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Summary. Let B be a 1-dimensional Brownian motion. In this paper ratios
of the form A7 (t)/A~(t), where A™ is the (0, co)-occupation time functional
of B and A~ is a local time integral of an infinite (but locally finite)
measure m with support in (— oo, 0], are studied. Conditions on m are given
which ensure that such a ratio will be unbounded a.s. (or go to zero a.s.) as
L— 00.

1. Introduction and Statement of Main Results

Let {B(z), t=0} be a standard Brownian motion on IR with B(0)=0 and let
L(t, x) be the local time functional

L(t,x)= lim meas.{s;s<t,x SB(s)<x+e}/e.
£~>0+

Let m be a measure concentrated on (— oo, 0] and which satisfies
(1.1) m(—o0,0]=00, m{I}<oo forboundedl.
For t =0 put

A= ()= Oj+ L(t, x) m{dx},
(1.2) o

A+ ()= jz(o,m,(Bs) ds= Oj?L(t, x) dx.
0

0]
t
(Note that A~ (t)=[m*(B,)ds in the case that m{dx}:m'(x)dx.) The purpose
0]
of this paper is to determine when the ratio
K()=A"(1)/A (1)
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is bounded or unbounded, a.s., as t— 0. More specifically let us write

k*=limsup K(1) and k,=liminf K(¢).
- 00 t— o0
By the 0-1 law k* and k, are constants a.s. which, as we will see, inde-
pendently of each other (but for k <k*), must be 0 or oo and our goal is to
find criteria expressed as directly as possible in terms of m for deciding which
of the two possibilities prevails. Note that if m were a finite measure, then we
would immediately obtain from the ratio ergodic theorem, [5], p. 228, that k*
=k, = 00, so our results could be viewed as extensions of that theorem.

Our motivation for studying these limits stems in part from a recent (1982)
paper by London, McKean, Rogers and Williams [7]. Let A=A* —4~. Aisa
continuous additive functional which decreases when B(t)esupp(m) and in-
creases (linearly) when B(f)>0. Put A~ *(f)=inf{s: A(s)=t}, inf¢p= oo, and Y(¢)
=B(A™(t)), B(oo)=cemetary point §. Y is a Feller Brownian motion: a strong
Markov process with state space [0, co)ud which behaves like Brownian mo-
tion on (0, o) (i.e. its local generator is (1/2)d?/dy* there). The relationship of
the measure m to the behavior of Y at the origin is the subject of [7]. The
results of our paper pertain directly to the finiteness of the lifetime n=inf{¢:
Y(t)=05}. As one may easily show

n=o0 if and only if a*=1limsup A(t)= + o,

1=

and, under (1.1), a*=+ 00 or —oo according as k*=oc0 or 0. Note that in
terms of the characteristics (p,, p,, 0, p,) of Y, n=c0 if and only if p,, the killing
rate at the origin, is 0. See [7], p. 44. We will not make any further reference to
the process Y in the remainder of the paper.

Statement of Main Results. For any « put
D, =inf{t: B(t)=0a}
and let
0+
(1.3) W=A"(D,)= | L(D,,x)m{dx}.

We will occasionally write f, for f(¢) for functions on [0, c0).
Theorem 1. (i) k* =0 or o according as

(1.4i) i (EP(W>t) dt)_lﬂ<oo or = oo.

1 Vx

(i) k,= o0 or 0 according as

% dt
(1.4ii) [PW>t)—=<o or =o0.
1

/i
(Note that the convergence of the integral (1.4ii) is equivalent to the
finiteness of the moment E}/ W.)
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For any positive decreasing function h on (0, o0), define

(L.5) JHh)={ (xh(t) dt)_lﬁd—’i

With m as in (1.1) put, for x=0,
m, {dx}=m{—dx}, m, (x)=m,[0,x]=m{[—x,0]},
and define «(t) and f(¢) by

(1.6) a(t)=inf{a: am (a)=t}v1,
(1.7 ﬁ(t)zsup{b: %szer{dx}gt}vl.
0

It is useful to note that under (1.1)

(1.8) a()Too, BT, a®)Sp(), alt)=o(1), ast—o0.
We leave the casy verification to the reader. Note that « is also continuous.

