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Summary. A distribution function is said to have an exponential tail F(t) 
=F( t ,  c~) if e~UF(t+u) is asymptotically equivalent to F(t), t-+oe, for all u. 
In this case F(ln t) is regularly varying. For  two such distributions, F and 
G, the convolution H = F ,  G also has an exponential tail. We investigate 
the relationship between /4 and its components F and G, providing con- 
ditions for lim H/F to exist. In addition, we are able to describe the 
asymptotic nature of H when the limit is infinite, for many cases. This 
corresponds to determining both the domain of attraction and the norming 
constants for the product of independent variables whose distributions have 
regularly varying tails. 

In addition, we compare the tails of H = F  �9 G with H 1 = F  1 �9 G 1 when _P 
is asymptotically equivalent to _P and G is equivalent to Gt. Such a 
comparison corresponds to the "balancing" consideration for the product 
of independent variables in stable domains of attraction. We discover that 
there are several distinct comparisons possible. 

1. Introduction 

Assume that F and G are distributions on [0, ~ ]  and let H = F ,  G be their 
convolution. We use the common convention to denote distribution tails, 
namely fi(t)=F(t, 0o). We will also write F t~k /7  for asymptotic equivalence, 
that is, for 

/~t(t) , . ,  
Jim ~ - = ~ c e t u ,  oo). 

Definition l. A distribution function F has exponential 
c~>0 ( f ~ f ~ )  if 

lim - - -  p (t - u) = e ~" for all real u. # 
t~oo f ( t )  

tails with rate 
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Such a distribution has the representation 

F ( t )=a ( t ) exp  -c~(v)dv , where a(t)~a>O,e(t)~e, as t~oo .  (1.1) 

The convergence is necessarily uniform for u =< u 0. 
A complimentary definition is the fdllowing: 

Definition 2. A measurable function U is regularly varying with exponent p 
( U ~  o) if 

lim U(yt)-YP for all y>0 .  4~ 
, ~  U(t)  

Such a function has the (Karamata) representation 

U(t)=a(t)exp[i~-dv ], where a(t)~a>O,p(t)~p, as t~oo .  (1.2) 

Clearly F e ~  if and only if ff(ln t ) sN ~. For  excellent discussions of regularly 
varying functions see de Haan (1970) and Bingham, Goldie and Teugels (1983). 

The class 2,~ of course, can be defined as in Definition 1 with c~ =0. This 
class in fact has received more attention in the literature on convolution tails. 
Chistyakov (1964) and Teugels (1975) have studied a subclass of ~0  known as 
the subexponential distributions, with a view toward applications in branching 
processes and renewal theory. In some sense, ~0  is a wider class of distri- 
butions than is ~ ,  for e > 0. However, we are interested in applications which 
require F(ln t) to be regularly varying with exponent - e <  0. We will therefore 
concentrate on, but not limit our attention to, these cases. The foundation of 
our work includes Chover, Wainger and Ney (1973) and Embrechts and Goldie 
(1980, 1982) which extend the work of Chistyakov and Teugels to the cases 
~>0.  

We have three main objectives in this paper. Our primary objective is to 

describe the asymptotic behavior o f / t ( t )  = F ,  G(t) when F and G each have 
exponential tails. For  example, we will provide conditions for w h i c h / q ~  k/7. In 
addition, lim I4(t)/F(t) is infinite in many cases and for these it is often possible 
to describe the behavior o f / 4  in terms of the tails and the truncated transforms 
of F and G. Our second objective is to consider when it is possible to compare 

two convolution tails H=F,  G and H 1 = F  1 �9 G 1, assuming F~F~ and G~G 1. 
Finally, we want to apply these results to problems involving the weak 

convergence of sums (or extremes) of products of two independent variables. If 
X and Y are independent random variables whose distributions have regularly 
varying tails, then it is readily seen that, with F(t)=P[X<=d] and G(t) 
=P[Y<et], we need to describe the asymptotic nature of I~(t)=F,G(t) in 
order to establish the attraction corresponding to XY and in order to calculate 
the necessary norming constants. In addition, if the problem involves the sum 
of variables like XY, then convergence to a stable distribution (c~<2) requires 
showing that the tails P [ X Y  < - t ]  and P[XY > t] balance. Accomplishing our 
second objective enables us to determine when this is possible. Specific appli- 
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cations for partial sums of products may be found in Davis and Resnick 
(1984 a, b) and in Cline (1984). In these applications, an additional requirement 
is that lim P IX Y > t]/P IX > t] either exists or is infinite. 

One crucial consideration in these problems is the transform (moment 
generating function) 

co 

mF(7) = ~ ee"F(du), 
0 

which has a singularity at 7 = c~. In fact mF(7)< oo for all 7< c~ and me(e ) may 
or may not be finite (cf. Embrechts and Goldie, 1982, Lemma 2.4 and remark 
following). 

An easy solution occurs when F and G have exponential tails with different 
rates. We repeat a lemma first proved (in a different form) by Breiman (1965, 
Proposition 3). 

Lemma 1 (Breiman, 1965). I f  F~2P~ and m~(7)< ov for some 7 > cq then 

~(t) 
lim ~ j - = m G ( c  0. 
t + c o  

The proof is quite direct, using the representation (1.1) for F and dominated 
convergence. 

Since the situation with different rates is easy, we will concentrate on the 
case where both FcY~ and Ges176 Embrechts and Goldie (1980, Theorem 3) 
have shown that HESr follows. Under certain conditions we can have /4~k /7  
for some ke(0, oo). This is the situation which has been most extensively 
studied in the literature. We will present the major results and will weaken 
known conditions in Sect. 2. This situation requires m~(c~)< 0% but as we show, 
it is not nearly sufficient. 

In the third section we will investigate/~ without requ i r ing /4~  kF. Instead 
we will impose some regularity (but not absolute continuity) on F and G. We 
find that the asymptotic nature of / t  is quite varied, depending on which 
conditions we impose. Some specific examples we will investigate include 

and 

if(t)=b(t)e -~t, b 6 ~  

F(t)=e -z(t)-~t, X ~ o ,  0 < p < l  

F(t)=e z(t)-~t, Z~p, 0 < p < l  

(Theorem 4, Sect. 3), 

(Theorem 3, Sect. 2) 

(Theorem 5, Sect. 3). 

We return to our second objective in Sect. 4, where we are again obliged to 
consider separate cases. The final section briefly considers application to the 
product distribution given by H(ln t). 

Before we continue to Sect. 2, we will prove a simplifying lemma. 

Lemma 2. I f  FESf'~, Ge~('~, c~>0, then for any s(t)--+c~, t-s(t)--+~, 

s(t) t - -s( t )  

It(t)~ ~ l f( t-u)G(du)+ ~ G(t-u)F(du). 
0 0 
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Proof. Since 

s(t)  t - s( t)  

g(t)  = j P ( t - u )  ~(du)+ j g ( t - u ) F ( d u ) + F ( t - s ( t ) )  d(s(t)), 
0 0 

then it suffices to show that the third term is asymptotically negligible when 
compared to/7(t) .  

Assume first that G is absolutely continuous with the property 

G'(t) 
Jim ~ -  = c~. (1.3) 

We note that (1.3) is sufficient for GeGP=. Changing variables and then 
using Fatou's lemma, 

Jim ! P(,-s(,)) 
oo 

>-- ~ (e-~")(~e ~") du = oo. 
0 

This shows that the first term dominates the last and hence 

F(~-s(0) d(s(t)) 
lira - 0 .  
,~ oo /7(0 

If G does not satisfy (1.3), then by the representation (1.1) for G, G(t) 
=a( t )Gl ( r  ) where a(t)-+l and G 1 does satisfy (1.3). In fact we can always 
choose a(t) to satisfy 

1 
-<_a't'-<_2 for all t. 

