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Summary.  Under  general regularity assumptions,  we characterize the upper  
and lower almost  sure classes of  Uk,,, where U1, . < . . .  < U,,, are the order  
statistics of an i.i.d, sample of  size n from the uniform distribution on (0, 1), 
and where k = k ,  is a non-decreasing integer sequence such that  l__<k 
= O(log 2 n) as n ~ o0. 

1. Introduction and Results 

Let U 1, U 2 . . . .  be an i.i.d, sequence of uniformly distributed r a n d o m  variables 
on (0, 1), and denote for n = 1, 2, . . . ,  by U1, . < U2,, <. . .  < Un,, the order  statis- 
tics of U1, ..., Un. 

Let k =  kn, n = 1, 2 . . . .  be a non-decreasing integer sequence such that, for n 
= 1, 2 . . . .  ,1  < k , < n .  In this paper, we shall be concerned with the limiting 
s trong behavior  of Uk, ~ as n ~ o o ,  with emphasis on the case where k,, 
= O ( l o g 2 n  ) as n--, oo. 

Before stating our  theorems, it is worthwhile to review the known results 
concerning strong limiting bounds  for Uk. ,. The case where k is constant  has 
received a complete treatment.  In this case, we have:  

(1) (Kiefer, 1972). If  cn$ then 

s 
P(n U k , < c, i .o . )=0 or 1, according as - c k " < oo or = oo. 

' n = l  I~ 

(2) (Shorack and Wellner (1978)). If  n - l c , $  and either c,]" or  
lim inf cn/log 2 n > 1, where logj stands for the j- th iterated logarithm, then 

it--+ ~3 

e x p ( - G ) <  ~ or oo. 
l 

P ( n U  k ,>_c, i .o . )=0  or 1, according as - G k = 
' - -  n = l  H 

It may  be remarked  here that  (1) is due to Geffroy (1958, 1959) for k =  1, 
while (2) is due to Robbins  and Siegmund (1972) for k =  1. Earlier, Barndorff- 
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Nielsen (1961) had given a variation of the same result, assuming that n-  1 c.$ 
and that ( 1 - n  -~ c.)"$, in which case, we have 

~ l o g  2 n 
(3) P(nUl,,<=c . i .o.)=0 or 1, according as - (1 - n  -1 c,)"< ~ or = oe. 

n 

A direct application of either of these criteria shows that, for any fixed 
p>4 ,  

(4) P(n Uk,, < {(log n)(log 2 n)...(logp n) 1 + ~}- 1/k i.o.) 

=P(nUk,,>logan+(k+ 1) log 3 n 

+ l o g 4 n + . . . + ( 1  +e) logpn i.o.)=0 or 1, 

according as e > 0 or e <0. These bounds are given in Deheuvels (1974). 
When k,1" o% the situation is more complex, and, up to now, only first order 

terms are known, from Kiefer (1972). We state now his results, which we 
reformulate, using different notations. 

(Kiefer, 1972). Suppose that k , ] '~ ,  and that n -~ k,,,~p,,~O. Then: 

( np, ), nUk, , -k  =la.s.; 
I f k , / l o g 2 n ~ o e  and lo~2n~  thenlimsup-+l/2klog2n.~ 

If k./log2n--~vE(O, oe), and if - 1 < 6 ' < 0 < ~ "  are the two roots (in 6) of 

(5) 

(5.1) 

(5.2) 
the equation v- ~ = 6 - log (1 + 6), then 

lira inf n Uk,, - k = 3' and 
n ~  k 

lira sup 
n~oo k 

nUk" -k=6"  a.s. 

(5.3) I fk, / logzn~O, then l imsup n U k ' " - k -  1 a.s.; 
n- .  ~ l o g  2 n 

(5.4) If k./log2n--,O together withnp.Toeandlo-@2n~0 then 

P(nUk, n<k{logn} -(t+~)/k i .o.)=0 or l, according as ~>0  or e<0.  