Theorem 2. We have the following implications:
(1) J*(1/a)= 00 =k* = c0.
(i) J*(1/py<oco=k*=k,=0.
(iii) J, (I/0) <00 =k, =k*=o0.
(iv) J, (1/B)=0 =k, =0.
Remark. It may be helpful to note that (1.8) implies J*(1/a)<J*(1/p), and

J.(1/B)£J,(1/), and that for any O<he| at most one of J*(h), J (h) can be
finite. This latter may be proved as in [2], p. 376.

Theorem 3. If in addition to (1.1) we also have
(1.9) limsupm  (x)/m (2x)<1,

then (i) k*=c0<J*(1/0)=00; (ii) k,=0<J, (1/x)=oc0. (For a generalization
see 5(b).)

Example. Interesting cases occur when m is near Lebesgue measure. Suppose
for example m{dx}=(log™|x|)"dx for x<0. Then by Theorems 1 and 3

t t
limsup {1, ,,(By)ds /j(log+|Bu/\0|)’du=oo or 0
t—ow 0 [¢]

according as r=2 or r>2, and the lim inf(s)=0 or oo according as r=—2 or
r< —2. e

We prove Theorem 1 by a method similar, initially, to the proof of the
ergodic theorem in [5]. By sampling A" and A_ at the successive passage
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times (up and down) across a fixed interval, we find that K(¢) can be replaced
by a ratio of two independent sums of positive independent random variables
with infinite means. An application of some random walk methods in Erickson
[2] and Kesten [6] completes the proof. The proof of Theorems 2 and 3
requires an asymptotic evaluation of P(W >t). This is accomplished by con-
ditioning the integral at (1.3) on b=min{B,; s<D,}, applying Ray’s representa-
tion of L(D,, x) in terms of BES(4) and estimating the integrals which develop.
In the special case that m is regularly varying, application of a Tauberian
theorem gives a more precise evaluation of P(W >1), see §5(a).

2. Proof of Theorem 1

t
Step 1. Let A} be occupation time of [1, c0): AF (t)= [ I}, (B ds. Then
0

k*(k,)=1im sup(inf) A (t)/ A~ ().
t—r o
Proof. This follows immediately from
t
lim {1, ,,(B)ds/C(t)=0 as.
t—>o Q

where C stands for any one of the functionals A+, A~, AZ. See [5], p. 228.
Step 2. Define stopping times T, T;, T, ..., by T,=0, T, =D, and

T— min{t=T,_;; B(t)=0} for j even,
7 min{t=T,_,; B()=1} for j odd,
and for n>1, let

Wy | [L(Tys_1s)—L(Tyy_p )] midx} = A~ (Tyy_ )= A~ (Ty,_),
2.1) -
Vo= | [Ty, )~ LTy 1, 3] dx= A3 (Ty) — A3 (Ty_ ).

Because Af, A™, increases only on intervals [T, T,,] with j odd, j even,
respectively, and is otherwise constant, we see immediately that for n=1,2, ...,

V1+...+V,,_1<Ag(t)< Vi+...+V,

22 < < :
@2 Wit.. AW, A~ O)=W,+.. +W,

T2n-2 étéTZn’

where r=n—1 when T,, ,<t<T,,_, and r=n when T,, ;=<t=T,,. Con-
tinuity of the sample paths of B and the strong Markov property imply

{V,} and {W,} are each sequences of independent,
(2.3) identically distributed, positive random variables
and the two sequences are independent of each other.
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In particular, the two sequences of partial sums {V, +...+V,_,, n=2} and {V,
+...4+V,, n=2} are identical in law and are independent of the sequence {W,}.
(From the point of view of the Vs the sequence {W,+...+W,, n=1} may be
regarded simply as a sequence of constants Too.) From these facts, (2.2), and
Step 1, we conclude
Vi+...+V,

2.4) k* (k) =lim sup(inf)vé—i:—w": as.

