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Summary. Let B be a 1-dimensional Brownian motion.  In this paper  ratios 
of the form A + ( t ) / A - ( t ) ,  where A + is the (0, oo)-occupation time functional  
of B and A -  is a local time integral of an infinite (but locally finite) 
measure m with suppor t  in ( - o o ,  0], are studied. Condi t ions  on m are given 
which ensure that  such a ratio will be unbounded  a.s. (or go to zero a.s.) as 
t--+ oo. 

1. Introduction and Statement of Main Results 

Let {B(t), t > 0 }  be a s tandard  Brownian mot ion  on IR with B ( 0 ) = 0  and let 
L(t,  x) be the local time functional  

L(t,  x) = lim meas. {s; s < t, x < B (s) < x + e}/e. 
s ~ O +  

Let m be a measure  concentrated on ( -  0% 0] and which satisfies 

(1.1) m ( -  o% 0] = o% rn {I} < oo for bounded  I. 

For  t > 0 put 
0+ 

A - ( t ) =  j" L ( t , x ) m { d x } ,  
(1.2) - oo 

t oo 

a + (t) = S I(o, ~)(Bs) ds = ~ L(t ,  x) dx .  
0 0 

( ' ) Note  that  A - ( t ) = ~ m ~  in the case that  m { d x } = m ~  The purpose  
0 

of this paper  is to determine when the ratio 

K(t)  = A + ( t ) / A -  (t) 

* The work was supported in part by a grant  from the National  Science Foundat ion.  
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is bounded or unbounded, a.s., as t ~  oo. More specifically let us write 

k * = l i m s u p K ( t )  and k,=liminfK(t) .  
t -+o0  t -*o0  

By the 0-1 law k* and k,  are constants a.s. which, as we will see, inde- 
pendently of each other (but for k ,<k*) ,  must be 0 or ov and our goal is to 
find criteria expressed as directly as possible in terms of m for deciding which 
of the two possibilities prevails. Note that if m were a finite measure, then we 
would immediately obtain from the ratio ergodic theorem, [5], p. 228, that k* 
= k,  = o% so our results could be viewed as extensions of that theorem. 

Our motivation for studying these limits stems in part from a recent (1982) 
paper by London, McKean, Rogers and Williams [7]. Let A = A  + - A - .  A is a 
continuous additive functional which decreases when B(t)ssupp(m) and in- 
creases (linearly) when B(t)>0.  Put A-l(t)=inf{s: A(s)>t}, infq~= o% and Y(t) 
=B(A-I(t)), B(oo)=cemetary point 6. Y is a Feller Brownian motion: a strong 
Markov process with state space [0, oo) w6 which behaves like Brownian mo- 
tion on (0, oo) (i.e. its local generator is (1/2)d2/dy 2 there). The relationship of 
the measure m to the behavior of Y at the origin is the subject of [-7]. The 
results of our paper pertain directly to the finiteness of the lifetime t /=inf{t:  
Y(t)= 6}. As one may easily show 

t/--- oo if and only if a*=limsupA(t)= +o% 
t ~ o o  

and, under (1.1), a * =  +oo or - ~  according as k*=oo or 0. Note that in 
terms of the characteristics (Pl, P2, 0, P4) of Y,, t /= oo if and only if Pl, the killing 
rate at the origin, is 0. See [7], p. 44. We will not make any further reference to 
the process Y in the remainder of the paper. 

Statement of Main Results. For any ~ put 

D~=inf{t:  B(t) = c~} 
and let 

0 +  

(1.3) W=A-(D1)= ~ L(Dx,x)m{dx }. 
- - o o  

We will occasionally write ft for f( t)  for functions on [0, or). 

Theorem 1. (i) k * = 0  or ~ according as 

(1.4i) P(W>t)dt  ~ < o o  or =oo. 
1 \ 0  Vx 

(ii) k,  = oo or 0 according as 

dt 
(1.4ii) ~ P ( W > t ) ~ < o o l  or =oo.  

