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1. Introduction and Results 

In several papers [2, 8 and 10] G.M. Petersen and other authors have studied 
the summability of subsequences of a given sequence. These results on the 
summation of subsequences can be applied in the theory of uniform distribu- 
tion (see [-7, 9 and 10]) and one obtains that a sequence co=(x,) of real 
numbers is uniformly distributed modulo 1 if and only if almost all sub- 
sequences of cc~ are uniformly distributed. This result remains true for uniform 
distribution with respect to weighted means satisfying certain regularity con- 
ditions. The original proofs in [2, 8 and 10] are based on summability proper- 
ties of the Rademacher functions. 

In the present paper we consider in a more general situation r-dimensional 
sequences co=(x ....... ) (so called multi-sequences) and prove the above metric 
result by methods from probability theory. Furthermore it is shown that for 
certain weighted means P (not fulfilling the cited regularity conditions) there 
exists a sequence co that is uniformly distributed with respect to P but almost 
no subsequences are uniformly distributed with respect to P. In the last part of 
the paper a sequence is constructed that is not uniformly distributed with 
respect to P but almost all subsequences are uniformly distributed with respect 
to P. 

Notations. Let r ~ N = { 1 , 2 , 3  .. . .  } and n=(n  1 . . . . .  nr), N = ( N  1 . . . . .  N~) etc. be vec- 
tors with r components. During the whole paper co =(x,) denotes an r-dimen- 
sional sequence with elements x.  in a compact Hausdorff space X with count- 
able base of topology and # a regular normed Borel measure on X that is not 
concentrated on a single point of X. 

Furthermore P =(Pl (nl) . . . .  ,p~(nr) ) denotes a positive r-dimensional weight- 
r r 

ed mean and p(n)= I~ pj(nj), Pj(nj)= ~ pj(k), P(n)=  I~ Pj(nj). 
j =  t k <n i j = l  

In the following we introduce two concepts of uniform distribution of 
multi-dimensional sequences: 
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The multi-sequence co =(x.) is called P-uniformly distributed with respect to 
/~ (in short (P,#)-u.d., compare [-6, 9 and 12]), if 

lim P(N)-I  ~ p(n ) f ( x . )  = S f ( x )  d#  (1.1.I) 
N ~  n:<N X 

for all continuous real-valued functions f on X. n_<_N denotes the usual 
product order and l i m a ( N ) = a  means that for every e > 0  there exists N(e) 

1N~co 

such that for all N > N(e) [a(N) - a l < e. 
The r-dimensional sequence co =(x.) is called P-weakly-uniformly distribut- 

ed with respect to # (in short (P, #)-w.u.d.), iff 

lim P(N . . . . .  N) -1 ~ p ( n ) f ( x n ) = S f ( x ) d  # (1.1.II) 
N ~  o0 n _-< (N . . . . .  N) X 

for all continuous real-valued functions f on X. 
Obviously every (P, #)-u.d. multi-sequence is also (P,/~)-w.u.d.; in the case r 

--1 both concepts are equivalent. 
If t = ( t  1 .. . .  ,t~)~T=({0,1}N) r, we denote by z(co, t) the r-dimensional sub- 

sequence obtained from co =(x,) by deleting all x k for which tj(kj)=0 for some 
j, i.e. we consider only the indices belonging to the subset of N ~ whose 

characteristic function equals l ) t j .  More explicitely, let z(n, tj) be the n-th 
j = l  

index k for which t~(k)= 1 (i.e. the n-th index of the subsequence determined by 
tj), and put z(n,t)=(z(nl, tx) . . . .  , z(n~, t~)), then z(co, t)=(x~(,.t)).~Nr. We equip T 
with the product measure 2 whose components assign probability �89 to zero and 
one. In this way it is possible to speak of the measure of a set of subsequences, 
in particular the notions almost all and ~dmost no subsequences refer always to 
2. One can also identify (up to a set of measure zero) T with [0, 1] r equipped 
with Lebesgue measure by assigning to t~[0 ,  1] the point (R,(t))),~__ 1E{0, 1} ~ (n 
--1 .. . .  ,r), where (R,) denotes the system of Rademacher functions (this ap- 
proach was used in [-2 and 8]). 