( )  

2 - a(0) - 

Then it is easy to show that H(t )>  H 1 (t), where H 1 = F  �9 G 1. Therefore 

lim F(t-s( t ) )G(s( t ) )_<4 lim F(t -s ( t ) )Gl (s ( t ) )=O.  
~ oo /7(t) - t~ oo a (0)/71 (t) 

And this verifies the lemma. # 

We will ordinarily choose s(t) = t - s(t) = t/2. 
When both F and G are absolutely continuous, 

# 2  t / 2  

H'(t) = ~ V'(t - u )  G(du) + ~ G'(t - u )  F(du). 
0 0 

Thus a simple consequence of Lemma 2 is that H satisfies property (1.3) 
whenever both F and G satisfy it. We note that (1.3) is stronger than the 
statement G~ S e  and G is absolutely continuous. 
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2. Convolution Equivalency 

In this section we are interested in conditions for which I~~kff.  Chistyakov 
(1964) and Chover, Wainger and Ney (1973) introduced the following class. 

Definition 3. A distribution F~A~ ~ => 0, is convolution equivalent (F~5~) if 

F * F (t) 
lira exists finite. 
~ /~(t) 

This class has also been examined in Teugels (1975) and in Embrechts and 
Goldie (1982). The class J0 is called the subexponential class. We summarize 
the primary result, which combines results from the second and fourth papers 
mentioned above. 

Theorem 1 (Chover, Wainger and Ney, 1973; Embrechts and Goldie, 1982). 
Suppose F ~ ,  then 

F * F ( t )  
lim ~ -2m~(a)<oo.  (2.1) 

d~(t) 
Furthermore, if k~ = l i r a  exists finite for distributions G 1 and G2, then T(5 

lim G~ �9 G 2 (t) 
t~oo _P(t) =kl mG2(e)+k2mGl(cO" 

And if ki>O , then Gi~9~. # 

The proof of the limit (2.1) provided by Chover, Wainger and Ney is quite 
involved and uses Banach algebra techniques. A real analytic proof may be 
found in Cline (1985). The second part of Theorem 1 is Lemma 2.7 in Em- 
brechts and Goldie, when ki>0. The limit holds for ki=0, also, as can readily 

be seen by taking F~=(1-e)Gi+~F, considering F 1 *F 2 and letting e tend to 
zero. 

Returning now to our original question, we see that if F ~  and G~kff ,  
0__<k<co, then It~(mG(cO+kmp(e))F. However, Theorem 1 does not explain 

~(t) 
the asymptotic nature of /4 when both F~6~, G~2~ and lira ~ does not 
exist, t~ co 

Corollary l. Let H = F , G  where Fc~CP~, G e ~  and sup U-t~)<oo Then 
I4(t)~mG(e)_P(t)+me(e)d(t ) and H ~ .  t F(t) " 

Proof See Cline (1985, Corollary 3.2 and Theorem 3.4). An alternate proof 
which requires (J/ff bounded away from zero is similar to that of Theorem 1 in 
Embrechts and Goldie (1980). 

We next provide conditions for F to be in 5~. This is a substantial 
sharpening of similar results in Chover, Wainger and Ney and in Teugels. 
Different sets of conditions appear in Theorems 3 and 4. 
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Theorem 2. Suppose F(t)=a(t)e -~176 where a( t )~a>O and t) is eventually con- 
cave. 

I f  there exists nondecreasing v(u)--* 0% v(u) > 2u, such that 

&v(u) -u) F(u) 
i) F(v(u)) is integrable on [0, oo] 

and ii) lim (v(u)-2u)F(v(u-)-u)F(u) =0, 
. ~  I F(,~(u)) I 

then FcS~ for some c~>O. 
u F(v(u) -u) P(u) 

Conversely, if  FeSP, cr then 2im F-(v~)- =0, for any function 
v(u) > 2u. 

Proof Because it is eventually concave, ~ is eventually absolutely continuous 
with bounded, nonincreasing density ~'. We may modify O(t) and a(t) on a 
finite interval so that ~' exists finite and is nonincreasing for all t. Let ~. 
= lira O' (t). Then ~ > 0 and 

t ~ o D  
t 

F( t )=a( t )exp[ - ! lp ' ( v )dv] .  

From (1.1) we see that this indicates F e ~ .  By the second part of Theorem 1, it 
suffices to prove this theorem with a ( t ) = l  for all t. Thus F(t)=e -~ and F has 
density ~'(t) ~f(t). 

Since O'(t)$e, 

~ u < O ( t ) - O ( t - u ) < O ( s ) - O ( s - u ) ,  s < t .  

This translates as 

e~U~(u ) <_-F(t - u) F(u) < F(s - u) F(u) 
F(t) = F(s) ' 

Define 
s(t) =sup {u: v(u) < t}. 

Then s(t)>u if and only if t>v(u). From (2.5), 

e ~u F(u) < F(t -~u) F(u) < F(v (u) - u) F(u) 
F(t) f(v(u)) ' 

The rightmost quantity is integrable by assumption. 
This says 

co 

mr(a ) = S e ~" F(du) = ~ O'(u) e~"F(u) du 
0 0 

s<t. (2.5) 

u<s(t). 

< 0'(o) i F(v(u) - u )  f (u)  = f=(~(u)) du < o0. 
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We may also apply dominated convergence, 

~i ) if(t-u)if(t) ~ Jim[ F(t-u)F(u) l EO,s(,)~j]du Jim F(du)= ! 0 (u) - -- 
oo 

= y O'(u)e~"ff(u)du =me(e ). 
0 

Now for s(t)<_u<t-s(t), the concavity of 0 implies 

0 (t - u) + 0 (u) > 0 (t - s (t)) + 0 (s (t)). 

That is, 

Hence, 

fi  (t --u) if(u) < ff  (t -- s(t)) i (s(t)) 
if(t) = F(t)  

' -  ~('> i ( t  - u) if(t) F(du)<O'(O)(t-2s(t))if(t-s(t))if(s(t)) 
,(~) f ( t )  

Changing variables, t =v(u), s(t)>= u, 

'-~ if (t -u) F (du) < 0'(0) lim (v(u) - 2s(v(u))) if (v(u) - s(v(u))) F (s(u(u))) 
lim ~ if(t) if(v(u)) 
t ~  oo s ( t )  t ~  oe 

<0'(0)  lim (v(u)-2u) F(v(~)-u)F(u) O. 
~ ~ F(~(u) )  

Applying Lemma 2 in concert with (2.6) and (2.7) we finally have 

535 

(2.6) 

(2.7) 

From Theorem 1, 

F * F (t)  = 2mF(c0 ' 
lira if(t) 
I ~ G O  

F*F(t) ~(~) F(t-u)  t-s if(t-u) 
lira ~ )  -21im,~ jo F(t)- F(du)+lim S F(0- F(du) 
t ~  co t ~  ae s ( t )  

=2mF(a). 

To prove the partial converse, assume F~5'~, ct>0. Again, it suffices to 
assume 0(0  has bounded, nonincreasing density 0 ' (0 for all t and that a(t)-1. 
From Lemma 2, with s(t)=t/4, 

t l~- 3 t l 4  

F , F ( t ) ~ 2  S ff(t-u)F(du)+ ~ lf(t-u)F(du). 
o t/4 

But by Fatou's lemma and the fact that F ~ ,  

lira = F(du)>= e~UF(du)=mr(CO. 
t ~  o F ( t )  o 



536 D.B.H. Cline 

Therefore, we must have 

~/4 F ( t  - u) 
lim ~ F(t) 
t ~  o3 t t 4  

Now since 0 is concave, 

0 (t - u) + 0 (u) < 2 0 (t/2) 

That is, 

Using (2.8), 

F(du) < 2mF(~ ) - 2me(e) = 0. 