(Note that the convergence of the integral (1.4ii) is equivalent to the 

finiteness of the moment E ] ~ . )  
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For  any positive decreasing function h on (0, oo), define 

(1.5) J*(h) = h(t) dt 

oo 

J,(h) = S h(x) dx 
1 l f fx  

With m as in (1.1) put, for x > 0 ,  

m+{dx}=m{-dx},  m+(x)=m+[O,x]=m{[-x,O]}, 

and define a(t) and fi(t) by 

(1.6) ct( t)=inf{a:  am+(a)>t} v 1, 

(1.7) fl(t)=sup{b: lb+b ! x2m+ {dx} < t } v  

It is useful to note  that  under  (1.1) 

(1.8) c~(t)~ oo, fl(t)~ oo, a(t)<fi(t), ct(t)=o(t), as t ~ o o .  

. 

We leave the easy verification to the reader. Note  that  a is also continuous.  

Theorem 2. We have the following implications: 
(i) Y*(1/c0= oo ~ k *  = oo. 

(ii) J*(1/fi) < oo ~ k *  = k ,  =0 .  
(iii) J ,  (1/ct) < oo ~ k ,  = k* = m. 
(iv) J , ( 1 / f i )=  ~ ~ k ,  =0 .  

Remark. It may  be helpful to note  that  (1.8) implies J*(1/ot)<=J*(1/fl), and 
J,(1/fi)<J,(1/a), and that  for any 0 < h e $  at most  one of J*(h), J,(h) can be 
finite. This latter may  be proved as in [2], p. 376. 

Theorem 3. If in addition to (1.1) we also have 

(1.9) lira sup m+ (x)/m+ (2x) < 1, 

then (i) k*=og~J*(1/cO=oo ; (ii) k,=O~.J,(1/cO=oo. (For  a generalizat ion 
see 5 (b).) 

Example. Interesting cases occur  when m is near  Lebesgue measure. Suppose 
for example m{dx} =(log+lx[)'dx for x < 0 .  Then  by Theorems 1 and 3 

limsup~I(o.~)(Bs)ds (log+lBuAOI)rdu=oo or 0 
t ~  oo 0 

according as r = 2  or r > 2 ,  and the l i m i n f ( . ) = 0  or oo according as r > - 2  or 
r <  - 2 .  t ~  

We prove Theo rem 1 by a me thod  similar, initially, to the p roof  of the 
ergodic theorem in [51. By sampling A + and A_ at the successive passage 
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times (up and down) across a fixed interval, we find that K(t) can be replaced 
by a ratio of two independent sums of positive independent random variables 
with infinite means. An application of some random walk methods in Erickson 
1-2] and Kesten [-6] completes the proof. The proof of Theorems 2 and 3 
requires an asymptotic evaluation of P (W>t) .  This is accomplished by con- 
ditioning the integral at (1.3) on b = min {B~; s <D1} , applying Ray's representa- 
tion of L(D l, x) in terms of BES(4) and estimating the integrals which develop. 
In the special case that m is regularly varying, application of a Tauberian 
theorem gives a more precise evaluation of P ( W >  t), see w 5(a). 

2. Proof  of  Theorem 1 

t 

Step 1. Let A~- be occupation time of [1, ~ ) :  A~-(t)= ~I[1,~)(B~)ds. Then 
0 

k* (k.) = lira sup (inf) A~ (t)/A- (t). 
t--~ oO 

Proof. This follows immediately from 

t 

lim ~I(o,1)(Bs)ds/C(t)=o a.s. 
t--+ o~ 0 

where C stands for any one of the functionals A +,  A-,  A~-. See [5], p. 228. 