In w of this paper some auxiliary results are formulated and in w the 
following results are established: 

Theorem I. Let  co =(x,) be an r-dimensional sequence and P =(pl(nl), ...,p~(n,.)) a 
weighted mean such that 

(i) pj(k + 1) > pj(k) > 0 for all k = 1, 2, 3 . . . .  and j = 1, . . . ,  r 

(ii) ~ (PJ(k)] 2 
k= 1 \ P ~ !  converges for j = 1, . . . ,  r 

(iii) pj(k)Pj(1) <L for all k=1,2 ,3  .. . .  and l=1 ,2  . . . .  ,3k, j = l , . . ,  r. pj(l) ~(k) 
I f  co is (P, #)-w.u.d. then almost all subsequences of  co are (P, #)-w.u.d. 

Theorem II. Let co =(x.) be an r-dimensional sequence and P =(Pl(na),-..,P~(n~)) 
a weighted mean such that 

(i) pj(k+l)>=pj(k)>O for all k = l , 2  .. . .  and j = l ,  . . . , r  
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(ii) pj(k)/Pj(k) decreases to 0 with k ~ o v  (/'=1, . . . ,r) 

(iii) P~(n) pj(k) pj(n) Pj(k) <L  for �89 ( ]=1 .. . .  ,r). 

I f  the set of all (P,#)-w.u.d. subsequences of co has positive measure then co is 
(P, #)-w.u.d. 

Remark. The statement of Theorem II remains true for (P,#)-u.d. multi-se- 
quences (instead of (P,#)-w.u.d. multi-sequences). Furthermore it is shown that 
an analogon of Theorem I for (P,#)-u.d. multi-sequences does not hold. In w 
we establish the following converse result: 

Theorem lII. Let X be the discrete space X - - { - 1 , 0 ,  1} and it the probability 
measure on X defined by #(0)=0  and # ( - 1 ) = # ( 1 ) = 1 / 2 ;  P=(1 ,1 )  denotes the 
two-dimensional arithmetic mean. Then there exists a (P,#)-u.d. double sequence 
co =(X,k ) such that almost no subsequences of co are (P, #)-u.d. 

By an explicit construction similar to that of Baayen and Hedrlin [1] one 
can show that the following condition is necessary and sufficient for the 
existence of (P, #)-u.d. sequences on X: 

l 'm pj(n) 0 1 - - =  for some j. (1.2) P (n) 
Nevertheless, it is possible that the family of all (P,#)-u.d. sequences is small 
from a measure theoretic point of view. As usual, one considers the product 
measure # ~ =  @ # j  on X Nr (where #j is a copy of # for all j~N"; cf. [9], 

jeN r 

p. 182). In the one-dimensional case, it was shown in [6] Satz 11 that Hill's 
condition (compare [5]) is sufficient in order that #oo-almost all sequences are 
(P, #)-u.d. If p(n+ 1)>p(n) for each n, it has recently been shown by the authors 

that this is also necessary. In the r-dimensional case put Aj(n)=Pj(n) -2 ~ pj(k) 2 
k = l  

(for j = l , . . . , r ) .  Then the same proof as in [6], Satz 11 shows that #~-almost 
all r-dimensional sequences are (P,#)-u.d. if 

exp - 6 I I A j ( n j )  -a <oe  for some N e N  r 
n>N j = l  

holds for each 6>0.  This can be shown to be true iff there exists jo~{1 .. . .  ,r} 
suc that ( + )  