Now, by the method of problem 1, p.230, in [5], it follows that E[I(T;,_,, x)
~L(Ty,_ 5, 91=EL(D;,x)=2, for x=<0, and E[L(Ty,x) —L(T;,_,, %]
=E[L(T,,x)— L(D;, x)] =2, for x=1. Hence, see (2.1), '

(2.5) EV,=cw and EW,=co.

Step 3. For positive random variables ¥ and W define

I W)= (x /fP(W>t)dt) P{Vedx).
0

1

Lemma A. Let {V,} and {W,} be any two sequences of r.v’s on the same
probability space which satisfy (2.3) and (2.5). Then J(V;, W)+ J(W,, V)= and
the following implications hold

. . v,

(1) J(I/l, m):OO‘—‘>hm Supmzoo a.s.
} . Vit..+V,

(11) J(I/l, I/V1)<OO=>hm Supwi*:_l_—w/n—_—o a.s.

Proof. That at most one of J(V;, W), J(W,, V) is finite can be proved with
slight modification as in [2], pp.375-6. From the estimates in [2], pp. 377-8
for any fixed ¢>0

(2.6) ZP(Wl+...+W,,_S_sx)xx/jP(W1>t)dt, X— 00,
0

n=1
(= means the ratio of both sides is bounded away from 0 and o). It follows
that J(V;, W,)=co implies > P(W;+...+ W,<eV,)=00 and then, by Lemma 2
in [6], p. 1192, that for every ¢>0 P(W,+...+ W, Z¢V, i.0)=1. Now suppose
J(V;, W))<oo. Then by (2.6) and the Borel-Cantelli Lemma we have (*) P(W,
+...+W,=V, i.0)=0. Suppose, contrary to the conclusion of (ii), P(V,+ ...
+V ze(W, + ...+ W) i.0)>0 for some ¢>0. This probability must be 1 and, as
in [6], p. 1191, we get P(V,Zemin(W; + ...+ W)/j i.0o)=1 and then by Lemmas

jzn
3 and 4 of [6] we get P(V,zc(W,+...+W,) i.o)=1 for any ¢>0 which
contradicts (*).

Step 4. It is now clear from Lemma A and (2.4) that k*=0 or oo according as
J(Vy, W}) is finite or infinite, and, by interchanging the V’s and W’s in Lemma A,
we also get k* =00 or 0 according as J(W,, V,) is finite or infinite. To complete
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the proof we need to show that the integrals at (1.41) and (1.4ii) are equivalent
to J(V,, W) and J(W,, V), respectively, and to do this it suffices to show that

2.7 P{Viedx}=<x"32?dx as x— 0.

This must be well known but we lack a ready reference so here is a quick
proof. Let E_ denote expectation for paths starting at x and w} the shifted
path: B,(w})=B,, (w). Then for any path w, V; =A{ (s+Dy(w}); w)~ A (s; w)
=AF(Do(w}); wlh), s=D,(w), as everyone knows, hence, for any 120,

E,exp(—AV))=E,;exp(—1 4% (D).
If A7(0)= j L(t,x)6,(x)dx where 6 (x)=1 for x=1, § (x)=¢ for x<1, then

AY(Dy) is the first passage time to O for the diffusion process on natural scale
whose speed measure is 20,(x)dx. It follows that g(x)=E_ exp(—14}(D,)
satisfies g(0)=1, g is bounded, g and g’ are continuous, and g”(x)/2=/15£(x) g(x),
x=1. Solving for g and setting x=1, we obtain

(2.8) Eexp(—AV)= lim g(1)=

&0+ 1+]/_

The function x—2[e *P{B(x)>t}dt is a distribution function which also has

Az0.

