# A Ratio Ergodic Theorem for Increasing Additive Functionals 

K. Bruce Erickson ${ }^{\star}$<br>Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Summary. Let $B$ be a 1 -dimensional Brownian motion. In this paper ratios of the form $A^{+}(t) / A^{-}(t)$, where $A^{+}$is the $(0, \infty)$-occupation time functional of $B$ and $A^{-}$is a local time integral of an infinite (but locally finite) measure $m$ with support in $(-\infty, 0]$, are studied. Conditions on $m$ are given which ensure that such a ratio will be unbounded a.s. (or go to zero a.s.) as $t \rightarrow \infty$.

## 1. Introduction and Statement of Main Results

Let $\{B(t), t \geqq 0\}$ be a standard Brownian motion on $\mathbb{R}$ with $B(0)=0$ and let $L(t, x)$ be the local time functional

$$
L(t, x)=\lim _{\varepsilon \rightarrow 0+} \text { meas. }\{s ; s \leqq t, x \leqq B(s) \leqq x+\varepsilon\} / \varepsilon .
$$

Let $m$ be a measure concentrated on $(-\infty, 0]$ and which satisfies

$$
\begin{equation*}
m(-\infty, 0]=\infty, \quad m\{I\}<\infty \quad \text { for bounded } I . \tag{1.1}
\end{equation*}
$$

For $t \geqq 0$ put

$$
\begin{align*}
& A^{-}(t)=\int_{-\infty}^{0+} L(t, x) m\{d x\}  \tag{1.2}\\
& A^{+}(t)=\int_{0}^{t} I_{(0, \infty)}\left(B_{s}\right) d s=\int_{0}^{\infty} L(t, x) d x .
\end{align*}
$$

(Note that $A^{-}(t)=\int_{0}^{t} m^{\bullet}\left(B_{s}\right) d s$ in the case that $m\{d x\}=m^{\bullet}(x) d x$.) The purpose of this paper is to determine when the ratio

$$
K(t)=A^{+}(t) / A^{-}(t)
$$

[^0]is bounded or unbounded, a.s., as $t \rightarrow \infty$. More specifically let us write
$$
k^{*}=\limsup _{t \rightarrow \infty} K(t) \quad \text { and } \quad k_{*}=\liminf _{t \rightarrow \infty} K(t) .
$$

By the 0-1 law $k^{*}$ and $k_{*}$ are constants a.s. which, as we will see, independently of each other (but for $k_{*} \leqq k^{*}$ ), must be 0 or $\infty$ and our goal is to find criteria expressed as directly as possible in terms of $m$ for deciding which of the two possibilities prevails. Note that if $m$ were a finite measure, then we would immediately obtain from the ratio ergodic theorem, [5], p.228, that $k^{*}$ $=k_{*}=\infty$, so our results could be viewed as extensions of that theorem.

Our motivation for studying these limits stems in part from a recent (1982) paper by London, McKean, Rogers and Williams [7]. Let $A=A^{+}-A^{-}$. $A$ is a continuous additive functional which decreases when $B(t) \in \operatorname{supp}(m)$ and increases (linearly) when $B(t)>0$. Put $A^{-1}(t)=\inf \{s: A(s) \geqq t\}, \inf \phi=\infty$, and $Y(t)$ $=B\left(A^{-1}(t)\right), B(\infty)=$ cemetary point $\delta . Y$ is a Feller Brownian motion: a strong Markov process with state space $[0, \infty) \cup \delta$ which behaves like Brownian motion on $(0, \infty)$ (i.e. its local generator is $(1 / 2) d^{2} / d y^{2}$ there). The relationship of the measure $m$ to the behavior of $Y$ at the origin is the subject of [7]. The results of our paper pertain directly to the finiteness of the lifetime $\eta=\inf \{t$ : $Y(t)=\delta\}$. As one may easily show

$$
\eta=\infty \quad \text { if and only if } \quad a^{*}=\underset{t \rightarrow \infty}{\limsup } A(t)=+\infty
$$

and, under (1.1), $a^{*}=+\infty$ or $-\infty$ according as $k^{*}=\infty$ or 0 . Note that in terms of the characteristics $\left(p_{1}, p_{2}, 0, p_{4}\right)$ of $Y, \eta=\infty$ if and only if $p_{1}$, the killing rate at the origin, is 0 . See [7], p.44. We will not make any further reference to the process $Y$ in the remainder of the paper.

Statement of Main Results. For any $\alpha$ put
and let

$$
\begin{equation*}
W=A^{-}\left(D_{1}\right)=\int_{-\infty}^{0+} L\left(D_{1}, x\right) m\{d x\} \tag{1.3}
\end{equation*}
$$

We will occasionally write $f_{t}$ for $f(t)$ for functions on $[0, \infty)$.
Theorem 1. (i) $k^{*}=0$ or $\infty$ according as

$$
\begin{equation*}
\int_{1}^{\infty}\left(\int_{0}^{x} P(W>t) d t\right)^{-1} \frac{d x}{\sqrt{x}}<\infty \quad \text { or }=\infty . \tag{1.4i}
\end{equation*}
$$

(ii) $k_{*}=\infty$ or 0 according as

$$
\begin{equation*}
\int_{1}^{\infty} P(W>t) \frac{d t}{\sqrt{t}}<\infty \quad \text { or }=\infty \tag{1.4ii}
\end{equation*}
$$

(Note that the convergence of the integral (1.4ii) is equivalent to the finiteness of the moment $E \sqrt{W}$.)