,=lexp - <0o and for all 6 > 0  i f j = j o  

(We will call this Hill's condition too.) 
In the last two theorems we consider weights that are constant on intervals of 

the form [2 n- 1, 2hi. More explicitly we assume that 

pj(k)=aj(n) 

aj(n+l)>=a~(n) 

lim a j ( n + l ) - 0  
, ~  aj(n)2 n 

for 2n-1___k<2 n, n~N, j = l  . . . .  ,r. 

for all n~N, j = l  . . . .  ,r. 

for some j. (1.4) 
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It is not hard to see that the last condition corresponds to (1.2). Hill's 
condition (1.3) gets the form 

~ exp ( - 6  :~2J(nl) ~ < oe 
.=1 j t  + ) !  " 

n 
Theorem IV. Let P be a weighted mean of the type (1.4). I f  2-?-aj(n) -1 aj(n+ 1) 
is unbounded for some j, then there exists a (P,p)-u.d. r-dimensional sequence co 
=(xn) on X such that almost no subsequences of co are (P,N-u.d. Consequently, 
if P is of type (1.4) and the conclusions of Theorem I hold, then 

(PJ(n)~ e 
n= 1 \P~(n) ] < oo for each j. 

For example, if aj(n)=2 n2/3, Hill's condition is satisfied, but there exist 
(P, #)-u.d. sequences such that almost no subsequences are (P, N-u.d. 

Theorem V. There exists a weighted mean P of the type (1.4) satisfying Hill's 
condition (1.3) and an r-dimensional sequence co such that co is not (P, #)-u.d., but 
almost all of its subsequences "c(co, t) are (P, #)-u.d. 

w 2. Auxiliary Results 

In this chapter we present some auxiliary results from the theory of uniform 
distribution, from the theory of summation methods and from probability 
theory, most of them without proofs because they are well-known or simple 
consequences of well-known facts. 

Proposition2.1. There exists a countable class ~={ fo , f l , f 2 , . . . }  of continuous 
real-valued functions f~ on X, T o - l ,  If~l-<_l for j >  l and ~f~d#=0  ( j > l )  such 

X 

that (1.1.J) holds for all continuous functions if it holds for all fj~.~ (J = I, II). 

The proof runs as in [-9], p. 175. 
It is easy to see that the random variable z(1,.) has a geometric distribution, 

i.e. 2{t:z(1, t ) = k } = 2  -k (see e.g. [3, Vol. I], p. 47). The increments z (n+ l , . )  
- z (n ,  .) are mutually independent and have the same distribution as z(1, .). 

~ 2 ~  X t 2 
Let F be the normal distribution, i.e. F(x)= ~ e -Td t .  

--o9 
Proposition 2.2. We have uniformly in x~lR: 

lim 2{t: z(n, t) < 2 n + x ] / /~}  =F(x). 
n~o9 

In particular: lim z(n, t) =2  almost everywhere. 
n ~  n 

Proof. An easy computation shows that z(1,.) has expectation E(z(1, .))=2 and 
variance Var(z(1,.))=2. Therefore, the first statement follows from the central 
limit theorem and the second from the law of large numbers. 
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Furthermore let a(k,n) 
numbers bounded by 1 
variables bounded by 1 

Then 

The following result gives sufficient conditions for the regularity of an r- 
dimensional Riesz summation method (compare to [4], p. 58): 

Proposition 2.3. Let P=(p l (n l )  . . . .  ,pr(n~)), Q=(ql(n0,. . . ,qr(n~)) be two r-dimen- 
sional weighted means such that 

(i) P2 (n + 1) >_- pj (n) > 0, qj (n + 1) > qj (n) > 0 (j = 1 . . . . .  r and n ~ N) 

(ii) qj(k)Pj(k) < H  ( j = l , . . . , r  and k~N) 
pj(k) Qj (k) 

(iii) ~ q2(k) qj(k + 1) 
k=l pj(k) p j (k+l )  < L ( j = I  . . . .  ,r and m~N). 