In the expressions above, we remark that the use of an auxiliary sequence 
p. to ensure regularity conditions on the rate of increase of k. is necessary, due 
to the fact that there is no non-ultimately constant non-decreasing sequence k. 
= o(n) such that k./n is non-increasing. 

In the sequel, we shall precise these bounds. Our main results are stated 
below. 

Theorem 1. (upper-upper class). Let k=k .>  l be a non-decreasing integer se- 
quence such that l i m s u p n - l k . < l .  Let also c. be a sequence such that 

n ~  c ~  

l i m  knl /2(c  n --kn)= + O(3, and 
n ~  o o  

1 kl/2 c, e x p ( - c , ) < o e .  
(6) , n 
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In addition, suppose that one of  the conditions (i), (ii) or (iii) below is 
satisfied: 

(i) n- lc .~;  
(ii) For any n > l  such that k . + l = k  ., ( n + l ) - l c . + l  < n - l c . ;  

lira sup (c.+ 1/c.) < oo ; lira inf k2 1 (c. - k.) > 0; lira (log k.+ i)/Iog k = 1 ; 
n ~ o o  n ~ c o  n---~ oo 

(iii) For any n> l such that k . + l = k . ,  (n+ l ) - l  c.+l < n - l  c.; 

C n -- k n Cn 
0 < lira inf - - _ <  lira sup 

. ~ o  log 2 n -  n-,~ lo--~2n < oo. 

Then P(nUk,.> c . i .o.)=0. 

Theorem 2 (lower-lower class). Let k = k . >  1 be a non-decreasing integer se- 
quence such that lira sup n -  1 k. < 1. Let also c n be a sequence such that: 

n---~ oo  

(a) I f  lira k. = oe, then lira k21 /2 (c . - k . )  = - oe ; 
n ~ o o  n--+ GO 

(b) I f  lira kn < ~ ,  then lira c. = 0; 
n---~ ao  n ~ o o  

1 kl/2 c. e x p ( - c ~ ) < o o .  (c) 2 n 
n 

In addition, suppose that one of the conditions (i) or (ii) below is satisfied. 

(i) n-lc.$; 
(ii) k. ~ ~ ; k. = 0 (nl/2); Iim (k. log k . ) -  1/2 (c. - k.) = - w ; for any n > 1 such 

that k . = k . + l ,  ( n + l )  -1  c.+~ < n  -1  c.. 

Then P(nUk, .<c n i .o.)=0. 

Remark 1. The change of var iable  c . = k . ( 1  +6 . )  t ransforms (6) into the equiva- 
lent form 
(7) ~ k1'2 

- -  exp ( - k(6 - log (1 + c5))) < ~ ,  
n = l  n 

where k = k .  and 6 = 6 . .  Observe  that  the same condi t ion (7) is used in Theo-  
rems 1-2 but  with 6 ul t imately > 0  in T h e o r e m  1 and ul t imately < 0  in 
T h e o r e m  2. 

It will be p roved  in the sequel that  P ( n U k , . > c . ) ~ O  iff k~ 1 / Z ( c . - k . ) ~  ~ ,  
and likewise P(nUk,.<c.)-+O iff (a) or  (b) in T h e o r e m  2 holds. It follows that  
these condit ions have to be assumed in order  to have P(nUk, .>c . i .o.)--0 or 
P(n Uk,. < c. i.o.) = 0 repectively. 

If  we assume in T h e o r e m  1 that  n -~ k .~p .+O and that  c . - k . ~ 7  log2n for 
some 0 < ~ < ~ ,  then the condi t ions in this t heo rem sum up to (7) and (n 
+ l ) - ~ c . + l < n - l c .  for k . + l = k  .. Likewise we see tha t  for k,,=O(log2n), the 
regulari ty condit ions in T h e o r e m  2 are satisfied for all sequences c. of interest 
whenever  n -  * k. ~ p. ~. 0. 