F( t  - u) F(u) > F(t/2)) 2 

Y(t) = Y ( t ) '  

lim t/2 
t~oO 

for t/4<_u<<_3t/4. 

t/4 < u < 3 t/4. 

F(t/2))aF(t) =~im 37/4~ -(/7(t/2))2F(t) du 
t /4  

1 3'14 . . . .  P(t-u)P(u) 
< l i m -  j tptu) - du 

t ~ o o  O~ t /4  F(t) 

=0. 

(2.8) 

Changing variables, t =2u, and using (2.5) with v(u)>2u 

P(v(u) - u) F(u) " '~  ( i f ( t / 2 ) ) 2  = 1-~m-m u (lff(u))2 = lim u # 
0=limt_.~ r/z F(t) ~ _F(2u) t~oo ff(v(u)) 

If ~ = 0 we may replace ii) in Theorem 2 with 

lim [O' (u)(v(u)-  2u)F(v(~_,~u)F (u)] =0, 
t ~ o z  t I * ( V [ U ) )  J 

which is weaker, since 0'(u)--*0. When c~>0, it is simplest and generally 
sufficient to take v(u)=2u. The conditions in Theorem 2 can be further weak- 
ened to include cases where 0 is not concave. 

Corollary2. Suppose F( t )=a( t )e  -Oft} where a ( t )~a>O and 0(0  is eventually 
absolutely continuous with the property that lim tf0'(t)-0' l(t)l  =0  for some 01 

t ~  oO 

which is eventually concave. Then both statements in Theorem 2 hold for F. 

Proof. The proof proceeds by first showing F~Sv~ and then that the dominated 
convergence argument of Theorem 2 is valid. The details are straightforward so 
we do not present them here. 4~ 

Intuitively, one would suspect that if Z ( t ) ~ p ,  0 < p < l ,  then F ( t ) = l  
- e  -~t-xm would be in 5~. The following counterexample illustrates that this is 
not the case. Let )~(t) =(1 -b ( t ) ) t  ~ where 0 < p <  1 and 

=Se -o" t ._ l  + 1 <_t<_t.=e" 
b(t) 

e-  P"(1 - (1  - e - Q ( t - t ~ ) ) ,  t , < t N t ~ + l .  
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Note  that  X(t) is bo th  absolutely  cont inuous  and nondecreasing.  In order  to 
have F ~ ,  we mus t  show 

lim [ Z ( t ) - Z ( t - u ) ]  =0 ,  for all u. 

But this is not  case. With  t n =e", 

lim (Z(t. + 1) - z ( t . ) )  = l im ((t. + 1) p - t~) + l im (b(t.) t~ - b ( t .  + 1)(t. + 1) p) 

= 0 +  lira (1 -e -P(~+1) (e~+l )P)=l  - e - P > O .  

Therefore  F ~  and hence F@Y~. 
We can, however,  p rov ide  a subclass of ~ which contains m a n y  examples  

with regularly varying Z(t). 

Theorem 3. Suppose g(t)  = a (t) e -  at- z(O, a (t) -~ a > 0, ~ ~ 0, Z (t) ~ ~ .  Assume there 
exists p < 1 and s ~ 0 such that 

z(yt) 
i) -z(t) <=yP 

and ii) e - (2 -  2~ 

7hen F ~ .  

Proof  As before, we m a y  assume a ( 0 - 1 .  First  note  that  

Z( t )<  < for all t > s .  
t : s = s - 

for all y > l ,  t > s  

is integrable on [2, oo]. 

ThuslimZ(t)--<Z(S)l~mm(st-)  0 - 1 , ~ o ~  t s t ~  

N o w  fix u < s and let t > s. 

=0 .  

o <= z ( t )  - 7, ( t  - u) <__ (1 - (~ - u / t ) ; )  z ( t )  <= 
z(tt u_<Z(s) u. 

t s 

' t  This shows that  Z is absolutely cont inuous  with bounded  density Z () ,  t >s .  It  
also demons t ra tes  

l im IZ(t) - Z ( t - u ) l  __<u lim z(t) =0 .  

A n d  this is equivalent  to FaL.~  since F ( t - u )  F(t)  = e  ~"+z(~ Fur the rmore ,  the 

convergence is uni form for u <s .  Hence  

} F ( t - u )  s 
lira j = F(du)=ye~"F(du) .  (2.9) 
, ~ o  V(t) o 
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On the other  hand, for u > s, u < t/2, 

Z(t) - Z ( t - u )  - Z(u) <(1 - ( 1  -u/O") )~(t) - Z(u) 

<= [( l - ( 1 - u / t ) ~  ( t  )P - 1 ]  )~(u) 

__< - (2 - 2 p) Z{u). 

Sin ce  e -(2-20)x(u) is integrable, domina ted  convergence assures 

,~2 P(t-u) ' /~ 

lim = F(du)=l im ~ (o~+ Z'(u))eXm-z(t-u)-z(")du 
~ c o  , F ( t )  , ~co  s 

c o  

= y (~x + Z'(u)) e-Z(~)du 
s 

co 

= 5 e~"F(du) �9 (2.10) 
s 

Limits (2.9) and (2.10) are sufficient to have F e ~ .  

Al though each of our  sets of condit ions have required Z(t) (or OCt)) to be 
absolutely continuous,  it must  be remembered  that  (1.1) requires ff to be 
asymptot ic  to just  such an example. 

We now present a counterexample  which helps to illustrate some of the 
problems encountered  in a t tempting to show F e ~ .  Note  that this is a new 
example for which F~s mF(~)< co, but  F ~  (cf. Embrechts  & Goldie,  sec. 3, 
1980). Let  F( t )=e  -~t-xm, where c~>0 and 

){(t)=t 1/2+~c~ t>=l, 0<c5<1/2 .  

Again, Z is absolutely continuous,  but  not  mono tone  

)((t) = (1/2 + a cos (ln t) -~5 In t sin (In t)) t -  1/2 + a cos (lnt). 

Since lim z ' ( t )=0 ,  Fe2,r Fur thermore ,  rnf(7 ) < co if and only if 7 <c~. However ,  
t ~ C O  

setting t .  = e  2"=, it is not  difficult to show that  

2 z ( t . / 2  ) 2(1/2eenrt) 1/2+ae~ 
z(t .  ) .e(1 + 23)mz 

< 2e - 2 a n t e ( 1  - c o s  ( I n  2 ) )  ...+ 0 

Therefore  

F �9 V (t) (if(t/2)) 2 
lim > ~ - = l i m e  ~('")- 2 Z ( t n / 2 )  = 0(7). 

3. M o r e  on  C o n v o l u t i o n  T a i l s  

In this section we will investigate the asymptot ic  nature  o f / t  wi thout  requiring 
F ~ .  As far as we know, this has not  been pursued before. Unfortunately,  we 
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are unable to present a general pattern. Indeed, the very results depend heavily 
on the conditions assigned to F and G. The conclusions obtained in Theorems 
4 and 5 below are concise and provide simple formulations of the tails of H. 
But these conclusions are at variance with each other and with Corollary 1 
and offer little suggestion for a unified theorem. 