I f  the r-dimensional sequence s(n) is bounded and convergent to the limit a with 
respect to the mean P then it is convergent to a with respect to Q, too. 

Remark. Proposition 2.3 is valid for the weak notion of convergence (as defined 
in (1.1.II)) and for the (stronger) notion of convergence (as defined in (1.1.I)). 
We omit the proof since it is standard. 

Proposition 2.4. I f  co =(x,) is a (one-dimensional) sequence in X,  then the set of 
all t for which z(~o, t) is (P,#)-u.d. has either measure one or zero. 

Proof. The property of being uniformly distributed is clearly a tail event on 
z(n,.). Therefore the result follows from the Hewitt-Savage zero-one law (see 
[3, Vol. II], p. 122; cf. he remarks preceeding Proposition 2.2). 

In the following we give a short proof of a multi-dimensional strong law of 
large numbers; in the case of independent random variables see Smythe [11]. 
A system S of random variables is said to be multiplicative, iff 

E ( ~  ~ ~ ~ ) - ~ ( ~ ) E ( G )  ( o ) E ( ~ ' )  

for all ~ f i S ( ~ i ~ j f o r i 4 = j )  and gje{0,1,2}, 

where E(~) denotes the expectation of the random variable ~. 

Proposition2.5. Let P=(pl (n l )  . . . .  ,p~(nr) ) be an r-dimensional weighted mean 
satisfying lim Pj(k)= oo, O<pj(k)<=pyr 1) (keN) and 

k ~ c o  

iP (k)  
k = l  \ P ~ ]  (oo for j = l  .... ,r. 

( k e n  ~, neN) be an (r + l)-dimensional sequence of real 
and let ~k (ken t )  be an multiplicative system of random 
and with expectations E(~k)=0 for all k e N 2  

1 
lim P(n,. . .  n) ~ P(k)a(k'n)~k=O 

n ~  , k < ( n  . . . . .  n) 

with probability 1. 

Proof. For n=(n, ..., n) and 

X n =P(n) -1 ~ p(k) a(k, n) ~k 
k < n  
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we have 
E(X2)<3 ~ P(n)-4( E P(k)2) 2 

n ~  r k __<n 

(p(n) P(n)) 2 (p(n) ~2 
<3 2 p(n)4 - 3  Z \Y(n)] 

na n  r nan r 

since ~ p(k)2<=p(n)P(n) for increasing weights pj. By the multi-dimensional 
k < n  

version of Beppo Levi's theorem the proof of Proposition 2.5 is complete. 

w 3. Proofs of Theorems I, II and III 

Recall that T=({0,1}~)L We identify t=( t  1 ..... tr)eT with the function 

~ I t j :  N r - - ~  {0 ,  1}. 
j = l  

Proposition 3.1. Let  co =(bn) be an r-dimensional sequence bounded by 1 and P 
=(pl(nO,...,p~(n~)) a weighted mean fulfilling the conditions ( i) ,  ( i i) ,  ( i i i)  of  
Theorem I. I f  

1 
lim ~ p(n)b,=0 

N ~  P ( N  . . . .  ,N),<=(N ..... m 

then for almost all subsequences (b~(n,t)) of co 

1 
lim ~ p(n) b~(n,t) =0. 

N-~oo P ( N  . . . . .  N) n<-(N ..... n) 

Proof. Put tj(nj) - �89 X j(nj). Then 

t(n)= ~I (Xj(nj)-]-l) = E 21MI--'XM(nM) + 2-r'  (*) 
j=  1 O*M~{1  ..... r} 

where the sum runs through all non-empty subsets M ={Jl,--.,Jm} with cardi- 
nality m =[MI; XM(nM) denotes the random variable 

Xj l (n~ l ) . . . . .X jm(n~  ) and nM=(njl, .... nj~). 