Step 2. Define stopping times To, T1, T 2 . . . . .  by T o =0,  T 1 =D1, and 

T ,=~min{ t>T j_ l ;  B(t)=0} f o r j  even, 

J ( m i n { t > T j _ l ;  B( t )= l}  f o r j o d d ,  

Wn= ~ [L(T2,_I, x)-L(Tzn_2, x)] m{dx} =A-(Tzn_I)-A-(T2,_2),  
(2.1) - ~ 

or 

V,= ~ [L(T2. , x ) - L ( T 2 . _  1, x)] d x -  + + - a o  (T2.)-Ao (T2._1). 
1 

Because A~-, A-,  increases only on intervals [Tj, T~+l] with j odd, j even, 
respectively, and is otherwise constant, we see immediately that for n =  1, 2 . . . .  , 

(2.2) VI+'"+V'- I -<A+(t)< V1 + "'" + Vr T2n_2~t<=T2n , 
I/V1 + ... + W , = A - ( t )  = WI+ ... + W~ ' 

where r = n - 1  when T 2._2 < t < T  2._i and r = n  when T z._1 < t < T  2,. Con- 
tinuity of the sample paths of B and the strong Markov property imply 

{V,} and {W,} are each sequences of independent, 
(2.3) identically distributed, positive random variables 

and the two sequences are independent of each other. 

and for n > 1, let 

O +  
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In particular, the two sequences of partial sums {V 1 + ... + V,_I, n>2}  and {V 2 
+ . . .  + V,, n >2} are identical in law and are independent of the sequence {W,}. 
(From the point of view of the V's the sequence {W~+ ... + W,, n > l }  may be 
regarded simply as a sequence of constants "[oo.) From these facts, (2.2), and 
Step 1, we conclude 

(2.4) k*(k,) =l im sup(inf) V1 + " "  + V, a.s. 
wl+...+w, 

Now, by the method of problem 1, p. 230, in [5], it follows that E[L(T2,_~, x) 
-L(T2,_2, x)J=EL(Da,x)=2, for x_<0, and E[L(T2n, x) -L(T2,_px)]  
=E[L(T 2, x)-L(D1, x)]-=2, for x_-> 1. Hence, see (2.1), 

(2,5) EV 1=oo and EW 1=oe. 

Step 3. For positive random variables V and W define 

J(V, W)= ! x P(W>t)dt  P{Vsdx}. 

Lemma A. Let {V,} and {W,} be any two sequences of r.v.'s on the same 
probability space which satisfy (2.3) and (2.5). Then J(V1, VV1)+ J(VV1, V1)= oo and 
the following implications hold 

(i) J(V1, W1)= oe ~ l i m  sup V, - oQ a.s. 
w~+...+% 

(ii) J(V 1, l /V0<oo~l imsu  p V I + ' " + V "  - 0  a.s. 
w,+..+w. 

Proof That at most one of J(V1, WO, J(W1, V~) is finite can be proved with 
slight modification as in [2], pp. 375-6. From the estimates in [2], pp. 377-8 
for any fixed e > 0 

(2.6) P ( W l + . . . + W , < e x ) ~ x  P(Wl>t)dt , x~oo,  

(~  means the ratio of both sides is bounded away from 0 and oo). It follows 
that J(V1, W1)= oo implies ~2 P(W 1 + ... + W,<e V,)= oo and then, by Lemma 2 
in [6], p. 1192, that for every e > 0  P(WI+. . .+W,<eV  . i .o .)=l .  Now suppose 
J(V1, W1)< oo. Then by (2.6) and the Borel-Cantelli Lemma we have (*) P(W 1 
+ . . .+W,<V,  i.o.)=0. Suppose, contrary to the conclusion of (ii), P(VI+. . .  
+ V,>e(W 1 + ... + W,) i .o.)>0 for some e>0.  This probability must be t and, as 
in [6], p. 1191, we get P(V,>emin(VV 1 + ... + Wj)/j i.o.)= 1 and then by Lemmas 

j>n 
3 and 4 of [6] we get P(V,>c(WI+.. .+W,) i.o.)=1 for any c > 0  which 
contradicts (*). 