For any positive decreasing function $h$ on $(0, \infty)$, define

$$
\begin{gather*}
J^{*}(h)=\int_{1}^{\infty}\left(\int_{0}^{x} h(t) d t\right)^{-1} \frac{d x}{\sqrt{x}}  \tag{1.5}\\
J_{*}(h)=\int_{1}^{\infty} h(x) \frac{d x}{\sqrt{x}} .
\end{gather*}
$$

With $m$ as in (1.1) put, for $x \geqq 0$,

$$
m_{+}\{d x\}=m\{-d x\}, \quad m_{+}(x)=m_{+}[0, x]=m\{[-x, 0]\},
$$

and define $\alpha(t)$ and $\beta(t)$ by

$$
\begin{equation*}
\alpha(t)=\inf \left\{a: a m_{+}(a) \geqq t\right\} \vee 1 \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\beta(t)=\sup \left\{b: \frac{1}{b} \int_{0}^{b+} x^{2} m_{+}\{d x\} \leqq t\right\} \vee 1 \tag{1.7}
\end{equation*}
$$

It is useful to note that under (1.1)

$$
\begin{equation*}
\alpha(t) \uparrow \infty, \quad \beta(t) \uparrow \infty, \quad \alpha(t) \leqq \beta(t), \quad \alpha(t)=o(t), \quad \text { as } t \rightarrow \infty . \tag{1.8}
\end{equation*}
$$

We leave the easy verification to the reader. Note that $\alpha$ is also continuous.
Theorem 2. We have the following implications:
(i) $J^{*}(1 / \alpha)=\infty \Rightarrow k^{*}=\infty$.
(ii) $J^{*}(1 / \beta)<\infty \Rightarrow k^{*}=k_{*}=0$.
(iii) $J_{*}(1 / \alpha)<\infty \Rightarrow k_{*}=k^{*}=\infty$.
(iv) $J_{*}(1 / \beta)=\infty \Rightarrow k_{*}=0$.

Remark. It may be helpful to note that (1.8) implies $J^{*}(1 / \alpha) \leqq J^{*}(1 / \beta)$, and $J_{*}(1 / \beta) \leqq J_{*}(1 / \alpha)$, and that for any $0<h \in \downarrow$ at most one of $J^{*}(h), J_{*}(h)$ can be finite. This latter may be proved as in [2], p. 376.
Theorem 3. If in addition to (1.1) we also have

$$
\begin{equation*}
\lim \sup m_{+}(x) / m_{+}(2 x)<1 \tag{1.9}
\end{equation*}
$$

then (i) $k^{*}=\infty \Leftrightarrow J^{*}(1 / \alpha)=\infty$; (ii) $k_{*}=0 \Leftrightarrow J_{*}(1 / \alpha)=\infty$. (For a generalization see 5(b).)
Example. Interesting cases occur when $m$ is near Lebesgue measure. Suppose for example $m\{d x\}=\left(\log ^{+}|x|\right)^{r} d x$ for $x \leqq 0$. Then by Theorems 1 and 3

$$
\limsup _{t \rightarrow \infty} \int_{0}^{t} I_{(0, \infty)}\left(B_{s}\right) d s \int_{0}^{t}\left(\log ^{+}\left|B_{u} \wedge 0\right|\right)^{r} d u=\infty \text { or } 0
$$

according as $r \leqq 2$ or $r>2$, and the $\lim \inf (\cdot)=0$ or $\infty$ according as $r \geqq-2$ or $r<-2$.

We prove Theorem 1 by a method similar, initially, to the proof of the ergodic theorem in [5]. By sampling $A^{+}$and $A_{-}$at the successive passage
times (up and down) across a fixed interval, we find that $K(t)$ can be replaced by a ratio of two independent sums of positive independent random variables with infinite means. An application of some random walk methods in Erickson [2] and Kesten [6] completes the proof. The proof of Theorems 2 and 3 requires an asymptotic evaluation of $P(W>t)$. This is accomplished by conditioning the integral at (1.3) on $b=\min \left\{B_{s} ; s \leqq D_{1}\right\}$, applying Ray's representation of $L\left(D_{1}, x\right)$ in terms of $\operatorname{BES}(4)$ and estimating the integrals which develop. In the special case that $m$ is regularly varying, application of a Tauberian theorem gives a more precise evaluation of $P(W>t)$, see §5(a).