Theorem 3 ( lower-upper  class, small  k's). Let k = k . >  1 be a nondecreasing 
integer sequence such that k .=o( log2n ) as n ~ ,  and such that there exists a 
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sequence p, J, with n -1  k ,  ~ p ,  as n ~ oo. Assume further that c n is a sequence such 
that: 

Cn C n 
(a) 0 < lim inf - - _ <  lim sup < oo; 

(b) I f  k ,=k ,+  1, then c , < c , +  1 and n - l  c . > ( n +  l) - l c . + 1 ;  

(c) ~ l k l / 2 ( ~ c " f  

Then P ( n U k , , > c  . i.o.)= 1. 

Corollary 1. Let k = k,  > 1 be a nondecreasing sequence such that k, = o(log 2 n) as 
n ~ oo and such that there exists a sequence p, ~ with n - t  k ,  ~ p, as n ~ oo. Then 

(8) lim sup n U k ' " - l ~  =1 a.s. 

,-.co (k+ 1) log ( ~ )  

Theorem 4 (lower-upper class, the limit case). Let  k = k ,  be a non-decreasing 
integer sequence such that k,=O(log  2 n) as n-~ o% and such that there exists a 
sequence p,,~ with n--1 k , ~ p ,  as n ~ oo. Suppose that lira infk,/log 2 n>0.  Let  c, 

A n._~oO 

be a sequence such that c , ~  n logzn for 0 < A < o %  and such that, whenever k,  

=k,+~, c , + t > c  . and (n+ l ) - l  c,+ l < n - ~  c,. Then, if  

~ 1  c, e x p ( - c , ) =  oo, (7) n 
kl/2 

P ( n U k , , > c  . i.o.)= 1. 

Corollary 2. Let  k = k , = [ v l o g 2 n ] ,  where re(O, oo) is f ixed.  Let  b">O be the 
positive root o f  the equation (in c5) v - t =  6 - l o g ( 1  + 3). Then, for  any f i x ed  p > 5, 
we have 

(9) P nUk, , >  v(1 + 6") log z n 

+ ( ~ )  (310g3 n+log4 n+  ... +(1 +8) logpn) i.o.) = O o r  1, 

according as e > 0 or ~ < O. 

Remark  2. Let F( . )  be a distribution function, and let G ( u ) = i n f { x :  1 - F ( x ) < u }  
for 0 < u < l .  It is easily seen that X , = G ( U , ) ,  n=1 ,2 ,  ... defines an i.i.d, se- 
quence of random variables with distribution function F( ' ) ,  and such that Mk,, 
= G(Uk,,) is the k-th maximum of X t, ..., X,. 

It is therefore easy to translate the preceding results in terms of Mk,. in 
order to obtain strong limiting bounds for Mk,,. By Theorems 1-4, we see that, 
under suitable regularity conditions on k =  k,,/~, and F(.),  we have 
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(10) P(Mk,,<#, i .o.)=0 or 1, 

according as 

(11) ~ - -  ( I - F ( # , ) )  e x p ( - n ( 1 - F ( # . ) ) ) < o o  or =co. -g n 

Remark 3. For the lower-upper bound, we have only considered the case where 
k=kn=O(log2n ). It is worthwhile to notice that (6) gives also a sharp result 
when k,/log 2 n--, co. This can be seen from the equivalent form (7): 

kl/2 
(7) ~ - -  exp ( - k ( 6  - l o g  (1 + 6))) < oo. 

n n 

If we take in (7)3=++_(1+e)( l logzn) l /~  using the fact that 6-1og( l+c~)  

~�89 2, as c~---~0, we see that the series in (7) converges or diverges according 
as ~>0  or e<0.  The same can be said about the lower-lower bound. This last 
result corresponds to (5.1). 

Remark 4. Note that, for k = k, constant and c, < k, we have 

(U/2) (~ c,k)< kl/2 (~ c , f  e x p ( - c , ) < ( k  1/2 e k) (~ ck,) 

In this case we have (6)<=~(1), which means that (6) is then necessary and 
sufficient for P(nUk,,<c , i.o.)=0. 