Similarly to (,) we split up 

P(N) -1 ~ p(n)t(n)b= (N=(N .... ,N)) 
n < N  

into 2 r terms. Applying Proposition 2.5 to 2 ~-  1 of these terms and using the 
hypothesis yields 

lira P(N)- 1 ~ p(n) t(n) b n =0 
N~oo n=<N 

almost everywhere. Similarly we get 
1 

lim P(N)-I  ~ p(n)t(n) = 2;-' 
N~co n < N  
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hence 
p(n) t (n) b. 

lim .__<N 
u+~ ~ p(n)t(n) 

n < N  

for almost all t~T;  consequently 

=0 

1 
Nlim 

n < N  

for almost all teT. By [8], p. 36 and p. 39 and Proposition 2.2 the conditions 
(i), (ii) and (iii) of Proposition2.3 are fulfilled for almost all (pl('q(nl, tl)) . . . . .  
pr(zr(nr, t~))). Therefore almost all (b~(.,t)) are P-summable to the limit 0 by 
Proposition 2.3 and 3.2 is proved. 

Proof of  Theorem I. By Proposition 2.1 a countable system of functions 
={fo,L, f~ ,  .--} with [ffl < 1, f 0 -  1 and 5 f j (x )d#=0  for j >  1 exists on the space 

X 

X with countable base. If co =(x.) is (P, #)-u.d. then fj(x.) is P-summable to the 
limit 0. Let E~ be the family of all subsequences (fj(x~{.,,)) that are P-summable 

to 0. 2(E,)=1 by Prop. 3.1, therefore 2 ( ~ E , 1 = 1 .  So almost all subsequences 
of co are (P,#)-w.u.d. J \ = 1 /  

The following Proposition immediately yields Theorem II: 

Proposition3.2. I f  P=(pl(nl)  .. . .  ,p~(nr)) is a weighted mean fulfilling the con- 
ditions (i), (ii) and (iii) of Theorem II, then a bounded r-dimensional sequence 
co =(b,,) that is not P-summable has almost no subsequences that are P-summable. 

The proof of 3.2 is a consequence of the proof of Theorem 5 in [8]. 

Proof of Theorem lII .  Let R,(t) denote the n-th Rademacher-function; we 
define a double-sequence co =(x,k ) by 

X.k=Rn(tmj ) if 9m<n<9m+l,9m<k<929~+~+m(m=O, 1,2 ... .  ) 

m a x  n=9~+__ R.(tmj ) and ~S2/3  
9 ~ < N < 9 ~ +  ~ 1 

with tmj=(2 j+l )2  -9 . . . .  * 
(for 9m+Y<k<9m+J+l,0<j<29~+x); 

otherwise. Xnk =0 

For 9re<N_<9 m+l we obtain 

N 
n~_lXnk .~ 92/3 - 1 + ... +92/3.m+N2/3 <N2/3(9 + 1) =10N 2/3. 

Hence co is (1,1)-u.d. on X = { - 1 , 0 , 1 }  with respect to the measure # defined 
by #(0)=0, # ( 1 ) = # ( - 1 ) =  1/2. In the following we show that (x,ktl(n)tz(k)) is 
not u,d. for almost all (tl, tz)ET=({0, 1}N) 2. 
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We write tl(n ) - 1 +R,(t) 2 with tel0,  1[ (t irrational); the strong law of large 

numbers yields for almost all t~[0, 1[ and almost all t2~{0, 1}~: 

,~1R"(t) <e' 

1 Iv 1 

~ -  n_~lt2 (k) --~ <8 (*) 

for all N=No=No(e); we can take e=1/217. In the following estimates we 
consider a fixed m>N  o and tEIj, where Ij denotes the uniquely determined 
interval 

[j �9 2- 9"+', (j + 1) 2- 9~+ ~[ (j=O ... .  ,2 9 . . . .  --1) 

such that tmj~I j. The following estimates are valid for almost all tEI~ and 
almost all tze{0, 1} ~. Since R, is constant on Ij for n < 9  "+a we have 