Theorem 4 is characterized by the assumption that e~t_P(t) is regularly 
varying, while Theorem 5 assumes ln(e~@(t)) is regularly varying. For the first 
result we need the coefficients 

1, ~,< - 1  
1/2 

I~,~= ( l+~)2 t+  ~ ~ ( l_y)~y~dy ' ~ > - 1 .  
0 

Lemma4.  Assume that F, G6S~, e>0 ,  and that b( t )=e~tF(t)E~ and c(t) 
at =e ( t ) ~ ,  where fl and 7 are any real values. Then 

t/2 t/2 

Iq(t),.~I~,~F(t) ~ e~UG(du)+IT,~d(t) J" e~"F(du), 
0 0 

Proof In light of Lemma 2, it suffices to show 

t/2 t/2 

lf(t-u)G(du)~I~,~_P(t) ~ e~UG(du). (3.1) 
0 0 

For large t, u < t/2, the Karamata representation (1.2) applied to b yields 

Therefore, 

< b ( t - u )  
(1 -e ) (1 -u / t ) e= b(t) <(l +e)(1-u/t)e" 

,j/2 F ( t - u )  G(dv)= G(du) 
t)2 b ( t -u )  ~ 

o F(t) o ~ 0 -  e 
t/2 

S (1 -u/ t)  ~ e ~u G(du). (3.2) 
0 

Of course, (1-u/ t )~<2 I~l. If mG(c~)<oo (requiring 7 < -1)  then dominated 
convergence proves 

lim - G(du)= e~"G(du)=mG(cO. 
' ~  o F(t) o 

This satisfies (3.1). 
Assume instead that mG(~ ) = ~ ,  which requires 7 > -1 .  Then we first define 

t 

C(t) = ~ e ~" G(du). 
0 

Integrating by parts and recalling c(t)=e ~t G(t), 

C(t) =1 -c( t )  + c~ i c(u) du. 
o 
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t 

Since 5c(u)due~l+ ~ (de Haan, 1970, p. 15) and 
0 

1 t 
lim 5c(u)du- 1 
t~oo t ~  o 1+7 '  

then it follows that C(t) is also in N~+~. Furthermore, 

t/2 
(1 -u/t)  ~ e ~" G(du) =2 -p C(t/2) + fl- t/2 

o t ~ o (1 -u / t )  ~-1 C(u)du 
1/2 

=2  -# C(t/2)+fi ~ (1 -y)#-~ C(yt)dy. 
0 

Since C(t) is nondecreasing, then dominated convergence gives 

1 t~ i 1/2 ~C(yt) d 
tooolim C ~ ]  (1-u/t)ee~UG(du)=2-e+lim,~oo fl 5o (1-y)P-*  ,, , Y 

~/2 

= 2 - ~ + f i  5 (1-Y)e-*(2Y)~+~dY 
0 

1/2 

=(1 +7)2 ~+' 5 (1-7)ey~dy =I~,,. 
0 

The last equality is integration by parts. 
Combining (3.3) with (3.2) we have 

1 ,/2 

lim ?(t)C(t/2) ! f ( t -u)G(du)=I~, , ,  

(3.3) 

which is our result as stated in (3.1). # 

As corollary to Lemma 4, we have Theorem 4 to distinguish cases accord- 
ing to the finiteness of the moment generating function. 

Theorem 4. Assume F and G are as in Lemma 4. 
i) The result in Lemma 4 can be simplified according to 

mG(00, if mG(o: ) < oO 
t/2 

t/2 
I~,, ~ e="G(du) ~ ~ e=UG(du)' if 7 = - 1  and 

0 
o 

1/2 

! (1-y)eSdy)o~te='d(t), 

In particular, 
ii) I f  me(cO< oo, then f~5'~ 

iii) If  mF(a)< oo and ma(~)< ~ ,  then H~5~ and 

m~(c0 = oo, ~ > 0  

f l > - 1 ,  e>0 .  

~l (t) ~ raG(.) F (t) + mA.)  d(  O. 
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iv) If ma(~)<oo, mF(C0=0% and fl>7, then I~(t)~m6(a)F(t). This is not 
necessarily true when fi =7 = - 1 .  

v) If fl> -1  and 7> -1, then I4(t) F(l +fl)F(l +,/) ete~/7(t)d(t)" 
r ( 2 + / ~ + 7 )  

Proof i) The first two expressions, corresponding to ? < -  1, are obvious. 
When ? > - 1, then as shown in the proof of the lemma, 

t t 
C ( t ) = ~ e ~ a ( d u ) ~ ~  ~ c(t) 

o l + y  

and CeN1 +~. Therefore 

,12 ~I~, ~ t c(t) 
I~,, 5 e~"6(du) =Ie,, C(t/2) 2~+,(1 +y) 

0 

1112 \ 

= 1 [  ( 1 -  y)fl y?dy}~te ~ t  G(t). 
\ b  ! 

ii) With F = G, we have F ,  F ~ 2me(e)/7. 
iii) Clearly, I~mG(e)/7+mF(a)G. By ii), F*F and G,G satisfy the con- 

ditions of Lemma 4 so that this applies to H , H  as well. Using the same 
argument as at the end of the proof of Corollary 1, it follows that HEY~. 

t oO 

iv) Define B(t)=Se~"F(du) and C*(t)= S e~"G(du). Similarly to the remarks 
0 t (Z 

in i) and in the proof of Lemma 4, B(t)eNl+ ~ and B(t)~ tb(t). In the 
-c~ 

same manner we can show C*E~I+  ~ and C * ( t ) ~ t c ( t ) .  Note 7__<-I<B. 

In case of equality, the asymptotic expressions above hold if treated in the 
obvious manner. 

Now/q~mG(e)  / ~ if and only if 

d(t) ,/~ 
0=lim,~ ~ ~0 e~"F(du)=lim,~ c!t!B(t/2)t)(t) 

=(1/2) I+p lim c!t! B(t). (3.4) 

C 
When y < - 1 __< fl, ~ B is in N 1 + ~ and thus (3.4) is automatically true. When y --- 
- 1 < fi, then 

lim ~ B ( t ) - - 7 - 1  lim C*(t)=0. 

However, if ? =fi  = - 1 ,  we will show that (3.4) does not have to hold and 
that in fact even if 

lira G-(t) =l ira  c(t) 
, . ~  F(t)  ~ b ~  =u' 
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the limit in (3.4) does not have to exist. To see this let d(t) be any noninte- 
grable function in N ~ such that td(t)~O. Define 

t/2 

B(t/2) = I e~"F(du) 
0 

t/2 

C(t/2) = ~ e ~" G(du) 
0 

Therefore, by Lemma 4, 

t 

t35, 

This implies ~b(u)du=exp d(v)dv o c ~  and b ~ _  1, so (3.5) describes a class 
0 t 

of functions b which satisfy our conditions. Since B (t) = 1 - b (t) + ~ ~ b (u) du then 
0 

b(t) ab(t) 
d(t) =t 

5b(u)d u B(t)" 
0 

On the other hand, we may choose c(t) to be any integrable ~ ~ function 
since m a ( a ) < ~  if and only if c(t)~O and c(t) is integrable. This means we 
must have 

c(t) c(t) 
lim b ~  B(t) = lim d ~  =u- 
t ~ c O  t ~ o O  , 

c(t) ( 1 

! 

But it is not necessary that ,~lim d ~  is even finite \e.g. c ( t ) = c ( t ) - t ( l n 0 2 ,  d(t) 

1 + 1 - sin (ln In t) 

- t l n t  . Hence (3.4) does not have to hold when f l = ? =  -1 .  

v) Define C(t) and B(t) as in the proofs for i) and iv), respectively. Then 
B s ~ l + # ,  C ~ + ~  and 

~tb(t) 
(1+/7)21+~ 

c~tc(t) 
(1+?)21+~" 

Thus/~(t) 

e ~' I] (t) ~ I#,.~ b (t) C (t/2) + I~, # c (t) B (t/2) 

N e t [  I , . ,  +I;i~2,+,)b(t)c(t) 
\(1 +fi)2 '+e ~-(1 

F(1 + fl) F(1 + 7) 
- -  ~tb(t) c(t). 

r ( 2 + # + ~ )  

F(l + fi) V(l  + 7) cae~,F(t) G(t). 
r ( 2 + # + ~ )  



Convolution Tails, Product Tails and Domains of Attraction 543 

An intriguing consequence of par t  v) is, if F(t)=b(t)e -~', b ( t )~p ,  f l > - 1 ,  
then 

fi*"(t) ( aF( l+f l ) ) "  t,_~b,(t)e_~, n>l.  
aF(n(1 + fl)) 

The  formulat ion of the tail in L e m m a  4 is not  unpleasant  and seems to 
agree reasonably well with Corol lary  1. The  difference is that  momen t  generat- 
ing functions are t runcated and that  addit ional  coefficients are included. The 
value of the coefficients, however,  depend on the specific regularity of F and G. 
Our next theorem will provide a different looking formulat ion for another  class 
of distributions. For  this result we need a lemma which is easy to prove, 
a l though we have not  seen it elsewhere. 