## 2. Proof of Theorem 1

Step 1. Let $A_{0}^{+}$be occupation time of $[1, \infty): A_{0}^{+}(t)=\int_{0}^{t} I_{[1, \infty)}\left(B_{s}\right) d s$. Then

$$
k^{*}\left(k_{*}\right)=\limsup _{t \rightarrow \infty}(\inf ) A_{0}^{+}(t) / A^{-}(t) .
$$

Proof. This follows immediately from

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} I_{(0,1)}\left(B_{s}\right) d s / C(t)=0 \quad \text { a.s. }
$$

where $C$ stands for any one of the functionals $A+, A^{-}, A_{0}^{+}$. See [5], p. 228.
Step 2. Define stopping times $T_{0}, T_{1}, T_{2}, \ldots$, by $T_{0}=0, T_{1}=D_{1}$, and

$$
T_{j}=\left\{\begin{array}{ll}
\min \left\{t \geqq T_{j-1} ;\right. & B(t)=0\} \\
\min \left\{t \geqq T_{j-1} ;\right. & B(t)=1\}
\end{array} \quad \text { for } j \text { even },\right.
$$

and for $n \geqq 1$, let

$$
\begin{align*}
W_{n} & =\int_{-\infty}^{0+}\left[L\left(T_{2 n-1}, x\right)-L\left(T_{2 n-2}, x\right)\right] m\{d x\}=A^{-}\left(T_{2 n-1}\right)-A^{-}\left(T_{2 n-2}\right)  \tag{2.1}\\
V_{n} & =\int_{1}^{\infty}\left[L\left(T_{2 n}, x\right)-L\left(T_{2 n-1}, x\right)\right] d x=A_{0}^{+}\left(T_{2 n}\right)-A_{0}^{+}\left(T_{2 n-1}\right)
\end{align*}
$$

Because $A_{0}^{+}, A^{-}$, increases only on intervals $\left[T_{j}, T_{j+1}\right]$ with $j$ odd, $j$ even, respectively, and is otherwise constant, we see immediately that for $n=1,2, \ldots$,

$$
\begin{equation*}
\frac{V_{1}+\ldots+V_{n-1}}{W_{1}+\ldots+W_{n}} \leqq \frac{A_{0}^{+}(t)}{A^{-}(t)} \leqq \frac{V_{1}+\ldots+V_{r}}{W_{1}+\ldots+W_{r}}, \quad T_{2 n-2} \leqq t \leqq T_{2 n} \tag{2.2}
\end{equation*}
$$

where $r=n-1$ when $T_{2 n-2} \leqq t<T_{2 n-1}$ and $r=n$ when $T_{2 n-1} \leqq t \leqq T_{2 n}$. Continuity of the sample paths of $B$ and the strong Markov property imply
$\left\{V_{n}\right\}$ and $\left\{W_{n}\right\}$ are each sequences of independent,
(2.3) identically distributed, positive random variables
and the two sequences are independent of each other.

In particular, the two sequences of partial sums $\left\{V_{1}+\ldots+V_{n-1}, n \geqq 2\right\}$ and $\left\{V_{2}\right.$ $\left.+\ldots+V_{n}, n \geqq 2\right\}$ are identical in law and are independent of the sequence $\left\{W_{n}\right\}$. (From the point of view of the $V$ 's the sequence $\left\{W_{1}+\ldots+W_{n}, n \geqq 1\right\}$ may be regarded simply as a sequence of constants $\uparrow \infty$.) From these facts, (2.2), and Step 1, we conclude

$$
\begin{equation*}
k^{*}\left(k_{*}\right)=\lim \sup (\inf ) \frac{V_{1}+\ldots+V_{n}}{W_{1}+\ldots+W_{n}} \quad \text { a.s. } \tag{2.4}
\end{equation*}
$$

Now, by the method of problem 1, p. 230, in [5], it follows that $E\left[L\left(T_{2 n-1}, x\right)\right.$ $\left.-L\left(T_{2 n-2}, x\right)\right]=E L\left(D_{1}, x\right)=2, \quad$ for $\quad x \leqq 0, \quad$ and $\quad E\left[L\left(T_{2 n}, x\right)-L\left(T_{2 n-1}, x\right)\right]$ $=E\left[L\left(T_{2}, x\right)-L\left(D_{1}, x\right)\right]=2$, for $x \geqq 1$. Hence, see (2.1),

$$
\begin{equation*}
E V_{1}=\infty \quad \text { and } \quad E W_{1}=\infty \tag{2.5}
\end{equation*}
$$

Step 3. For positive random variables $V$ and $W$ define

$$
J(V, W)=\int_{1}^{\infty}\left(x \int_{0}^{x} P(W>t) d t\right) P\{V \in d x\} .
$$

Lemma A. Let $\left\{V_{n}\right\}$ and $\left\{W_{n}\right\}$ be any two sequences of r.v.'s on the same probability space which satisfy (2.3) and (2.5). Then $J\left(V_{1}, W_{1}\right)+J\left(W_{1}, V_{1}\right)=\infty$ and the following implications hold

$$
\begin{equation*}
J\left(V_{1}, W_{1}\right)=\infty \Rightarrow \lim \sup \frac{V_{n}}{W_{1}+\ldots+W_{n}}=\infty \quad \text { a.s. } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
J\left(V_{1}, W_{1}\right)<\infty \Rightarrow \lim \sup \frac{V_{1}+\ldots+V_{n}}{W_{1}+\ldots+W_{n}}=0 \quad \text { a.s. } \tag{ii}
\end{equation*}
$$

Proof. That at most one of $J\left(V_{1}, W_{1}\right), J\left(W_{1}, V_{1}\right)$ is finite can be proved with slight modification as in [2], pp.375-6. From the estimates in [2], pp. 377-8 for any fixed $\varepsilon>0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(W_{1}+\ldots+W_{n} \leqq \varepsilon x\right) \asymp x \int_{0}^{x} P\left(W_{1}>t\right) d t, \quad x \rightarrow \infty \tag{2.6}
\end{equation*}
$$