~, R,(t)X,k=8.9 m for 9"+J<k_<9 re+j+1. 
9 r e < n < _ 9  m +  j 

By (*) we obtain for almost all (tl, tz)ET 

Hence 

and 

] ~, tl ( n ) - 4 '  9"[ < e" 10" 9", 
9 m < n < 9 m + t  

I ~ t2(k)-4"9"+J[ <a'lO'9"+j. 
9 r a + J < k < = 9 m + j +  I 

X,kR,(t ) t2(k ) = 8 . 9 "  ~ t2(k ) 
9 m < n < 9 m +  1 9 m + J < k  = < 9 r e + j +  1 

9 m + J < k ~ = 9 m + J +  1 

> 8 . 9 " ( 4 - 1 0 e )  9 "+j, 

x,kt2(k)= ~ R,(t)t2(k)=~(2tx(n)-l)t2(k) 
9 r e < n < 9  m + l  9 m < n < _ 9 m + l  

9 m + J < k ~ = 9 m + J  +1 9 m + J < k ~ = 9 m + J  +1 

> - e 2 0 . 9 " ( 4  + lOe) 9 "+j. 

Combining (**) and (***) we obtain 

Xnk tl (n) tE(k) >= 92m+ J (8(2-- 5e)-- lOe(4 + lOe)) 
9 r e < n _ < 9  m + l  

9m+J<k~=9m+J+1 =>92m+J(16 -- 180~). 

(**) 

***) 

Furthermore we have 

X, k tl (n) t2(k) >= -- ~ tl (n) t2(k) 
1 <--n<--9 m 

1 _<k_<9~+,+ 1 >= --(�89 + e) 9m(�89 + g) 9 m+j+a => --92"+J+ 1(�88 2e), 
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and 
X,k tl (n) t2(k) >- -- --(4 +10e) 9~(1/2 + 0 9 m+ j 

9 r e < n < 9  m+ l 

1 <-k<--9 m + j  ~ --92m+J(2+ 190. 

Hence  it follows tha t  

X,k tl (n) te(k)>=92m+ J(16--180e--9--18g--2--190 
i < n < 9  m + l  

1 -<~-<9 ~+;+1 =92m +J(4~ - 2 1 7  0 > 10 .92"+ j+  1, 

and so (X,ktl(n)t2(k)) is not  u.d. for a lmost  all (tl, t2)eT. 

w 4. Proof of Theorem IV 

We will consider only the one-dimensional  case. Therefore  we s imply write 
a(n), p(n), x, etc. 

In the r -d imensional  case one uses the same cons t ruc t ion  in a fixed coor-  
dinate  j and gets tile same  estimates.  

The  following observa t ion  (which follows from the mono ton ic i ty  of  a(n)) 
will be used repeatedly:  2"-  1 a(n) < P ( 2 "  - 1) < 2"a(n). 

In  the following, we fix a (P, #)-u.d. sequence (G) (which exists, cf. w 1). If  X 
is uncountable ,  there exists a point  f ~ X  with #(Y)=0,  if X is countable  (and 
consists of  more  than  one point), there exists an open (and closed) poin t  r e X  
with # ( 2 ) <  1. We fix such a poin t  2 and denote  by fo the characteris t ic  
funct ion of {if}. Put  c~ 0 =#(~) .  Then  any (P,#)-u.d. sequence (y,) should satisfy 

N 

l im P(N) -1 ~ p(k)fo(y ~) =c%. 
N~co  k=  1 

Put Yk=2 for 2" - 2"/2 =< k < 2" and Yk=Xk in all other  cases. We claim that  (Yk) 
is (P, #)-u.d. 

Let  f be a cont inuous  function on X, bounded  by 1. If  2"-  1 =< N < 2", then 

k= 2~- lP(k)(f (xk) --f (Yk)) < 2"/2 a(n). 