L e m m a  5. Suppose Z(t) has derivative Z'(t). Then for any real p, 

if and only if 

/ f ) ( ' ( t )  exists, then 

if and only if 

t z ' ( t  ) 
lim Z ~ -  = p  (3.6) 
t ~ o O  

z((1 + ~) t ) -z( t )  
lim - p .  

,~ ~, .~o t/Z(t) 

lim t2 Z"(t) _ p ( p  _ 1) (3,7) 
, -~  Z(t) 

lira Z((1 + ~/) t) - 2Z(t ) + Z((1 - r/) t) 
,~ oo,,~o t/2Z(t) =p(p -1 ) .  

Proof Assume that  (3.6) holds. Clearly, Ze~p .  Then  

Z((1 +t/) t) --z(t) = 1~-, tvz,(vt) Z(Vt ) 
dr. 

z(t) j, z(~t) ~z(t) 

The integrand converges uniformly in Iv[ < 1/2 so that  

x ( ( l+~ / ) t ) -Z( t ) )  1 1+~ ( l + t / ) p _ l  
lim = -  ~ pvP-ldv 
t ~ o o  ~z(t) ~ 1 

uniformly for I~1 ~ 1/2. 
Therefore,  the double  limit is the i terated limit, 

Z(t + ~/t) -Z(t) (1 + ~/)P - 1 
lim = lim = p. 

t ~ , . ~ o  t/Z(t) , so  q 

Conversely, suppose 
lim Z(t + r / t ) - z i t )  

t - ~ , , ~ o  ~Z(t) - P '  
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Since lim )~(t +7 t ) -Z ( t )  tz'(t) 
- exists for all t, then it follows that 

. ~ o  ~ z ( t )  z ( t )  

p --- lim lim ;((t + 7 t) - X (t) = lira t Z' (t_~) 

The proof for the second assertion is handled in much the same way. 
Assume (3.7) holds. Then 

lim z((1 + 7) t) - 2 Z (t) + Z((1 - 7) t) 
t~oo r/2 z( t)  

1 1+, i (~;t)2)('(et)Z(et)d~dv = l i m ~  
, ~  1 ~-~  z(~t) ~z (~ )  

1 1+, i 7 2 P(P 1)ep-2dedv= ( 1 + 7 ) p - 2 + ( 1 - 7 ) ~  
7 2 

v--71 

, (3.8) 

IZ ( t+7( t ) t ) -2Z( t )+Z( t -7 ( t ) t ) l<(p(1 -p ) -e )72( t )Z ( t )  (3.9) 

whenever t is large enough. 
One important conclusion we may draw from Lemma 5 is, if p > 0  and 7 

=7(t) = t@(t)' then 

l ime z(t+y/x'(t))-xCt) = e  y, all y. 
t ~ o O  

This places e z(t) in the class of F-varying functions with auxilary function - -  
(cf. de Haan, 1970, pp. 43-50). We exploit this fact in the next theorem. )((t) 

Theorem 5. Suppose F(t)=a(t)e -~t+zr where a(t)---,a>O, e > 0  and Z(t) is even- 
tz"(t) , 

tually twice differentiable and t~lim Z ~ - =  p - l  with 0 < p  < 1. Then 

/ 

F , F ( t )  e 3 /  n t F2(t/2). 
gV p ( 1 - p )  Z1/2(t/2) 

Proof. The given condition implies (3.6) and (3.7) hold. We may modify a(0 
and )~(t) so that )~ is twice differentiable for all t and (by (3.6) and (3.7)) so that 
Z is both monotone and concave for all t. 

Since Z(t)>=O, then mv(a)=oo. Let _fl(t)=e -~t+z(~ By Theorem 6, in the 

final section, F �9 F (t) ~ a 2 F 1 �9 F a (t). It suffices then to assume a(t) - a. 
Note that 

l im) ( ( t )=0  and l imtz ' ( t  )=oo. 
t --+ ao  t - -*  oo 

uniformly for 171 _-< 1/2. 
The converse is also as simple. @ 

The uniform convergence in (3.8) can be stated more strongly. Indeed, for 7 
=7(t) such that 7(t)-*0 and t-17(t)[ t~oo ,  
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l 
As remarked above, b(t)=e x(t) is F-varying with auxilary function f ( 0 =  ,(t). 
Consequences of this include (cf. de Haan, 1970) 

lim Z'( t+uf( t))=l ,  all u, 

b(yt) 
lim b ~  = c~, all y > 1, 
t~oO 

and 

i b(u) du 
lim o _ 1. 
,~oo f( t)  b(t) 

t 

Also, ~ b(u)du is F-varying with auxilaryf(t),  as is 
0 

t t 

B( t) = ~ e~" F (du) = 1 -b(t)  + c~ ~ b(u) du. 
0 0 

Note that B(t) ~ c~f(t) b(t). Thus for y > 1 

tb(yt) 
lim - -  - 

~ o o  B(t) 
( t ) ( f ( t )b( t )~  (b(yO~ 

- l i m  ~([) \ B(t) ]\b(t) ] = O O .  

Now, to apply this to our problem, 

1 1 t12 t12 
2a ~ J F  * F ( t ) ~  e at ~ F ( t -u )F (du )~  ~ b(t-u)B(du) 

0 0 

t / 2  

= ~ b(t-u)(et-Z'(u))b(u)du. 
0 

Changing variables and applying Fatou's lemma, 

(3.10) 

B u t  

t}2 2f(t) b(t--u) 1 B(du) 
b ( t -u )  1 B(du)>lim ~ b(t) B(f(t)~) lim b(t) B ( f  (t)~) t~oo f(,) 

t ~  oO 0 

2 __>j" lim [ ~ b(t-yf(t))) [f(t)b(yf(O)~, -)~'(yf(t)))]dy 

2 

= ~(e-Y)(c~)(a)dy = oo. 
1 

f ( t )  

b(t -u)  B(du) < b(t) B ( f  (t)). 
0 

(3.11) 

(3.12) 

Thus, using (3.10), (3.11) and (3.12), 
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1 t/2 t/2 

2a ~ e~tF �9 F (t) ~ ~ b(t - u )  B(du) ~ ~ b(t - u )  B(du) 
0 f(t) 

t/2 ~ 1 

f(t)  
t/2 

~c~ ~ b ( t -u )b (u )du .  
f(t)  

The final equivalence occurs since f ( 0 ~  oo. 
Define 

t -  f (2 t )  

d( t )=  ~ b ( t + u ) b ( t - u ) d u ,  
0 

= i b ( 2 t - u ) b ( u ) d u .  
f (2 t )  

We have, then, 

F * F (t) ~ 2aa  2 d(t/2) e-  ~. (3.13) 

(Note that  up to this point we have used only the facts that  b(t) is monotone  
and F-varying with auxilary f ( t )  and that f ( t ) - - ,  oo.) 