( $\asymp$ means the ratio of both sides is bounded away from 0 and $\infty$ ). It follows that $J\left(V_{1}, W_{1}\right)=\infty$ implies $\sum P\left(W_{1}+\ldots+W_{n} \leqq \varepsilon V_{n}\right)=\infty$ and then, by Lemma 2 in [6], p. 1192, that for every $\varepsilon>0 P\left(W_{1}+\ldots+W_{n} \leqq \varepsilon V_{n}\right.$ i.o. $)=1$. Now suppose $J\left(V_{1}, W_{1}\right)<\infty$. Then by (2.6) and the Borel-Cantelli Lemma we have ( ${ }^{*}$ ) $P\left(W_{1}\right.$ $+\ldots+W_{n} \leqq V_{n}$ i.o. $)=0$. Suppose, contrary to the conclusion of (ii), $P\left(V_{1}+\ldots\right.$ $+V_{n} \geqq \varepsilon\left(W_{1}+\ldots+W_{n}\right)$ i.o. $>0$ for some $\varepsilon>0$. This probability must be 1 and, as in [6], p. 1191, we get $P\left(V_{n} \geqq \varepsilon \min \left(W_{1}+\ldots+W_{j}\right) / j\right.$ i.o. $)=1$ and then by Lemmas 3 and 4 of [6] we get $P\left(V_{n}^{j \geqq n} \geqq \geqq\left(W_{1}+\ldots+W_{n}\right)\right.$ i.o. $)=1$ for any $c>0$ which contradicts (*).

Step 4. It is now clear from Lemma A and (2.4) that $k^{*}=0$ or $\infty$ according as $J\left(V_{1}, W_{1}\right)$ is finite or infinite, and, by interchanging the $V$ 's and $W$ 's in Lemma A, we also get $k^{*}=\infty$ or 0 according as $J\left(W_{1}, V_{1}\right)$ is finite or infinite. To complete
the proof we need to show that the integrals at (1.4i) and (1.4ii) are equivalent to $J\left(V_{1}, W_{1}\right)$ and $J\left(W_{1}, V_{1}\right)$, respectively, and to do this it suffices to show that

$$
\begin{equation*}
P\left\{V_{1} \in d x\right\} \asymp x^{-3 / 2} d x \quad \text { as } x \rightarrow \infty \tag{2.7}
\end{equation*}
$$

This must be well known but we lack a ready reference so here is a quick proof. Let $E_{x}$ denote expectation for paths starting at $x$ and $w_{s}^{+}$the shifted path: $B_{t}\left(w_{s}^{+}\right)=B_{t+s}(w)$. Then for any path $w, V_{1}=A_{0}^{+}\left(s+D_{0}\left(w_{s}^{+}\right) ; w\right)-A_{0}^{+}(s ; w)$ $=A_{0}^{+}\left(D_{0}\left(w_{s}^{+}\right) ; w_{s}^{+}\right), s=D_{1}(w)$, as everyone knows, hence, for any $\lambda \geqq 0$,

$$
E_{0} \exp \left(-\lambda V_{1}\right)=E_{1} \exp \left(-\lambda A_{0}^{+}\left(D_{0}\right)\right)
$$

If $A_{\varepsilon}^{+}(t)=\int_{-\infty}^{\infty} L(t, x) \delta_{\varepsilon}(x) d x$ where $\delta_{\varepsilon}(x)=1$ for $x \geqq 1, \delta_{\varepsilon}(x)=\varepsilon$ for $x<1$, then $A_{\varepsilon}^{+}\left(D_{0}\right)$ is the first passage time to 0 for the diffusion process on natural scale whose speed measure is $2 \delta_{\varepsilon}(x) d x$. It follows that $g(x)=E_{x} \exp \left(-\lambda A_{\varepsilon}^{+}\left(D_{0}\right)\right)$ satisfies $g(0)=1, g$ is bounded, $g$ and $g^{\prime}$ are continuous, and $g^{\prime \prime}(x) / 2=\lambda \delta_{\varepsilon}(x) g(x)$, $x \neq 1$. Solving for $g$ and setting $x=1$, we obtain

$$
\begin{equation*}
E \exp \left(-\lambda V_{1}\right)=\lim _{\varepsilon \rightarrow 0+} g(1)=\frac{1}{1+\sqrt{2 \lambda}}, \quad \lambda \geqq 0 \tag{2.8}
\end{equation*}
$$

The function $x \mapsto 2 \int_{0}^{\infty} e^{-t} P\{B(x)>t\} d t$ is a distribution function which also has the Laplace transform $(1+\sqrt{2 \lambda})^{-1}$. (To see this note that it is the distribution function of $T(\eta)$ where $\{T(t), t \geqq 0\}$ is a stable process of index $1 / 2$ and rate $\sqrt{2}$ and $\eta$ is an independent $\operatorname{Exp}(1)$-distributed random variable.) It follows that

$$
\begin{aligned}
\frac{d}{d x} P\left(V_{1} \leqq x\right) & =\frac{d}{d x} 2 \int_{0}^{\infty} e^{-t} P\{B(x)>t\} d t \\
& =x^{-3 / 2} \int_{0}^{\infty} t e^{-t} e^{-t^{2} / 2 x} d t / \sqrt{2 \pi}
\end{aligned}
$$

This easily yields (2.7) and concludes the proof of Theorem 1.