Step 4. It is now clear from Lemma A and (2.4) that k* = 0  or oo according as 
J(V~, Wa) is finite or infinite, and, by interchanging the V's and W's in Lemma A, 
we also get k* = oo or 0 according as J(W~, Vt) is finite or infinite. To complete 
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the proof we need to show that the integrals at (1.4i) and (1.4ii) are equivalent 
to J(Vi, Wt) and J(W~, VO, respectively, and to do this it suffices to show that 

( 2 . 7 )  P{Vledx}xx-3/2dx as x ~ o o .  

This must be well known but we lack a ready reference so here is a quick 
proof. Let E x denote expectation for paths starting at x and w~ + the shifted 
path: B,(w,+)=B,+~(w). Then for any path w, 1/1 =A-~(S+Do(W+,); w)-Ag(s; w) 
=A+(Do(w+); w,+), s=Dl(w), as everyone knows, hence, for any 5~>0, 

E o exp ( - 5~ V1) = E 1 exp ( - 2 A~- (D o))- 

If A~+(t)= ~ L(t,x)5~(x)dx where 6 , (x)=l  for x > l ,  c~(x)=e for x < l ,  then 
- - o o  

A+(Do) is the first passage time to 0 for the diffusion process on natural scale 
whose speed measure is 26~(x)dx. It follows that g(x)=Exexp(-2A[(Do) ) 
satisfies g(0)= 1, g is bounded, g and g' are continuous, and g"(x)/2 =5~6~(x)g(x), 
x +  1. Solving for g and setting x =  1, we obtain 

1 
(2.8) E e x p ( - 2  V~)= lira g ( 1 ) - - -  2>_0. 

~--,0 + 1 - F V ~ '  - -  

oo 

The function x~--~2~e-tp{B(x)>t} dt is a distribution function which also has 
o 

the Laplace transform (1 + l / ~ )  -1. (To see this note that it is the distribution 

function of T(t/) where {T(t), t>0} is a stable process of index 1/2 and rate 1/~ 
and ~/is an independent Exp(1)-distributed random variable.) It follows that 

d p(vl<=x) = 2je_tP{B(x)>t}dt 
dx  o 

oo 

= x -  3/2 ~ t e - t  e-tZ/Z~ d t / ] / ~  ' 
0 

This easily yields (2.7) and concludes the proof of Theorem 1. 

3. Proof  of  Theorem 2 

By Ray's Theorem, see Williams [9], p. 873, or Ray [8], for any fixed b < 0 

Law[{L(Dl,x): b<_x<O} IminB~=b, Bo=0]  
s--<D1 

=Law ( 1 - x ) 2 Z  1 - x  1 b ; b<_x<-O , 

where Z is the radial part of a 4-dimensional Brownian motion starting at 0. 
(Note that our local time is twice the Ito-McKean local time.) Also 

1 
P[minB~<b]= -b '  b<_O. 

s <  D~ 1 - -  
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Hence,  making the change of variable x-~ - x ,  b ~ - b ,  

~176 [b i - ~  (1 q_X)2 Z ( 1 1 )  2 m + { d x } > t  ] d b  
P ( W > t ) = o P  1 + ~ - 1 + b  ( l + b )  2" 

L e m m a  B. With ~ as at (1.6), there is a constant Cl, 0 < c 1 < co, such that 

(3.2) P(W>t)<cl/7(t  ) for t>O. 

Proof Let B 4 be a 4-dimensional  Brownian mot ion  starting at the origin and 
put  H(s)=-B4(s)-sB4(1), then the process 

(3.3) x~-+ l ] / i~H( l  +x~ 
\ l + b ] '  

and the process 

(3.4) x~--'(l+x)B4 l + x  l + b  ' 

- l N x N b ,  

- l N x N b ,  

are law equivalent. To  see this note  that they are bo th  0 mean  Gaussian 
processes in 11t 4 with covariance EUi(xl) Uj(x2)=(l+xO(b-x2)(l+b)-16~j,  
x 1 <x2 ,  where U is either of the processes (3.3) or (3.4), c~j is the Kronecker  
delta, i , j= 1, ..., 4. F r o m  this equivalence we get 

(3.5) P(W>t)< ! P  N> (l+b~-m+(b ) ( l + b ) 2 ,  

where 

N = m a x f  H i l + x ]  2; 1 \ 1 ~ !  - <_x<_b) 
k.  