Let rl(t)=yz(t)  -1/2, for fixed y, and s(t)=tZ(t)  -1/2. By L e m m a  5, since (3.7) 
holds and since t /( t)~0, 

lim [Z(t + ys(t)) - 2z(t ) + Z( t -ys ( t ) ) ]  

lim y2 [Z( t + q ( t ) t ) -  2z( t )+ Z ( t -  tl(t ) t)] 
, ~ .  t ~2(t) ):(t) ] 

= - p ( 1  _p )  y2. (3.14) 

Furthermore,  (3.9) holds since if y<r( t )  t - f ( 2 t )  Z1/2(t), then t - l r l ( t ) [ t ~ .  
Hence t 

b (t + y s (t)) b (t - y s (t)) 
- exp [Z (t + 17 (t) t) - 2Z (t) + Z (t - t/(t) t)] b2(t) 

2 

_-< exp [ - (p - e)(1 - p - e) y23, y ~ r (t). 

We can therefore use dominated  convergence and (3.14) to obtain 

lira )(1/2(t) d(t) = lira - -  
t~ oo tb2(t) t ~  

)(1/e(t ) t-~(2o b ( t + u ) b ( t - u )  
t o b2(t ) du 

=~o t-o~lim/[b(t+YS(t))b(t-ys(t))lbz(t) to,,-,(o,J (y) ] d y  

- -  o e-p( -p)r dy=~  p(1-p)" (3.15) 
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From (3.13) and (3.15), 

F . F ( t ) ~ a 2  ] / ~ t/2 b2(t/2) e -~t Vp ( i - p )  Z1/2(t/2) 

I 

cZV_ p 7C t ff2(t/2). 
~ 2  ( y _ p )  Zl/2(t/2) 

Corollary 3. Properly interpreted, the conclusion of  Theorem 5 also holds if 

tz"(t) 
i) p = 0 ,  t z ' ( t )~oo  and - - - ~ - 1  

z'(t) 
tz"(t ) 

or ii) p = l ,  Z'(t)+0 and - - - ~ 0 .  
z'(t) 

t z ' ( t  ) 
Proof  i) p = 0 .  Since ~ - 1  = p - l ,  both (3.6) and (3.7) hold. In addition, 

z'(t) 
t x ' ( t )~oo  implies z ( t )~oo .  However, we still need to check that b( t )=e  z(t) is F- 

1 y 
varying with a u x i l i a r y f ( t ) = ~ .  Since )((t)~N ~ and - - ~ 0  

- tz ,( t  ) ' 

Thus 

l i m  Z' (t + Y/Z' (t)) 
, ~  ~ z ' ( t )  

- 1 ,  locally uniformly in y. 

y z'(t + v/Z' (t)) 
lim [Z(t + y/)((t)) -Z(t)]  = l im  j dv =y,  
~ ~ .~ o z ' ( t )  

which is sufficient. The proof then follows through, using Fatou's Lemma in 
(3.14) rather than dominated convergence. That is 

F * F (t) z1/z(t/2) 
lim 
t-~ ~o t e ~t F2 (t/2) 

0 0 .  

ii) p = l .  Again (3.6) and (3.7) hold. Also, b(t) is F-varying. The only 
condition still required for the proof to go through is Z'(t)$0. Again Fatou's 
Lemma is used for (3.14). 

Corollary 4. Suppose if(t) = a 1 (t) e -  st + z~(t), G(t) = a2 (t) e -  ~ + z~(t) each satisfy the 
conditions of  Theorem 5. Assume also that 

[ 1)] lim Z21 /2 ( t ) \Z~-  =k, 
t ~ o o  

~]~_p ~ t /~(t/21G(t/2). Then F * G ( t ) ~  (C_O) zI /z( t /2 ) 

Proof. Let b( t )=e  zl(t3 and c( t )=e  z~('). Also define 

t 

B(t) = 1 - b (t) + a ~ b (u) du, 
0 

[k]< oo. (3.16) 

C(t )  = 1 - c( t)  + c~ i c(u) du. 
0 
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Note that (3.16) implies )(1 ~Z~ and X1 ~)~2. Therefore b, c, B, C are all F- 
1 

varying with the same auxilary function f ( t ) = ~  (cf. de Haan, 1970, p. 45). 

Replacing b with c and B with C where appropriate, we follow the proof of 
Theorem 5 and find 

t /2 

e ~t ~ F(t -u)  G(du)~o:a 1 a 2 dl(t/2), 
0 

t -  f ( 2 t )  

dr(t)= ~ b(t+u)c(t-u)du. 
0 

where 

From (3.14), applied to c(t) in place of b(t), 

lira c(t + ys(t)) c(t -ys(t)) 
z~  m C 2 ( t )  

_ e _ p (  1 _p)y2  

and these sequences are bounded by e -[~176 y < r ( t ) _ t - f ( 2 t )  Zzl/2(t) ' We 
will show that t 

lira b(t + ys(t)) c(t) =ekOy (3.17) 
,~o b(t) c(t+ys(t)) 

and that the sequences are bounded by e k~y, k I < 0% y<r(t). We can therefore 
use dominated convergence as before to obtain 

~(t) b(t + ys(t)) c(t -ys(t)) dy 
dl(t)z~/2(t)=lim ~ b(t)c(t) lim tb(t)c(t) o t~oO t~oO 

oO 

= 5 (1)(ekPY)(e -p(1 -P)Y~)dy. 
0 

Thus 

! f(t-u)mdu)-  - - / ~ ( t / 2 )  G(t/2). 

Similarly, 

t / 2 CZ co ~ [2 

G(t -u )F(du)~-  ( ~ e -kp'-p(1 -P)'2dy] F(t/2) G(t/2). 
o 2 \o z~/z(t/2) 

Finally, since Zl ~Z2 

t /2 t/2 

F * G(t)~ ~ F(t -u)  G(du)+ ~ G(t -u)F(du) 
0 0 

c~ ekpy_o~l_p),2dy + .[ e_kp,_p(l_p)Y2dy X~/2(t/2) 
~ 2  \ 0  0 

p ( 1 - p )  )~1/2(t/2) 

- -  F(t/2) (~(t/2) 



Convolution Tails, Product Tails and Domains of Attraction 549 

Now to show that (3.17) holds, first note that (3.16) implies 

(~+.)' r (z i (~)  _ z ~ ( )  dv Zx(( l+t l) t)-Xt(t)-z2(( l+r l) t)+z2(t)= ~ /Z21/2(v) 1 - -  

=< 2(k + 0(Z21/2 ((1 + r/) t) - Z~/2 (t)). 

Using the alternate inequality and applying Lemma 5 to Z~/2(t), 

lira Z~ ((1 + r/) t) -Z~ (t) -Z2((1 + r/) t) + Z2(t) 

Z~/2 ((1 +t/)t)-Z~/2(t) 
=2k lim 1/2 -kp .  

t ~  oo,~ /~  0 t/Z 2 (t) 

Letting t /=q( t )=yZz( t ) -~/2  s(t)=tz2(t ) -  ~/2, this is (3.17). Recalling the bounds 
in the proof of (3.6), we see we can take the bound kt to be 

k 1=4[k1(2 ~ 4~ 

4. Comparing Convolution Tails 

In this section we return to the second objective stated in the introduction, 
namely, if Fl~b f f  and G I ~ c G  can we write F ~ * G ~ k F * G  for some k? In 
fact the answer is no, in general, even if F and G are reasonably regular. As an 
example, suppose F ~ ,  G ~ ,  but 

0<lira G-(t) < l~m-m ~ <  ~ .  
t~oo F ( t )  t - ~  

By Corollary 1, / t ( t ) = F ,  G(t)~ma(cOF(t)+mv(c~)G(O. Now suppose also that 
Fl(t)~ff(t_) and let d l ( t ) = G ( t  ). Then /7 ( t )=F  1 ,G(t)~mG(~)F(t)+mv~(7)G(t ). 
Because F and G are not asymptotically equivalent to each other, it is clear 
that/71 a n d / 7  will also not be, except in the special case mrl(c0 =mF(c 0. 