If N < 2 " - - 2  "/2, the left hand  side equals zero. Therefore  

P(N)- lk~__ lp(k)(f (Xk) --f (Yk)) 
n - - 1  

_< 2 - "  + 1 a (n - 1) - 1 ~ 2,,/2 a (m) + P (N) - x 2,/2 a (n) __< n 2 (I - ")/2 + p (N) - 12,/2 a (n). 
m = l  

If  N < 2 " - 2  "/2, the second te rm is not  needed and if N > 2 " - 2  "/2, we have 

P (N) -  12,/2 a (n) =< (N - 2"-  1) - 12,/2 =< (2"- 1 _ 2, /a)-  12,/2 < 2-n/2 + 2 
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(for n > 4). This  shows that 

N N 

lim P(N)-  * ~, p(k) f (yk) = lira P(N) -1 ~, p(k) f (xk) 
N ~ o o  k = l  N ~ o o  k = l  

and consequently, (Yk) is (P, kt)-u.d. 
Now assume that 2-"/2a(n-1)-*a(n)  is unbounded. Then we will show 

that (Y~(k,O is not (P,#)-u.d. for almost all teT, thus proving the first part of 
Theorem IV. 

Put E,={teT:2"-2" /2<z(2"- l , t ) , z (2"- l+2"/2-z , t )<2"} .  By independence 
we have 

2(E,) > 2 {tET" 2" --2 "/2 <= z(2"- 1, t) < 2" --2 n/2- 1} 
�9 2{ teT:  ~(2 "/2-2, t )<2  "/2- t}. 

It follows from Proposition 2.2 that 

lim inf,~(e.) > lim (F(- �89  - F (  - 1)) F(0) > 0. 
. ~ o o  n~cx3 

If teE, ,  then y~(k,O=ff for 2 " - 1 < k < 2 " - 1 + 2  "/z-2. Put N ( = N ( n ) ) = 2  "-1 
+ 2,/2- 2 _ 1. Then 

1'4 

P (N)-i ~ p (k)fo (Y~(k,t)) > ( 2"-1 a (n -- 1) + 2 "/2- 2 a(n))-I 2,/2- 2 a(n) 
k= 1 =(2,/2+ 1 a(n -- 1) a(n)- 1 + 1)- 1. 

By assumption, there exists a subsequence M of N such that 

lim 2 n/2 a(n)- 1 a(n - 1) =0. 
. ~ o o  
h E M  

Put E =  (~ U E,,. Then 2(E)>0.  
n = l  m > n  

m E M  

If teE, then teE,. for infinitely many mEM, therefore (Y~(k,O is not (P, k0- 
u.d. Consequently, the set of all t e T  for which (Y~(k,,)) is not (P,/0-u.d. has 
positive measure. By Proposition 2.4, it has measure one. 

The last statement in Theorem IV can be seen as follows: If the conclusions 
of Theorem I hold, then 2-"/2 a(n - 1)- 1 a(n) is bounded. If 2"- * __< k < 2", then 

p(k) < a(n) 
P (k) = 2"- 2 a (n - 1) + (k - 2"- 1) a(n)" 

a(n) 
If k < 2 " - l ( a ( n - 1 ) a ( n ) - l + l )  this is estimated by 2 , _ 2 a ( n _ l  ) and if 

k>=2"- l (a(n-1)a(n) - l+l )  by ( k - 2 " - 1 )  -1 
This gives: 

2 n - - I z  /~/[P(k) \ 2  n i a(n - 1) ( a(n) ~2 1 1 

+ -  ~ k~s \ r t~) ,  <=2- a(n) \2"-2a(n--1)] 2k>2.-ta(n_l)a(n)-, k =  2 n -  1 

a(n) t a(n) = ~ 2_,/2 
< a ( n - 1 ) 2  "-3 + 2 a ( n - 1 ) 2  "-2 

and the proof of Theorem IV is complete. 
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Remark. Using more careful estimates of similar type, one can show that in the 
one-dimensional case the following conditions for a weighted mean of type 
(1.4) are necessary and sufficient to get the conclusion of Theorem I" 