0
the Laplace transform (1+7/24)~". (To see this note that it is the distribution

function of T(y) where {T(t), t =0} is a stable process of index 1/2 and rate ]/5
and # is an independent Exp(1)-distributed random variable.) It follows that

d d <
- << —— -t d
d P([/l_x) P 2£e P{B(x)>t}dt

o0
=x"32[te" e 12*dtf)/ 2m.
0

This easily yields (2.7) and concludes the proof of Theorem 1.

3. Proof of Theorem 2

By Ray’s Theorem, see Williams [9], p. 873, or Ray [8], for any fixed <0
Law[{L(D{,x): b<x<0}|min B,=b, B,=0]

sEDy

=Law H(l —-x)2Z (1 ix _Ti_b)z; b§x§0}],

where Z is the radial part of a 4-dimensional Brownian motion starting at 0.
(Note that our local time is twice the Ito-McKean local time.) Also

P[min B <b]—~1—b b<0.

sED
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Hence, making the change of variable x— ~x, b— —b,

| 1 \? J }>t] db
1+x—1+b) mAdx} >t G

Lemma B. With « as at (1.6), there is a constant c,, 0 <c; <o, such that

P(W>t=ij[j (1+x)? (

(32) P(W>t)<c,/u(t) for t=0.

Proof. Let B* be a 4-dimensional Brownian motion starting at the origin and
put H(s)=B*(s) —sB*(1), then the process

14+x
3 1 —1=xZbh,
(3.3) Xt +bH(1+b>, 1=x=
and the process

1 1
34 B4( ————), —12x<bh,
G4 S [+x 1+4+b =*=

are law equivalent. To see this note that they are both 0 mean Gaussian
processes in IR* with covariance EU(x,) Uj(x)=(1+x,)(b— xz)(1+b)”15u,
x; <x,, where U is either of the processes (3.3) or (3.4), §;; is the Kronecker

delta, i,j=1, ..., 4. From this equivalence we get
* t db
35 PW=>t)Z\|P [N> ] ,
(3:3) ( )_5[ (1+bym_(b) 1 (1+b)*
where )
N =max H(Iﬂ) ; —1Zx5bh
1+b

=max {|[H(s)||*; 0=s=1}.
According to Fernique [4], for some ¢>0 we have Eexp(e N)=c, < co. Hence
(3.6) P[N>u]<Zc,e™®, uz0.

Put ¢;=¢/(1+2m_(1)). Then

P[N> t ]< c e, 0sb=1,
:(1+b)m+(b) = cze—st/meAb), b=1.

If a(r)>2 then for 1 £bZa(t)/2,

exp(—¢/2bm (b)) Sexp(—et/2bm  (x(t)/2))
Zexp(—eua(t)/4b).

Going back to (3.5) with these bounds we get

1 al2 ©
68 USTH PSRt
0 1 /2
w2 db 1
— —c3t —ea(t)/4b
O(e )+0(je )+0( (t))

—O(e”“’)—{—O( }t)) t—00.
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From (1.8) we have O0(e™")=0(1/t)=0(1/a(r)), as t—oco. With this (3.2) is
established.

Lemma C. With f as at (1.7), there is a constant c,>0 such that
(3.9) P(W=>t)=cy/B(t), for t=0.

Proof. Using Brownian scaling we have for b>1

1 13?2
: - <x<
min {Z (1+x 1+b) , 0___x=b/2}

1 21 b
=, mind-Z(br? — ———<r S
"mm{b G 35 1+b‘r—1+b}

>inf{Z(s)*; t<s<oo}/b=M/b

where =, means equality in distribution. Since Z(0)=0 and since lim Z(u)= o0

u— o
a.s. (four-dimensional Brownian motion is transient), it is clear that
P(M > ) >0 for every «>0. Using these facts in (3.1) we obtain

P(W>t)>lofP[b§2x2Z( ! ——1—)2m {d }>t]@
—47 Lo 1+x 1+p) "o b2
p= bt 1db
>-ip|lm=—2t 1%
—43; [M>a(b/2)] b2’

where o(x)= chyszr{dy}. With f§ as at (1.7) we have (b/2)/o(b/2) =1/t whenever
0

b/2=B(t)>1, hence by

for b=2p(t). Consequently

PW>0)>5 | ()Zco/Bt),
2p®
for all t >0 for some constant ¢,, 0<c, <7 P[M>2].
The reader may easily complete the proof of Theorem 2 by substituting the
bounds at (3.2) and (3.9) into the integrals which occur in Theorem 1 and
reading off the implications.