Remark 5. The series (6) converges or diverges, according as the same happens 
for 

(12) ~ -k (k-~ c: exp (-cn))"  n . 

Remark 6. Corollary 1 gives a result very similar to that obtained in Deheuvels 
and Devroye (1984), where it was proved that if Mk, denotes the maximal k- 
spacing generated by uniformly distributed random variables on (0, 1), then, if 
k = k , ~  oo together with k ,=o( log  2 n) as n--+ o% we have 

lim nM~-logn 

t 
= 1 a.s. 

This hints that some kind of identification of M~ and Uk, n should be 
possible (after changing log n into log 2 n) via a strong invariance principle. 

We do not offer here a proof of the sharpness of the conditions in Theo- 
rem 2. This will be made in a forthcoming publication. The proofs concerning 
the upper-upper, lower-lower and lower-upper classes are given in the next 
sections. 
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2. T h e  U p p e r - U p p e r  C l a s s  

Throughout,  we shall make use of the following Borel-Cantelli-type lemma, 
due to Barndorff-Nielsen (1961) (see also Devroye (1981)). 

Lemma 1. Let E., n = l , 2 ,  ... be a sequence of events such that P ( E . ) ~ 0  as 
n~oo.  Then, if ~P(U.~E .+I )<oo  or ~.P(E.c~U.+O<oo, we have P(E. i.o.) 
~ O .  n n 

In this section, we shall consider the events defined by E . =  {Uk,.>n -1 c.}. 
First, we give conditions for which P(E.)~O. 

Lemma 2. Let k = k . > l  be a non-decreasing integer sequence such that 
lim sup n -1 k . < l .  Then P(E.)=P(Uk,.>n -1 c.)--+O as n~oo  iff 

n--~ cx3 

k21/2 (c. - k . )  ~ oo. 

Proof Assume in the first place that k.~k< co. Then nU k . converges weakly to 
a F(k) distribution as n ~ oo. Hence P(E.)--* 0 iff c.-~ oo ~k~-1/2 ( c . -  k . ) ~  oo. 

Next, if k . ~ o o  and n - k . ~ o o ,  it is well known (see e.g. Balkema and 
De Haan  (1978) Th. 2.2) that 

{k(n-k)n-3}- l /2(Uk, , -n- lk ) - -*N(O,  1) in distribution. 

It follows that, when lira sup n-  1 k, < 1, the condition k~- 1/2 (c, - k,) ~ oo is 
n-eao 

necessary and sufficient for P(E,)~0.  
1/2 Note here that if c , = k , ( l + 6 , ) ,  this condition amounts to k, c5~oo  or 

equivalently to 2 k, 6. --* oo. 

Lemma 3. Let k =k ,>  1 be a non-decreasing integer sequence, and let 0 < c,< n 
for n = 1, 2, .... Then 

c. <c.+i~ c.+ I 
P(E.c~U.+O<P ~<Uk  1.  

- ' = n + l ]  n + l  

+ P  Uk_l , .<n<Uk,.= ~ l(k"=k"+'} + P  n < vk, . - -n+i]"  

Proof 1 ~ Assume that k=k .=k .+  1. Then 

E chE:,+l={Uk,.>~,Uk.+ < c"+ t ;  
, t - n + l j  

"= Sj , 1 ' - n + l J  

as requested. 
2 ~ Let now k.+ 1 > k = k.. Then U k . . . . .  + 1 > Uk.,. and hence 

En~E~n+I I n  k ' " = n +  lJ" 

This completes the proof of our lemma. 
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Lemma 4. Let t < k < n and 0 < p <  t. Let also Z denote a random variable with a 
binomial B(n, p) distribution. Then we have the following identities: 

P (Uk_I , .<p<Uk, . )=P(Z=k- -1 )  = kn_l 

P(Uk,.>p)=P(Z<k-1)=j~=o.= pJ(1 -p)"-J,  

j=k 
where U0,. =0. 