We can, however, provide three distinct situations in which the result does 
hold. It is of special interest that the value of limH~/H differs between the 
three cases. 

Theorem 6. Let F and G be distributions on [0, o9] such that F_e~. Let F 1 and 
G 1 be any distributions such that ffl~bff,  b > 0  and Gl~cG, c>=O. Define H 
= F , G ,  H1 =F1 *G1. 

i) Suppose F~5~ and G~alY for some a>O. Then 

/71 (t) _ b ma~ (~) + a c mr~ (~) 
lim - -  
t~ ~o H(t) too(a) + cmF(et ) 
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ii) Suppose mG(e ) < oe and I4 ~ mG(c~ ) F. Then 

l i m / ~  (t) _ b m m (cO 
,~o H(t) mG(C~ ) " 

iii) Suppose G ~ ,  c>O and m~(~)=mG(c 0 =oo. Then 

/ i ~ ( 0  , lim ~ = o c .  
t--~ oO 

Proof i) This follows automatically from Theorem 1. 
ii) We need only to show that I~l~bmGl(ct)if. We will first show that 

F ,  G1 ~mGl(c0if. Assume, without loss of generality, that i f (0)=l .  For large 
enough s, 

t t--s 
f ( t - - u )  G l(du) q -Gl ( t )=  ~ a l ( l ; - u )  F(dlA)-]-Gl(S)F(t-s)  

s 0 

<(c+e) [~ d(t-u)f(du)+d(s)P(t-s) 
i_ 0 

Therefore, 

[~f F( t -u)  Gl(du) + <(c+e )  lim - G(du) 

�9 e( t -u)  G(du)] 
= (C q- ~3) l lm  [ if( t )  ~ if(t) 

=(c+~)  ~ e~"G(du). 
s 

And this is arbitrarily small for s large enough. 
On the other hand, by the uniform convergence, 

i s lim i f ( t -u)  al(du)=~e~,at(du ) 
t~oo  0 ~ - ~ -  0 

and this is arbitrarily close to mGl(ct), if s is large enough. Thus we must have 
F ,  G 1 ~mGl(ct)i. This allows us to use dominated convergence next, since we 
can choose k > 0  such that i z (0<kP( t ) ,  all t. Therefore, 

lim ~-/]1(0 _- o t~lim~ F(t) Gl(du)=b Ye~Gl(du)=bm~ 
t~ oo 

iii) Since ma(e)= oo, then Fatou's lemma shows 

lim ~ > m G ( c  0 = oo. 
t~oo  
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As a consequence,  for any s > 0, 

i Y(t-u) lim - G (du) < lim 
, ~ o o  o H(t) - - , - o o  

i d(t-u) Similarly, lim - F(du)=O. 
, ~  o H(t)  

Therefore,  if t >_ 2s, 

F(t s) = e ~ lim r-  tU = 0 
I~(t) , ~  oo U ) " 

Likewise, 

8 S t - -s  

g ( t )  = ~ F(t  - u) G (du) + S E(t  - u) r ( d u )  + ~ P( t  - u) G(d . )  + F(s) d ( t  - s) 
0 0 s 

t - - s  

F ( t - u ) G ( d u ) + F ( s ) E ( t - s ) ,  all s > 0 .  
s 

t --s  

/J1 (t) ~ ~ F 1 (t - -  U) G 1 (d/x) n L/~1 (s) E 1 (t - -  s), 
s 

But for s large enough,  t > 2s, 

t--S 

F1 ( t  - -  u )  G 1 ( d u )  4- F I ( s )  E 1 ( t  - s )  
s 

t - s  

t - - s  

t - - s  

t - - s  

Combining (4.6) with (4.5 a, b), 

lim /~ ( t )  <(1 +e)2bc. , ~  H ( 0  = 

In the same manner  of proof, 

lira I~!~) >(1-e)2bc .  
~ H ( t ) -  

Since g can be chosen arbitrarily, this proves the result. 

(4.5 a) 

all s > 0. (4.5 b) 

(4.6) 

5. Product Tails and Domains  of Attraction 

Suppose X and Y are independent  nonnegat ive r andom variables such that  
P [ X  > t ] ~ _ ~ ,  P [ Y  > t]e~_~,  c~>0. Define 

F ( t ) = P [ X > e t ] ,  G ( O = P [ Y > e  t] and I t ( t ) = F , G ( t ) = P [ X Y > e t ] .  
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Clearly, F,G~S~. From Embrechts and Goldie (1980, Theorem 3) we know 
that H ~  and hence X Y  has distribution with a regularly varying tail. This 
results in a simple proposition, based on standard results. 

Proposition I. Suppose (X~, Yi), i=1,  2, 3 . . . . .  are distributed independently like 
(X, Y) above. Then there exists a,, b, such that 

i) lira P [max (X i Yi) < a, t] = exp ( - t -  ~), t > 0 
n ~ o ~  i < n  

and 

ii) l i m P  (XiY~)<a,t+nb,) --S(t), 
n ~ o D  i _  

where S is the fully asymmetric stable (~) law if e < 2  and the normal law if 
c~>2. # 

The proposition itself is simple. The real problem is in calculating the 
norming and centering constants, a, and b,, if one does not already have an 
explicit expression for the distribution of XY. For example, a, should be 
chosen so that 

1 
- ~ P [ X Y > a J = I t ( l n a , ) ,  as n ~ .  (5.1) 
n 

Our previous work has shown that it is often possible to approximate /4(t) 
with only the tails and truncated moment generating function of F and G 
(equivalently, the tails and truncated c~-moments of X and Y). This eliminates 
calculation of a convolution. While we cannot promise an easy solution, it will 
generally be easier to perform the inversion required in (5.1) with the approxi- 
mation than with the actual convolution. For example, i f / ~ m G ( a )  F +mf(c 0 G, 
one instead may solve 

1 
-~mG(cQff(lna,)+mF(cOd(lna,) , n~oe. 
n 

Cline (1984) considers the joint convergence of i_ Xi Yi, X . When 

~<2,  this requires that I4~kff,  where k is possibly infinite. Clearly, if k is 
finite, the correct normalization is a,~kl/~a',, where a', is the normalization for 

~=lXi i.e., ~ff(lna',) . As another example, which includes cases where k is 
i =  

infinite, suppose both F and G satisfy the conditions of Lemma 4. It is well 
known that if a', satisfies 

1 
-~f f ( lna ; ) ,  
n 

then a',s~l/~. In fact, since b(t)=e~tff(t)6r we can further say 

a', ~ [b (ln a;) n] 1/~ ~ [~- ~ b (ln n) n] 1/L 
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Thus we have 

Corollary 5. Suppose b(t)=e~t F(t)~r and c(t) =e~ G(t)eN~.- Let a, satisfy (5.1). 
Then 

i) if mF(ct ) < oO and m~(cQ < oo, 

a, ~ ([c~ - ~ m~(ct) b (ln n) + ct - '  m F(e) c (ln n)] n) 1/~. 

ii) if ma(e) < ~ and me(e ) = o% fl > 7, 

a, ~ [~-~ mG(~ ) b(ln n) n] 1/~. 

iii) if my(a) = raG(a) = 0% fl > - 1, 7 > - 1, 

a, ~ [m(ln n) b(ln n) c(ln n) n] i/~, 

where m _ F ( 1  + fl) F(1 +7) c~_~_~. 
r(2+/~+~) 

Proof These are direct applications of the remarks above and Theorem 4 iii), 
iv) and v). # 

Another  method for inverting distribution tails is given by the following. 

L e m m a  6. Suppose F(t)=e ~z(t)-~t, where Z(t)>O and satisfies (3.6) with p< 1. 