Remark 1. Tt might be thought that one could get ¢/«(r) as a lower bound for
P(W=>1) by staying with the process (3.3). Unfortunately H(1/(1+b))—0 as
b—oo and H(1)=0, so there is trouble at both endpoints of (—1,b) and this
trouble neatly foils the attempt.

Remark 2. The assumption m_ (c0)=oc0 is not necessary to get (3.9). It suffices
b+

to require only that (1/b) | x?m_ {dx}— o0 as b—oo.
0



A Ratio Ergodic Theorem for Increasing Additive Functionals 501

Remark 3. Here is an example. Suppose

m{dx}=(x|log|x[)"tdx, x< —e.

Then m_(x)=loglogx, }) y2rm{dy}=1(x*/logx) (1 +0(1)) for x—o0. So a(?)
=(t/loglogt) (1 +o(1)), ﬁ(;)x=(2t logt)(1 +o(1)), and then

loglogt
o= SPW>)<C—2280 123,
tlogt t

It is not clear which bound is the best asymptotically, though one might
suspect it is the lower one. See the last remarks in § 5(a).

4. Proof of Theorem 3

By (1.9) we can choose ¢, 0<e<] and x,>1 and x,>1 so that for x=x,,
m (x)/m (2x)S1—¢. Then for b=2x,

Lm0 [mor-m, ()]

bt
< [ x*m, {dx} <b%m (D).
0

From these inequalities and (1.6)~(1.7), it follows that a(f) < B(f) < a(4t/e) for all
¢t sufficiently large. A simple scale change of variables now shows that the
integrals J*(1/f) and J, (1/B) of Theorem2 are equivalent to J*(1/o) and
J,.(1/o) respectively. (Note that the same argument shows that (1.9) can be
replaced by lim sup(m (x)/m, (cx))<1 for some c¢>1.)

Remark. One should note that (1.9) does not imply regular variation. For
example, the measure m{dx}=exp(/x|)dx, x <0, satisfies (1.9) but not (5.7) in
the next section.

5. Miscellaneous Comments

(a) A more direct method is available for getting at the distribution of W in
(1.3) which yields exact asymptotic estimates in special cases. Consider the
process

(5.1 {yHA‘(Dy)= Oj+ L(Dy;X)m{dx},y;O;R)}-

The strong Markov property of B and the fact that B(D,)=y shows that (5.1) is
a process with independent (but generally not stationary) increments. For >0
write

(5.2) u(y)=Eye 47Dy,
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Then for h>0,
u(y +h) =u(y) E e 4" Pr+»
=u(y) [E, (e7 447 Pyn); D0>Dy+h)+Ey(e—lAk(Dy+h); Dy=D, ;)]

—u0) [ 25+ = ut+h)

which, keeping in mind that (5.1) is continuous in probability, gives
. 1
(5.3) u*(y)=h11§1 (u(y+h) —u(Y))/h=;u(y) () -1,
-0+
for y>0 and u(0+)=u(0)=1. Solving (5.3) we arrive at the formula
O+
(5.4) Ee 4" D) =Fexp (—)u | L(D,,x) m{dx}) =(j(;my+ 11

where j does not depend on y and j(0+; m)=0. The Brownian scaling property
states that the path transformation B(s)—sB(+/s%) is P-measure preserving for
fixed s>0. This and the definition of local time show that for any fixed s>0,

o+
A~(D,) has the same distribution, under R, as s f LD, x/sym{dx}. Con-

sequently
(5.5) Ee™*4" P =Eexp(—Asm, (s) A7 (D)

y/s?

where A7 (D,)= 0j+ L(D,,xym,{dx} and m{dx}=m{sdx}/m_(s). Combining
(5.4) and (5.5) gives
(5.6) JOsmy=j(sm (s);m)/s.