=max{llH(s)H2; 0<s_< 1}. 

According to Fernique [4J, for some e > 0  we have Eexp(eN)=c2< oo. Hence  

(3.6) P[N>u]<=c2 e-~", u>=O. 

Put  c3=e/(1 +2m+(1)).  Then  

P N>( l  +b)m+(b e -~t/2bm+(b) b> l. k 2 ' -- 

If ~ ( t )>2  then for 1 <_b<c~(t)/2, 

exp ( - e/2 b m + (b)) _<_ exp ( - ~ t/2 b m + (c~(0/2)) 

< exp ( - e c~ (t)/4 b). 

Going back to (3.5) with these bounds we get 

~/2 
(3.8) P ( W > t ) N i +  ~ + S(.) 

0 1 el2 
I ~12 dh \ 

= O ( e - c 3 t ) + O [ !  e - - E = ' t ) / ' * b ~ ) + O ( ~ )  
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From (1.8) we have O(e-C3t)=O(1/t)=O(1/a(t)), as t--+oo. With this (3.2) is 
established. 

Lemma C. With fi as at (1.7), there is a constant c o > 0 such that 

(3.9) P(W>t)>Co/~(t), for t>O. 

Proof Using Brownian scaling we have for b > 1 

{(1 1; } 
min Z l + x  14-b ' O<_x<b/2 

< b 
=dmin{~Z(br)2;  2 + ~ - l ~ b  < r 2  1 = ~ }  

>inf{Z(s)2; ~ < s <  oo}/b=M/b 

where =e means equality in distribution. Since Z(0)=0 and since lim Z(u)= oo 
u.--~ co 

a.s. (four-dimensional Brownian motion is transient), it is clear that 
P(M>c~)>0 for every c~>0. Using these facts in (3.1) we obtain 

~i rb/2 ( 1 )  2 ]db P(W>t)>_ p| f x2 Z 1 - 1 - ~  m+{dxI>t 
- L o  l + x  

1 ~~ bt db 

x 
where ~(x)= ~yZm+ {dy}. With ~ as at (1.7) we have (b/2)/a(b/2)N 1/t whenever 

0 
b/2 > ~(t) > 1, hence 

P M >  >P[ -M>2]  >0, 

for b >2/~(t). Consequently 

P(W>t)>�88 ~ (o)>=Co/fl(t), 
2fl(t} 

for all t=>0 for some constant Co, O<eo<=~P[M>2 ]. 
The reader may easily complete the proof of Theorem 2 by substituting the 

bounds at (3.2) and (3.9) into the integrals which occur in Theorem 1 and 
reading off the implications. 

Remark 1. It might be thought that one could get c/a(t) as a lower bound for 
P(W>t) by staying with the process (3.3). Unfortunately H(1/(l+b))~O as 
b ~  and H(1)=0, so there is trouble at both endpoints of ( -1 ,  b) and this 
trouble neatly foils the attempt. 

Remark 2. The assumption m+(oo)= ~ is not necessary to get (3.9). It suffices 
b+ 

to require only that (l/b) ~ x Z m + { d x } ~  as b--*~. 
0 
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Remark 3. Here is an example. Suppose 

m{dx}=(lxlloglxl)-ldx, x~-e .  
0 

Then m+(x) = log log x, ~ y2 m {dy} =�89 x) (1 + o(1)) for 
- x  

-- (t/log log t) (1 + o (1)), fl (t) = (2 t log t) (1 + o (1)), and then 

x-- ,oo .  So ~(t) 