Proof. Straightforward. 

Lemma 5. Let k = k . >  l be a sequence such that l i m s u p n - ~ k . < i .  Let c .=  

k.(1 +6. )=k(1  + 6)~(0, n). Then, as n ~  o% we have, uniformly in 8>0,  

(k-- 1/2 } 
P ( Uk - l , .  < n - 1 c. < Uk, .) = O l l ~  exp ( -- k (8 - log (1 + 8))) . 

Proof. By Lemma 4 and Stirling's formula, 

which gives the result, using the bound ( 1 - a ) r < e  -ra, r>0 ,  0 < a <  1. 

Lemma 6. Let k = k . > l  be a non-decreasing integer sequence such that 
l i m s u p n - l k . < l .  Let c .=k . ( l  + ~5.)> k. be a sequence such that n-  l c.+. Then 

~--+ c o  

P(E,,c~E~+ 1) < oe whenever 
n 

1 1/2 
n k. e x p ( - k . ( 8 . - l o g ( l + 6 . ) ) ) < c c .  

n 

Proof By Lemma 3, P(E.c~U.+l)<=n-lc .P(Uk_l , .~n- lc .<Uk, . ) ,  which, by 
Lemma 5, implies the result. 

Lemma 7. Let k = k . > l  be a non-decreasing integer sequence such that 
l i m s u p n - l k . < l .  Let ca=k.(l+cS.)e(k. ,n ) be such that kt./26.--*oc. Suppose 

tl  ~ ~o 

further that one of the following set of conditions is satisfied: 

(i) n- a(l +(5.)=c./k.~.; 

k21/Z(k.+ i - k . )  exp ( - k . ( 6 .  - l o g  (1 + 8.))) < oo ; 
n 

(ii) For any n >= 1 such that k.+ 1 = k., we have (n + 1) c.+ 1 < n- 1 c.; 

~ k l . / Z ( k . + l - k . ) e x p ( - k . ( 6 . - l o g ( l + 6 . ) ) ) < o e ;  l imsup(c.+l/c.)<oo. 
tr ~ ~ 0 3  
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Then 

Proof. 
( n + l )  -1 c.+l<n-~c..=_ Therefore, it suffices to consider 
(n + 1)-1 c.+ i > n-1 c.. When (i) holds, we shall use the bound 

P. Deheuvels 

Let P~=P(n-lc.<Uk,.<(n+l)-ic.+O. Clearly, P~=0 when 
the case where 

(.+ l) - i  c.+ lc~ +3 . ]  
1 \ i~ / / "  

On the other hand, if (ii) holds, the bound ( n + l ) - l c . + l - n - l c . <  
(n+ 1) -1 c.+ i suffices for our needs. 

By the assumption kn 112 ~n ~ (30, we have, for n large enough, 

n- 1 c"=n- 1 k.(1 + ~.) > k. - 1  = n -  1 k,,(1 +O(n-1)+O(k$1)). 
n - 1  

This, in turn, implies that  

P.= ~ kxk-l(1 --x)"-kdx 
n-  lcn 

By the same arguments  as in the proof  of L e m m a  5, we have in case (i): 

P~ = 0 {k 2 ~/2(k.+ x -k.)  exp ( - k.(6. - l o g  (i + ~.)))}, 

while in case (ii), we get 

Vn = 0 1/2 {k. (k.+~ - k.) exp ( - k,,(6. - log (1 + 6.)))}, 

as desired. 
Let Q.=P(n-lc.<Uk_~,.<(n+l)-ic.+~). We get likewise, for n large 

enough, 

2 

In case (i), we obtain 

Q. ~ -  O ( Q . ( l C " + ~  +6.))=O{k2~/Z(k.+l_k.)exp(_k.(6_log(l+6.)))}. 

In case (ii), we get 

c 2 + 6))k (1 k Cn+ 1 n+ 1 C. H 

2 =k2(1 +6)2<nk(1 +6)2 to complete the proof. It suffices now to remark that  c. 
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L e m m a  8. Let k.Too, 5 . > 0 ,  and assume that 

l im sup log k.+ 1 
.~ ~ log k~ 

where r > 0 is fixed. Then 

~ 2  k.O. _ 
- 1  and l i m i n f - - > l + 2 r ,  

. ~ o  l o g k .  