P Define si(t)=t , si(t)=t+Z(si_i(t)), i=2, . . . , j .  I f  a', satisfies Choose j > 
1 1 - p  

- -  t -~F( lna , ) , t hen  ,, [ ( ( )  ) ) ]  
n a!_~exp[)~\sj lnn  n i/~. 

Proof Since s - )~(s )~ov  there exists s(t) such that  s(t)-)~(s(t))=t. Then 

t [ z(s(t))] 
lira ~=, = lira 1 = 1. 

That  is, s( t )~t  and Z(s(t))~)((t). It follows that  for each i > l ,  

+)~(s i_ l(t))~t. Let th(t ) _s(t)-s i( t ) .  Then by L e m m a  5, 
s~(t) 

Z(S(t)) -- Z(Si(t))~ prh(t ) X(si(t)) 

~ p z(t) (s(t) - ~(t ) )  

= p ~ / ~  (z (s (t)) - z (s,_~ (t))). 

Therefore, by induction, 

lim [Z(s(t)) -Z(sj(t))] = lim pJ Z j+ ~ 1(0 =0. 
t ~  oo t ~  oo t J 

Si(t)=t 

(5.2) 
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Thus, 

We now apply this to F. We can assume without loss of generality that 

1 
=F( ln  ' - ~ z ( l n a ~ )  , - e  a, , ) -e  (a,,) . 

n 

1 
l n a ' ~ = - l n n + z ( l n a ' . ) = s  inn . 

Using (5.2) we obtain 

e)~(s( l lnn))  n l / .  ~ Z(sJ(l~lnn]) . ,  
an 

This lemma can be applied to /-/, for example, when F and G satisfy the 
conditions in Corollary 4. This ends our discussion on the norming constants 

a n �9 
As for the centering constants bn, we can take bn=0 if c~<1 or b n = E X Y i f  

this is finite. The only real difficulty occurs when , =  1 and E X Y =  oe. In this 
case one choice is 

ln an 

b , = E [ X Y l x r < = j =  ~ e"H(du). 
0 

(Actually, if E Y  < o% b, = E  IX1  x <=j E Y  is satisfactory.) 
However, 

t 

e"H(du) = M  1 * M2(t ), where 
0 

t 

M 1 (t) = ~ e" F (du) = E I X  1 x <_ eJ, 
0 

t 

M2(t  ) = ~ e u G(du) = E  [Ylr=<et ]- 
0 

Since ~=1,  Ma(lnt ) and M2(ln t) are slowly varying (in ~o). As an example of 
how one might approximate M 1 �9 M2(t ), we have the following lemma. 

Lemma 7. Suppose M 1 and M 2 are infinite measures on [0, oo). 
i) M i ( t ) ~ p , ,  /31>0, i - 1 , 2 ,  then 

r(1 +/30 F(1 +/32) 
M 1 * M2( t  ) Ml( t )  m2(t). 

r(1+/31 +/32) 

ii) I f  Mi( t  ) =ai(t)e x'(t) where a~(t) and Zi(t) are as in Corollary 4, then 

M 2 * M2(t ) ~]ffl~_~Pp ZI/2(t/2)Ml(t/2)M2(t/2). 

Proof. The proofs of i) and ii) are similar to those of Lemma 4 and Corollary 4, 
respectively. =~ 
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Unfortunately, asymptotic equivalence is not a sufficient approximation. If 
M3(t ) is to be an approximation for M 1 , M 2 ( t  ) and we use the centering 
constants b'~ = M  3(ln a,), these must satisfy 

Equivalently, 

n 
lim - -  (b. - b'.) exists finite. 

n ~ c o  a n 

lim M~ * M 2 ( t ) - M 3 ( t  ) 
t~oo etlJ(t) 

must exist finite. (5.3) 

And this is a stronger condition than MI , M 2 ( t ) ~ M 3 ( t  ). We leave open the 
question of choosing M 3 so that (5.3) holds. 

In Proposition I ii) we saw that the distribution of X Y i s  in a stable domain 
of attraction when X and Y are nonnegative, independent and each in a stable 
domain of attraction. Unfortunately, this result does not generalize when the 
word "nonnegative" is removed. The problem is that the "balancing" condi- 
tion does not necessarily hold. However, Theorem 6 allows us to list a number 
of conditions for which X Y i s  in a stable domain of attraction. 

Assume that X and Y are independent and satisfy 

P IX > t] 
P[ lX}>t]e~_~ ,  Pl =lira exists 

, -~  P[IXI>t] 
and 

P l Y > t ]  
p2 =lira exists, 0 < ~ < 2 .  

, . ~  P[IYI>t] 

For ~<2,  these conditions are necessary and sufficient for the distributions of 
X and Yto be in stable domains of attraction (Feller, 1971, p. 577). Define X+ 
=max(0,  X), X_ =max(0,  - X )  and similarly for I1+, Y_. 

P [ X Y > t ]  
Proposition II. Under each of the following conditions q = lim exists 

t~oo P [IX YI > t] 
and hence the distribution of X Y  is in a stable (ct) domain of attraction. 

i) P [ X > t ]  =p tP[ IX l>t ]  and either Pl =1/2 or P [ Y > t ]  =p2P[IY[>t]. In 
this case q =Pl P2 +(1 -pl)(1  -P2). 

ii) P [IX I > e t] and P [I YI > et] are both in ~ and lim P [[ Y[ > t] = k < oo. In this 
case t~ co P [[X[ > t] 

(Pl EY+ + (1 - p  1)EY~-) + k(P2 EX~+ + (1 -P2) EX~-) q -  
E l r l ~ + k E I X I  ~ 

P [ X Y > t ]  
iii) Either P[IXY[>t]  _~E[yl:< ~ or *EY~ < ~ ,  pl>O. In this 

case P[IX[ > t] P [ X  > t] 

Pl EYe_ + (1 - P l )  EY- ~ q =  
EIYI ~ 

iv) E [ X p = E [ Y p =  ~ .  In this case q=plP2 +(1-pl)(1--P2)" 
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Proof Define _if+ (t)_= P I X  > et], if_ (t) = P I X  < - et], if(t) = P [IX I > e t] and  simi-  
lar ly  for G+,  G _ ,  G in te rms of Y's d is t r ibut ion .  Then  

/4+ (t) = P I X Y >  e t] = F +  �9 G+ (t) + F _  * G (t) 

I~_ (t) = P [ X  Y < - e t] = F+ �9 G _  (t) + F_ �9 6 + (t), 

a n d / ~ ( t )  = P  [IX YI > e t] = I~+ (t) + I1_ (t). 
The p r o o f  of i) fol lows by  di rec t  ca lcu la t ion  and  ii), iii) and  iv) are appl ica-  

t ions of  T h e o r e m  6 i), ii) and  iii), respectively.  :~ 

If  X and  Y are in s table  doma ins  of  a t t r ac t ion  with  different indices, then 
L e m m a  1 can be app l i ed  and  the p r o d u c t  will be as in iii) above,  wi th  e equal  
to the  smal ler  index (Breiman,  1965). W h e n  X and  Y are i ndependen t  and  each 
in the  d o m a i n  of  a t t r ac t ion  of  the n o r m a l  d i s t r ibu t ion ,  then X Y w i l l  a lways  be 
in the d o m a i n  of  a t t r ac t ion  of the  n o r m a l  (Mai ler ,  1981). 

The  no rming  constants ,  an, tha t  wou ld  be used as a resul t  of  P ropos i t i on  II  
can be ca lcu la ted  f rom I i ( t ) = P [ l X Y l > e t ] ,  as sugges ted  in the r e ma rks  fol- 
lowing P r o p o s i t i o n  I. A g a i n  the  p r i m a r y  difficulty in choos ing  the center ing 
cons tan ts  b,  occurs  only  when c~ = 1  and  EIXI =EIYI  = ~ .  
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