Now let us assume that m is regularly varying in the sense that for every x>0,
the

5.7 limm_ (s x)/m . (s)=u(x)

‘

exists and is finite. Then, necessarily, u(x)=x? for some ¢=0 (g is the “ex-
ponent”™) and, supposing g >0,

[ fymd{dx}—q § f)Ixli~tdx, s—o0,

for every continuous, compact f. Hence, since x+— L(D,, x) has compact support
as., A7 (D))~ A, (D)) as. as s— oo and then

lim j(4; mg)=j(4; 1)

5§00

uniformly on bounded intervals of 1=0. Properties of regular variation, see, for
example, Bojanic and Seneta (1971), imply that the function « defined at (1.6) is
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also regularly varying (with exponent (g+1)~?) and that
Asm (s)—=1 as A—-0+, s=a(l/d).

Setting s=o(1/4) in (5.6) we get

2 _A=Ee™*"  j(A;m)/A
ge P(W>t)dt= /1 = Tt
_j(1+0(1),ms)( 1 )
T oo()+1 \da(1/4)

=c(q) (Aa(1/A) " (1 +0(1)),

0
as A—-0+, where c(q)=E, exp (—q { L(Dy,x) Iqu_ldx>. Applying a Tauberian
theorem, see Feller (1971), p. 446, nc;w gives

(5.10) P(W>t)=c(q) T (q—%)_l (&%) (1+0(1)

as t—o00. If g=0 about the best one can do with this argument is to show that
P(W>t)=o0(1/a(t)). We omit the details. It should be pointed out, however,
that in the case g=0, even though (5.10) does not apply and even though
Theorem 3 does not apply, it can still be shown, via Theorem 2 and properties
of regularly varying functions, that k* =k _=oo. This leads one to suspect that
(1.9) in Theorem 3 is not necessary.

(b) If A*, the occupation time functional of (0, c0), is replaced by a more
general functional say

A+ ()= }OL(t, x)m* {dx}
0

(m*™ not to be confused with m_ of §1), then the methods of this paper will
vield results on the boundedness or unboundedness of A*(1)/4~(t) (A~ as
before). Unfortunately the analogue of Theorem 2 is rather unwieldy. Under a
regularity condition such as (1.9), however, matters improve. Here is a sample.
Write m~ for m. We assume m™ (I)< oo for bounded I and that m* (0, co)=m"(
— 0, 0]=o0. Suppose also that for some 0<e<1

m*(0,x]/m*(0,2x]<1 —¢
m [ —x,0]/m[—-2x,0]£1—¢
for all x sufficiently large. Let o* be defined by a~=a at (1.6) and a*(f)

=inf{x: xm*(0, x] =¢}. Put s(x)=foc_(t)_1dt.
0

Theorem 4. Under these assumptions limsup AT (¢)/A ()= as. if and only if

t— o0

}O[s(x) —x/o"(x)]s(x) "2 ot (x) " dx=o0.
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We omit the proof. As noted before our motivation for studying the
particular case m* =Lebesgue measure on (0, o) derives from the London et
al. (1982) paper, but it also seems natural to compare an arbitrary additive
functional with occupation time.

(c) A more interesting problem than the one discussed in (b) concerns the
a.s. boundedness of A,(t)/4,(t), t— o0, where A4; is now an arbitrary increasing

o)

continuous additive functional: 4,(t)= [ L(t, x)m;{dx}. I do not have a good

— o0
conjecture but, as before, the ratio ergodic theorem does take care of the case
in which at least one of m, or m, is a finite measure.
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