int) and M,(Int) are slowly varying (in #,). As an example of
how one might approximate M, » M, (t), we have the following lemma.

Lemma 7. Suppose M, and M, are infinite measures on [0, o).
i) M,(t)eRy,, B;20,i=1,2, then

r'(+p)Ia+p,)
F(1+4,+8,)

i) If M,(t) =a,(t) e¥? where a,(t) and y,(t) are as in Corollary 4, then

My My~ )/ 7225 26D M 112 M 012

Proof. The proofs of i) and ii) are similar to those of Lemma 4 and Corollary 4,
respectively. 4

M« M,(t)~ M, (t) M, ().
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Unfortunately, asymptotic equivalence is not a sufficient approximation. If

M,(t) is to be an approximation for M «M,(t) and we use the centering
constants b, =M ;(Ina,), these must satisfy

lim (b, —b) exists finite.

n— o an
Equivalently,
M, «M,(t)—~M,(t
tim M MO =MsO o exist finite. (5.3)
t— @ € H(t)

And this is a stronger condition than M, = M,(t)~M,(1). We leave open the
question of choosing M, so that (5.3) holds.

In Proposition I ii) we saw that the distribution of XY is in a stable domain
of attraction when X and Y are nonnegative, independent and each in a stable
domain of attraction. Unfortunately, this result does not generalize when the
word “nonnegative” is removed. The problem is that the “balancing” condi-
tion does not necessarily hold. However, Theorem 6 allows us to list a number
of conditions for which XYis in a stable domain of attraction.

Assume that X and Y are independent and satisfy

. P[X>r1] .
=lim = t
PlX\>tle#_,. p, ,1112 POX|> 1] exists
and
P[Y>t .
P[|Y|>t]leZ_,, pz:}_i,rgP_[[thl;t]j exists, O<a=<2.

For «<2, these conditions are necessary and sufficient for the distributions of
X and Y to be in stable domains of attraction (Feller, 1971, p. 577). Define X
=max (0, X), X _ =max (0, —X) and similarly for Y, Y_.

P XY>t
Proposition I1. Under each of the following conditions q=tlilg P[%?ﬁ

and hence the distribution of XY is in a stable (¢) domain of attraction.
i) P[X >t]=p, P[|X|>1] and either p,=1/2 or P[Y >t]=p, P[|Y|>1]. In
this case q=p1ptz+(1 —P)(1=py) _ P[Y|>A]
ii) P[|X|>e'] and P[|Y|>¢'] are both in &, and lim

exists

=k < 00, In this

case =w P[X|>1t]
qz(plEYi"‘(l _P1)EYZ)+k(I72EXi +(1—p,) EX*)
E|Y*+kE|X|*
o PIXY|>(] ) PIXY>r] ,
cas;ll) Elthel‘ W-—)E[ﬂ < o0 or m—‘)EY+<m, pl >0. In this

_ P EY{+(1—p)EY?
EY[

iv) E|X|*=E|Y|*=c0. In this case g=p, p,+(1 —p,)(1 —p,).
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Proof. Define F, (1)=P[X>¢€], F_(t)=P[X < —¢], F(t)=P[|1X|>¢'] and simi-
larly for G_, G_, G in terms of Y’s distribution. Then

H, ()=P[XY>¢]=F, G ()~ F_+G_(1)
H_(t)=P[XY< —€&]=F, +G_(t)+F_=G_ (t),

and H(t)=P[|XY|>e]=H_ (t)+H_().
The proof of i) follows by direct calculation and ii), iii) and iv) are applica-
tions of Theorem 6 1), i) and iii), respectively. 3

If X and Y are in stable domains of attraction with different indices, then
Lemma 1 can be applied and the product will be as in iii) above, with o equal
to the smaller index (Breiman, 1965). When X and Y are independent and each
in the domain of attraction of the normal distribution, then XY will always be
in the domain of attraction of the normal (Maller, 1981).

The norming constants, a,, that would be used as a result of Proposition 1I
can be calculated from H(t)=P[|XY|>¢'], as suggested in the remarks fol-
lowing Proposition 1. Again the primary difficulty in choosing the centering
constants b, occurs only when ¢ =1 and E|X|=E|Y|= 0.
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