1 log log t 
Co t log t <=P(W>t)<=CI-t  ' t>_3._ 

It is not clear which bound is the best asymptotically, though one might 
suspect it is the lower one. See the last remarks in w 

4. Proof  of  Theorem 3 

By (1.9) we can choose e, 0 < e < l  and x o > l  and x o > l  so that for X>Xo, 
m+(x)/m+(2x)< 1-e .  Then for b> 2x o 

b z b 2 
~-m+(b)<~-[m+(b) -m+ (~)] 

b+ 

< ~ x 2 m+ {dx} < b 2 m+ (b). 
0 

From these inequalities and (1.6)-(1.7), it follows that e(t)<fl(t)<c~(4t/e) for all 
t sufficiently large. A simple scale change of variables now shows that the 
integrals J*(1/fl) and d,(1/fl) of Theorem2 are equivalent to J*(1/~) and 
J,(1/~) respectively. (Note that the same argument shows that (1.9) can be 
replaced by lim sup (m+ (x)/m+ (c x)) < 1 for some c > 1.) 

Remark. One should note that (1.9) does not imply regular variation. For 
example, the measure m{dx}=exp(Ixl)dx, x<O, satisfies (1.9) but not (5.7) in 
the next section. 

5. Miscellaneous Comments  

(a) A more direct method is available for getting at the distribution of W in 
(1.3) which yields exact asymptotic estimates in special cases. Consider the 
process 

(5.1) {yw-~A-(Dy)= _~ L(Dy; x) m{dx},y> 0; Po}. 

The strong Markov property of B and the fact that B(Dy)=y shows that (5.1) is 
a process with independent (but generally not stationary) increments. For 2 > 0 
write 

(5.2) u (y) = E 0 e- aA- (D,) 
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Then for h>0 ,  

u (y + h) = u (y) Ey e- )~A - ( D y  + h) 

=u(y) [Ey(e-~A-(D~+~); Do> Dy+h)+ Ey(e-XA-(D~+h); D O __<Dy+h)] 

= u ( y ) [  Y,  + h,  u(y+h)], 
ky+/~ y+h  

which, keeping in mind that (5.1) is continuous in probability, gives 

(5.3) u+(y) = lira (u(y + h) -u(y))/h =1_ u(y) (u(y) - 1), 
h-~O+ y 

for y>O and u(O+)=u(O)= 1. Solving (5.3) we arrive at the formula 

(5.4) E e -~A-(D,) =E exp - 2  L(Dy, x) m{dx} =(j(~; m) y +  1) -1 

where j does not depend on y and j ( 0 + ;  m)=0. The Brownian scaling property 
states that the path transformation B(,)~---,s B(*/S 2) is Po-measure preserving for 
fixed s > 0. This and the definition of local time show that for any fixed s > 0, 

O +  

A-(Dy) has the same distribution, under Po, as s ~ L(Dy/s,x/s)m{dx}. Con- 
sequently - ~o 

(5.5) E e- hA- (~,) = E exp ( - 2 s m + (s) A 2 (Dy/s)) 
0 +  

where A~-(D~)= S L(D~,x)ms{dx} and m~{dx}=m{sdx}/m+(s). Combining 
- o o  

(5.4) and (5.5) gives 

(5.6) j()~; m) =j(2 s m+ (s); m~)/s. 

Now let us assume that m is regularly varying in the sense that for every x > 0, 
the 

(5.7) lim m+ (s x)/m + (s) = #(x) 
s ~ o ~  

exists and is finite. Then, necessarily, /~(x)=x q for some q > 0  (q is the "ex- 
ponent") and, supposing q > 0, 

0 +  0 

f(x)ms{dx}--,  q ~ f(x) lx[q-l dx, s~oe ,  
- -  c~o - - 0 : 3  

for every continuous, compact f Hence, since xw-~L(Dy, x) has compact support 
a.s., AZ(Dy)--,Ay(Dy ) a.s. as s--, oe and then 

lim j(2; m~)=j()~; ~t) 
s - ~ o o  

uniformly on bounded intervals of 2 ~ 0. Properties of regular variation, see, for 
example, Bojanic and Seneta (1971), imply that the function c~ defined at (1.6) is 
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also regularly varying (with exponent (q + 1) -1) and that 

2sm+(s)~l as 2--*0+, s=~(1/2). 