## 3. Proof of Theorem 2

By Ray's Theorem, see Williams [9], p. 873, or Ray [8], for any fixed $b<0$

$$
\begin{aligned}
& \operatorname{Law}\left[\left\{L\left(D_{1}, x\right): b \leqq x \leqq 0\right\} \mid \min _{s \leqq D_{1}} B_{s}=b, B_{0}=0\right] \\
& =\operatorname{Law}\left[\left\{(1-x)^{2} Z\left(\frac{1}{1-x}-\frac{1}{1-b}\right)^{2} ; b \leqq x \leqq 0\right\}\right],
\end{aligned}
$$

where $Z$ is the radial part of a 4 -dimensional Brownian motion starting at 0 . (Note that our local time is twice the Ito-McKean local time.) Also

$$
P\left[\min _{s \leqq D_{1}} B_{s} \leqq b\right]=\frac{1}{1-b}, \quad b \leqq 0 .
$$

Hence, making the change of variable $x \rightarrow-x, b \rightarrow-b$,

$$
P(W>t)=\int_{0}^{\infty} P\left[\int_{0}^{b+}(1+x)^{2} Z\left(\frac{1}{1+x}-\frac{1}{1+b}\right)^{2} m_{+}\{d x\}>t\right] \frac{d b}{(1+b)^{2}} .
$$

Lemma B. With $\alpha$ as at (1.6), there is a constant $c_{1}, 0<c_{1}<\infty$, such that

$$
\begin{equation*}
P(W>t) \leqq c_{1} / \alpha(t) \quad \text { for } t \geqq 0 . \tag{3.2}
\end{equation*}
$$

Proof. Let $B^{4}$ be a 4 -dimensional Brownian motion starting at the origin and put $H(s)=B^{4}(s)-s B^{4}(1)$, then the process

$$
\begin{equation*}
x \mapsto \sqrt{1+b} H\left(\frac{1+x}{1+b}\right), \quad-1 \leqq x \leqq b, \tag{3.3}
\end{equation*}
$$

and the process

$$
\begin{equation*}
x \mapsto(1+x) B^{4}\left(\frac{1}{1+x}-\frac{1}{1+b}\right), \quad-1 \leqq x \leqq b \tag{3.4}
\end{equation*}
$$

are law equivalent. To see this note that they are both 0 mean Gaussian processes in $\mathbb{R}^{4}$ with covariance $E U_{i}\left(x_{1}\right) U_{j}\left(x_{2}\right)=\left(1+x_{1}\right)\left(b-x_{2}\right)(1+b)^{-1} \delta_{i j}$, $x_{1}<x_{2}$, where $U$ is either of the processes (3.3) or (3.4), $\delta_{i j}$ is the Kronecker delta, $i, j=1, \ldots, 4$. From this equivalence we get

$$
\begin{equation*}
P(W>t) \leqq \int_{0}^{\infty} P\left[N>\frac{t}{(1+b) m_{+}(b)}\right] \frac{d b}{(1+b)^{2}}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
N & =\max \left\{\left\|H\left(\frac{1+x}{1+b}\right)\right\|^{2} ;-1 \leqq x \leqq b\right\} \\
& =\max \left\{\|H(s)\|^{2} ; 0 \leqq s \leqq 1\right\} .
\end{aligned}
$$

According to Fernique [4], for some $\varepsilon>0$ we have $E \exp (\varepsilon N)=c_{2}<\infty$. Hence

$$
\begin{equation*}
P[N>u] \leqq c_{2} e^{-\varepsilon u}, \quad u \geqq 0 \tag{3.6}
\end{equation*}
$$

Put $c_{3}=\varepsilon /\left(1+2 m_{+}(1)\right)$. Then

$$
P\left[N \geqq \frac{t}{(1+b) m_{+}(b)}\right] \leqq \begin{cases}c_{2} e^{-c_{3} t}, & 0 \leqq b \leqq 1 \\ c_{2} e^{-\varepsilon t / 2 b m_{+}(b)}, & b \geqq 1 .\end{cases}
$$

If $\alpha(t)>2$ then for $1 \leqq b \leqq \alpha(t) / 2$,

$$
\begin{aligned}
\exp \left(-\varepsilon / 2 b m_{+}(b)\right) & \leqq \exp \left(-\varepsilon t / 2 b m_{+}(\alpha(t) / 2)\right) \\
& \leqq \exp (-\varepsilon \alpha(t) / 4 b)
\end{aligned}
$$

Going back to (3.5) with these bounds we get

$$
\begin{align*}
P(W>t) & \leqq \int_{0}^{1}+\int_{1}^{\alpha / 2}+\int_{\alpha / 2}^{\infty}(\cdot)  \tag{3.8}\\
& =0\left(e^{-c_{3} t}\right)+0\left(\int_{1}^{\alpha / 2} e^{-\varepsilon \alpha(t) / 4 b} \frac{d b}{b^{2}}\right)+0\left(\frac{1}{\alpha(t)}\right) \\
& =0\left(e^{-c_{3} t}\right)+0\left(\frac{1}{\alpha(t)}\right), \quad t \rightarrow \infty .
\end{align*}
$$

From (1.8) we have $0\left(e^{-c_{3} t}\right)=0(1 / t)=0(1 / \alpha(t))$, as $t \rightarrow \infty$. With this (3.2) is established.