E exp -~5 -1)2"2~2~ < 0o for each c5>0 
a(n 

, = 1  a(n) / / 

a(n)  2 
G L  for alln.  

a(n - 1)a(n + 1) - 

w 5. Proof of Theorem V 

The construction will be done for X = { - 1 ,  1}, # ( - 1 ) = # ( 1 ) = � 8 9  (cf. the Remark 
after the proof). Put 

a ( 2 n - 1 )  = a ( 2 n ) = n !  (nsN). 

These weights satisfy Hill's condition, and even ~, (P(n)~2<oo. Put x k 
= ( _  1 ) k .  n= 1 \ P ( n ) ]  

We claim that almost all subsequences z(x,t) are (P,H)-u.d. By the strong 
/ N 

law o f  large numbers, [3, Vol. II, p. 238] (observe that (x~(k, o +~x~(k- 1, ~)) is 1 

\ \ k = l  
martingale) ,  we have for y>�89 a 

N 

lira N -~ ~ X~(k, o =0  for almost all t. 
N~Qo k = l  

k= N Xv(k,  t) Fix such a t. Then there exists c > 0  such that ~ c N  7 for all N>=M. 
M + ~  

But the sum can also be estimated by N - M .  If 2 "-1 <=N<2", it follows that 

N n--1 

~lP(k)G(k,O <c  ~,, a ( 1 ) 2 ~ l + a ( n ) m i n ( c g ' , N - 2 " - l  + 1). 
k= l = l  

We have P(N)  > 2" - 2 a(n - 1) + (N - 2" - 1 + 1) a(n), 
If e>0 ,  N - - 2  "-  I + 1 <2"~e - t, then 

N X~:(k, t) n -  1 P(N)-lk~=lp(k ) <=c,=1 ~' 2 ~ l - " + 2 + 2 " ~ - " + 2 s - l a ( n ) a ( n - 1 ) - I  

=< c 2 (~- 1), + 1 (2 ~ _ 1)- 1 

+ 2,(7-1)+ 2 ~- 1 a(n) a(n - 1)- i. 

This tends to zero if 7 < 1. 
If N - 2 " - l + l > = 2 " ~ e  -1, we use the other part of the minimum and get 

cN72-'~e<__ce. Since ~>0 is arbitrary, the sane conclusion holds. 

Now put y k = l  for 22"Nk<22"  ( 1 + 1 t ,  yk=Xk in all other cases. Then for 
\ n !  
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N 
P ( N ) -  ~ ~, p (k )yk>(22"a(2n)+(22"n  - 1 + 1)a(2n+ 1))- 1 .22.n-1 a (2n+  1) 

k=22- ~�89 for n--* oO. 

It follows easily that (Yk) is not (P, #)-u.d. 

By Proposition 2.2 lira z(k, t)  k ~ - - ~ - - = 2  for almost all t. Fix such a t. Then for 

any s > l  there exists no(S ) such that 22"__<r(k,t)<22" 1+ n implies 

s-  122.- 1 < k < s22"- 1 1 + n  for n > no(S ). It follows easily from this that 

N 

lim P ( N ) -  ~ ~ p(k)(G(k, o --Y~(k,O) -----0, 
N---} oo k= l  

and therefore (Y~k,t)) is (P, #)-u.d. for almost all t. 

Remark. The same result holds for arbitrary compact spaces X and arbitrary 
Radon probability measures # (not concentrated in a point). The main point is 
to construct a sequence in X for which almost all subsequences are (P, #)-u.d. 
This can be done by combinatorial arguments based on similar ideas as in the 
foregoing proof. (In general, this depends on the growth of the coefficients of P. 
The existence of a (P, #)-u.d. sequence - i.e. (1.2) - is not sufficient to ensure the 
existence of a sequence as above). 
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