Setting s=e(1/2) in (5.6) we get 

o~ 1 - E e  -~w j(2; m)/2 
~ e-Xt p (w>t )  dt - 
0 2 j ( 2 ; m ) + l  

J(l +~ ( l ) 
- o(1)+1 ~ / ~  

= c(q) ()~ c~(1/2)) -1 (1 + o (1)), 

as 2--,0+, where c(q)=E o exp - q  L(D1, x)Ixlq-ldx . Applying a Tauberian 

theorem, see Feller (1971), p. 446, now gives 

(5.10) P(W>t)=c(q)F (q@fl)-:  (~@t))(1 +o(1)) 

as t~co .  If q = 0  about the best one can do with this argument is to show that 
P(W>t)=o(1/c~(t)). We omit the details. It should be pointed out, however, 
that in the case q=0,  even though (5.10) does not apply and even though 
Theorem 3 does not apply, it can still be shown, via Theorem 2 and properties 
of regularly varying functions, that k* = k,  = co. This leads one to suspect that 
(1.9) in Theorem 3 is not necessary. 

(b) If A +, the occupation time functional of (0, co), is replaced by a more 
general functional say 

ao 

A+(t)= ~ L(t, x) m+{dx} 
0 

(m + not to be confused with m+ of w 1), then the methods of this paper will 
yield results on the boundedness or unboundedness of A+(t)/A-(t) (A- as 
before). Unfortunately the analogue of Theorem 2 is rather unwieldy. Under a 
regularity condition such as (1.9), however, matters improve. Here is a sample. 
Write m- for m. We assume m-+(I)< co for bounded I and that m+(0, co)=m-(  

- co, 0] = co. Suppose also that for some 0 < e <  1 

m+(O, x]/m+(O, 2x 3 _< 1 - e  

m- [ - x ,  0 ] / m [ - 2 x ,  0] ~ 1 - e  

for all x sufficiently large. Let e+ be defined by e - = e  at (1.6) and a+(t) 
x 

=inf{x:  xm+(O, x] >t}. Put s(x)= ~a-(t)-l dt. 
0 

Theorem4. Under these assumptions lim supA+(t)/A-(t)=co a.s. if and only if 
~X3 t---~ o ~  

J [s (x) - x / ~ -  (x)] s (x)-  2 ~ + (~)-1 d x  = co. 
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W e  o m i t  the  proof .  As n o t e d  before  ou r  m o t i v a t i o n  for s t u d y i n g  the  
p a r t i c u l a r  case m § = L e b e s g u e  m e a s u r e  o n  (0, oo) der ives  f rom the  L o n d o n  et 
al. (1982) paper ,  b u t  it also seems n a t u r a l  to c o m p a r e  a n  a r b i t r a r y  add i t ive  
f u n c t i o n a l  wi th  o c c u p a t i o n  t ime.  

(c) A m o r e  in t e re s t ing  p r o b l e m  t h a n  the  one  d iscussed  in  (b) conce rns  the  
a.s. b o u n d e d n e s s  of  Al(t)/A2(t ), t~oo, where  A i is n o w  a n  a r b i t r a r y  i nc reas ing  

c o n t i n u o u s  add i t ive  f u n c t i o n a l :  A i ( t ) =  S L(t, x)mi{dx }. I do n o t  have  a good  
- - o 0  

c o n j e c t u r e  but ,  as before,  the  ra t io  e rgodic  t h e o r e m  does t ake  care  of the  case 
in  wh ich  at  leas t  o n e  of  m s or  rn 2 is a f ini te  measure .  
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