Lemma C. With $\beta$ as at (1.7), there is a constant $c_{0}>0$ such that

$$
\begin{equation*}
P(W>t) \geqq c_{0} / \beta(t), \quad \text { for } t \geqq 0 \tag{3.9}
\end{equation*}
$$

Proof. Using Brownian scaling we have for $b \geqq 1$

$$
\begin{aligned}
& \min \{Z \\
& \left.\left(\frac{1}{1+x}-\frac{1}{1+b}\right)^{2}, 0 \leqq x \leqq b / 2\right\} \\
& \quad={ }_{d} \min \left\{\frac{1}{b} Z(b r)^{2} ; \frac{2}{2+b}-\frac{1}{1+b} \leqq r \leqq \frac{b}{1+b}\right\} \\
& \\
& \geqq \inf \left\{Z(s)^{2} ; \frac{1}{6} \leqq s<\infty\right\} / b=M / b
\end{aligned}
$$

where $={ }_{d}$ means equality in distribution. Since $Z(0)=0$ and since $\lim _{u \rightarrow \infty} Z(u)=\infty$ a.s. (four-dimensional Brownian motion is transient), it is clear that $P(M>\alpha)>0$ for every $\alpha>0$. Using these facts in (3.1) we obtain

$$
\begin{aligned}
P(W>t) & \geqq \frac{1}{4} \int_{1}^{\infty} P\left[\int_{0}^{b / 2} x^{2} Z\left(\frac{1}{1+x}-\frac{1}{1+b}\right)^{2} m_{+}\{d x\}>t\right] \frac{d b}{b^{2}} \\
& \geqq \frac{1}{4} \int_{1}^{\infty} P\left[M>\frac{b t}{\sigma(b / 2)}\right] \frac{d b}{b^{2}}
\end{aligned}
$$

where $\sigma(x)=\int_{0}^{x} y^{2} m_{+}\{d y\}$. With $\beta$ as at (1.7) we have $(b / 2) / \sigma(b / 2) \leqq 1 / t$ whenever $b / 2 \geqq \beta(t)>1$, hence

$$
P\left[M>\frac{b t}{\sigma(b / 2)}\right] \geqq P[M>2]>0
$$

for $b \geqq 2 \beta(t)$. Consequently

$$
P(W>t)>\frac{1}{4} \int_{2 \beta(t)}^{\infty}(\cdot) \geqq c_{0} / \beta(t)
$$

for all $t \geqq 0$ for some constant $c_{0}, 0<c_{0} \leqq \frac{1}{16} P[M>2]$.
The reader may easily complete the proof of Theorem 2 by substituting the bounds at (3.2) and (3.9) into the integrals which occur in Theorem 1 and reading off the implications.
Remark 1. It might be thought that one could get $c / \alpha(t)$ as a lower bound for $P(W>t)$ by staying with the process (3.3). Unfortunately $H(1 /(1+b)) \rightarrow 0$ as $b \rightarrow \infty$ and $H(1)=0$, so there is trouble at both endpoints of $(-1, b)$ and this trouble neatly foils the attempt.
Remark 2. The assumption $m_{+}(\infty)=\infty$ is not necessary to get (3.9). It suffices to require only that $(1 / b) \int_{0}^{b+} x^{2} m_{+}\{d x\} \rightarrow \infty$ as $b \rightarrow \infty$.

Remark 3. Here is an example. Suppose

$$
m\{d x\}=(|x| \log |x|)^{-1} d x, \quad x \leqq-e
$$

Then $m_{+}(x)=\log \log x, \quad \int_{-x}^{0} y^{2} m\{d y\}=\frac{1}{2}\left(x^{2} / \log x\right)(1+o(1))$ for $x \rightarrow \infty$. So $\alpha(t)$ $=(t / \log \log t)(1+o(1)), \beta(t)=(2 t \log t)(1+o(1))$, and then

$$
C_{0} \frac{1}{t \log t} \leqq P(W>t) \leqq C_{1} \frac{\log \log t}{t}, \quad t \geqq 3 .
$$

It is not clear which bound is the best asymptotically, though one might suspect it is the lower one. See the last remarks in §5(a).

## 4. Proof of Theorem 3

By (1.9) we can choose $\varepsilon, 0<\varepsilon<1$ and $x_{0}>1$ and $x_{0}>1$ so that for $x \geqq x_{0}$, $m_{+}(x) / m_{+}(2 x) \leqq 1-\varepsilon$. Then for $b \geqq 2 x_{0}$

$$
\begin{aligned}
\varepsilon \frac{b^{2}}{4} m_{+}(b) & \leqq \frac{b^{2}}{4}\left[m_{+}(b)-m_{+}\left(\frac{b}{2}\right)\right] \\
& \leqq \int_{0}^{b+} x^{2} m_{+}\{d x\} \leqq b^{2} m_{+}(b)
\end{aligned}
$$

From these inequalities and (1.6)-(1.7), it follows that $\alpha(t) \leqq \beta(t) \leqq \alpha(4 t / \varepsilon)$ for all $t$ sufficiently large. A simple scale change of variables now shows that the integrals $J^{*}(1 / \beta)$ and $J_{*}(1 / \beta)$ of Theorem 2 are equivalent to $J^{*}(1 / \alpha)$ and $J_{*}(1 / \alpha)$ respectively. (Note that the same argument shows that (1.9) can be replaced by $\lim \sup \left(m_{+}(x) / m_{+}(c x)\right)<1$ for some $c>1$.)
Remark. One should note that (1.9) does not imply regular variation. For example, the measure $m\{d x\}=\exp (|x|) d x, x \leqq 0$, satisfies (1.9) but not (5.7) in the next section.

## 5. Miscellaneous Comments

(a) A more direct method is available for getting at the distribution of $W$ in (1.3) which yields exact asymptotic estimates in special cases. Consider the process

$$
\begin{equation*}
\left\{y \mapsto A^{-}\left(D_{y}\right)=\int_{-\infty}^{0+} L\left(D_{y} ; x\right) m\{d x\}, y \geqq 0 ; P_{0}\right\} . \tag{5.1}
\end{equation*}
$$

The strong Markov property of $B$ and the fact that $B\left(D_{y}\right)=y$ shows that (5.1) is a process with independent (but generally not stationary) increments. For $\lambda>0$ write

$$
\begin{equation*}
u(y)=E_{0} e^{-\lambda A^{-}\left(D_{y}\right)} . \tag{5.2}
\end{equation*}
$$

Then for $h>0$,

$$
\begin{aligned}
u(y+h) & =u(y) E_{y} e^{-\lambda A^{-}\left(D_{y}+h\right)} \\
& =u(y)\left[E_{y}\left(e^{-\lambda A^{-}\left(D_{y}+h\right)} ; D_{0}>D_{y+h}\right)+E_{y}\left(e^{-\lambda A^{-}\left(D_{y+h}\right)} ; D_{0} \leqq D_{y+h}\right)\right] \\
& =u(y)\left[\frac{y}{y+h}+\frac{h}{y+h} u(y+h)\right],
\end{aligned}
$$

which, keeping in mind that (5.1) is continuous in probability, gives

$$
\begin{equation*}
u^{+}(y)=\lim _{h \rightarrow 0+}(u(y+h)-u(y)) / h=\frac{1}{y} u(y)(u(y)-1) \tag{5.3}
\end{equation*}
$$

for $y>0$ and $u(0+)=u(0)=1$. Solving (5.3) we arrive at the formula

$$
\begin{equation*}
E e^{-\lambda A^{-\left(D_{y}\right\}}}=E \exp \left(-\lambda \int_{-\infty}^{0+} L\left(D_{y}, x\right) m\{d x\}\right)=(j(\lambda ; m) y+1)^{-1} \tag{5.4}
\end{equation*}
$$

where $j$ does not depend on $y$ and $j(0+; m)=0$. The Brownian scaling property states that the path transformation $B(\cdot) \mapsto s B\left(\cdot / s^{2}\right)$ is $P_{0}$-measure preserving for fixed $s>0$. This and the definition of local time show that for any fixed $s>0$, $A^{-}\left(D_{y}\right)$ has the same distribution, under $P_{0}$, as $s \int_{-\infty}^{0+} L\left(D_{y / s}, x / s\right) m\{d x\}$. Con-
sequently

$$
\begin{equation*}
E e^{-\lambda_{A}-\left(D_{y}\right)}=E \exp \left(-\lambda s m_{+}(s) A_{s}^{-}\left(D_{y / s}\right)\right) \tag{5.5}
\end{equation*}
$$

where $A_{s}^{-}\left(D_{z}\right)=\int_{-\infty}^{0+} L\left(D_{z}, x\right) m_{s}\{d x\}$ and $m_{s}\{d x\}=m\{s d x\} / m_{+}(s)$. Combining (5.4) and (5.5) gives

$$
\begin{equation*}
j(\lambda ; m)=j\left(\lambda s m_{+}(s) ; m_{s}\right) / s \tag{5.6}
\end{equation*}
$$

Now let us assume that $m$ is regularly varying in the sense that for every $x \geqq 0$, the

$$
\begin{equation*}
\lim _{s \rightarrow \infty} m_{+}(s x) / m_{+}(s)=\mu(x) \tag{5.7}
\end{equation*}
$$

exists and is finite. Then, necessarily, $\mu(x)=x^{q}$ for some $q \geqq 0$ ( $q$ is the "exponent") and, supposing $q>0$,

$$
\int_{-\infty}^{0+} f(x) m_{s}\{d x\} \rightarrow q \int_{-\infty}^{0} f(x)|x|^{q-1} d x, \quad s \rightarrow \infty
$$

for every continuous, compact $f$. Hence, since $x \mapsto L\left(D_{y}, x\right)$ has compact support a.s., $A_{s}^{-}\left(D_{y}\right) \rightarrow A_{\mu}^{-}\left(D_{y}\right)$ a.s. as $s \rightarrow \infty$ and then

$$
\lim _{s \rightarrow \infty} j\left(\lambda ; m_{s}\right)=j(\lambda ; \mu)
$$

uniformly on bounded intervals of $\lambda \geqq 0$. Properties of regular variation, see, for example, Bojanic and Seneta (1971), imply that the function $\alpha$ defined at (1.6) is
also regularly varying (with exponent $(q+1)^{-1}$ ) and that

$$
\lambda s m_{+}(s) \rightarrow 1 \quad \text { as } \quad \lambda \rightarrow 0+, s=\alpha(1 / \lambda)
$$

Setting $s=\alpha(1 / \lambda)$ in (5.6) we get

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\lambda t} P(W>t) d t & =\frac{1-E e^{-\lambda W}}{\lambda}=\frac{j(\lambda ; m) / \lambda}{j(\lambda ; m)+1} \\
& =\frac{j\left(1+o(1), m_{s}\right)}{o(1)+1}\left(\frac{1}{\lambda \alpha(1 / \lambda)}\right) \\
& =c(q)(\lambda \alpha(1 / \lambda))^{-1}(1+o(1))
\end{aligned}
$$

as $\lambda \rightarrow 0+$, where $c(q)=E_{0} \exp \left(-q \int_{-\infty}^{0} L\left(D_{1}, x\right)|x|^{q-1} d x\right)$. Applying a Tauberian theorem, see Feller (1971), p. 446, now gives

$$
\begin{equation*}
P(W>t)=c(q) \Gamma\left(\frac{q}{q+1}\right)^{-1}\left(\frac{1}{\alpha(t)}\right)(1+o(1)) \tag{5.10}
\end{equation*}
$$

as $t \rightarrow \infty$. If $q=0$ about the best one can do with this argument is to show that $P(W>t)=o(1 / \alpha(t))$. We omit the details. It should be pointed out, however, that in the case $q=0$, even though (5.10) does not apply and even though Theorem 3 does not apply, it can still be shown, via Theorem 2 and properties of regularly varying functions, that $k^{*}=k_{*}=\infty$. This leads one to suspect that (1.9) in Theorem 3 is not necessary.
(b) If $A^{+}$, the occupation time functional of $(0, \infty)$, is replaced by a more general functional say

$$
A^{+}(t)=\int_{0}^{\infty} L(t, x) m^{+}\{d x\}
$$

( $m^{+}$not to be confused with $m_{+}$of $\S 1$ ), then the methods of this paper will yield results on the boundedness or unboundedness of $A^{+}(t) / A^{-}(t)\left(A^{-}\right.$as before). Unfortunately the analogue of Theorem 2 is rather unwieldy. Under a regularity condition such as (1.9), however, matters improve. Here is a sample. Write $m^{-}$for $m$. We assume $m^{ \pm}(I)<\infty$ for bounded $I$ and that $m^{+}(0, \infty)=m^{-}$( $-\infty, 0]=\infty$. Suppose also that for some $0<\varepsilon<1$

$$
\begin{array}{r}
m^{+}(0, x] / m^{+}(0,2 x] \leqq 1-\varepsilon \\
m^{-}[-x, 0] / m[-2 x, 0] \leqq 1-\varepsilon
\end{array}
$$

for all $x$ sufficiently large. Let $\alpha^{ \pm}$be defined by $\alpha^{-}=\alpha$ at (1.6) and $\alpha^{+}(t)$ $=\inf \left\{x: x m^{+}(0, x] \geqq t\right\}$. Put $s(x)=\int_{0}^{x} \alpha^{-}(t)^{-1} d t$.
Theorem 4. Under these assumptions $\lim \sup A^{+}(t) / A^{-}(t)=\infty$ a.s. if and only if $\int^{\infty}\left[s(x)-x / \alpha^{-}(x)\right] s(x)^{-2} \alpha^{+}(x)^{-1} d x=\infty$.

We omit the proof. As noted before our motivation for studying the particular case $m^{+}=$Lebesgue measure on $(0, \infty)$ derives from the London et al. (1982) paper, but it also seems natural to compare an arbitrary additive functional with occupation time.
(c) A more interesting problem than the one discussed in (b) concerns the a.s. boundedness of $A_{1}(t) / A_{2}(t), t \rightarrow \infty$, where $A_{i}$ is now an arbitrary increasing continuous additive functional: $A_{i}(t)=\int_{-\infty}^{\infty} L(t, x) m_{i}\{d x\}$. I do not have a good conjecture but, as before, the ratio ergodic theorem does take care of the case in which at least one of $m_{1}$ or $m_{2}$ is a finite measure.

## References

1. Bojanic, R., Seneta, E.: Slowly varying functions and asymptotic relations. J. Math. Anal. Appl. 34, 302-315 (1971)
2. Erickson, K.B.: The strong law of large numbers when the mean is undefined. Trans. Am. Math. Soc. 185, 371-381 (1973)
3. Feller, W.: An introduction to probability theory and its applications II. New York: Wiley 1971
4. Fernique, X.M.: Integrabilité des vecteurs Gaussien. C.R. Acad. Sci. Paris Ser. A, 270, 1698-1699 (1970)
5. Ito, K., McKean, H.P., Jr.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1974
6. Kesten, H.: The limit points of a normalized random walk. Ann. Math. Stat. 41, 1173-1205 (1970)
7. London, R.R., McKean, H.P., Rogers, L.C.G., Williams, D.: A martingale approach to some Wiener-Hopf problems, I. Séminaire de Probabilities XVI. Lecture Notes in Math. 920, 41-67. Berlin-Heidelberg-New York: Springer 1982
8. Ray, D.: Sojourn times of diffusion process. Ill. J. Math. 7, 615-630 (1963)
9. Williams, D.: Decomposing the Brownian path. Bull. Am. Math. Soc. 76, 871-873 (1970)

[^0]:    * The work was supported in part by a grant from the National Science Foundation.