141 

k;-1/2(k.+l - k . )  exp ( - k . ( f i , , - l o g  (1 + 6 . ) ) ) <  oo. 
/i 

Proof Note  in the first place that  x - l o g ( l + x ) ~ � 8 9  2 as x ~ 0 .  It  follows that  
there exists an s > 0  and an n~ such that  n > G ~ k . ( 5 ~ - l o g ( l + 5 . ) ) > ( r +  �89 
+ s) log k~+ i" 

This, in turn, implies that,  for some e > 0, 

k.r-1/2 (kn+ 1 -k, , )  exp ( - k n ( g ~ - l o g  (1 + c~.))) 

= o (k2+~/- ~(k .+  1 - k . ) }  = O { k 2  ~ - k n + l  }. 

The result follows, since ~ (k~ -~ -k . -~  1) < oo. 
n 

Theorem 5. Let k = k . > l  be a non-decreas ing integer sequence such that  
l im sup n -  t k.  < 1. Let c. = k. (1 + 5.) e (0, n). Assume that k 21/2 (c. - k.) = k~/2 5. 

n--* oD 

+ 0% and that 
1 kl/2 e x p ( - k ~ ( 6 . - l o g  (1 + c~ ))) < Go. 
r /  - n  

In addition, suppose that one of the following set of conditions is satisfied: 

(i) n - i  G = k ~ n - ~ ( l  +~.)J.; 
k. 5~ log kn + 1 

(ii) n -  1 (1 + 5.)~; lira inf - - >  1 ; l im - 1 ; 
, ~  l o g k  . . . .  l ogk .  

(iii) For all n> 1 such that k~=k,,+l , (n+ 1) -1  Cn+ 1 <n -1 cn; 

k. 6 2 log k,,+ 
lira sup c"+1 < o o ;  l i m i n f - - > 3 ;  l im ~ - 1 .  

~ ~ c . . . . .  log k . . . .  log k. 

Then P(nUk,~ >c . i .o.)=0. 

Proof It  follows as a direct consequence of L e m m a s  1-8. 

Remark 7. 1 ~ By (5), if n -1 k,~p,+O, it can be seen that  

{log  n, n-h nUk'"--k"=O'max( 1 / ~  J] 

a lmost  surely. It  follows that  the condi t ion (ii) of  T h e o r e m  5 is appl icable  in 
the case where k.( log k . ) -  1 k~- 1 log 2 n = (log 2 n)/(log k.) > 1 in the upper  tail. This 
cor responds  to the s i tuat ion where, for some e > 0, 

k, = o(log I -  ~ n). 

Likewise the range  of appl ica t ion  of (iii) includes k,=o(log~-~n). 
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2 ~ By L e m m a  8, one could extend the condi t ions of T h e o r e m  5 to the case 

where l im sup log k.+ ~ < oe. We  shall not  state such results which cor respond  
.-~ ~ log k. 

to an irregular  behav io r  of  k.. Clearly, if k.T and  n-~k .~p .$ ,  we have 
k.+ i/k. --, 1, and hence (log k.+ 0 / log  k. ~ 1. 

Proof of Theorem 1. The  first two s ta tements  of  T h e o r e m  1 (corresponding to 
condi t ions (i) and (ii)) follow directly f rom T h e o r e m  5, since 

l im inf k 2 t (c. - k.) = l im inf 6. > 0 
n--+ oo n ~ o o  

implies, if k.T o% that  k. ~2 - -  oe. The  p roof  is comple ted  by L e m m a  8. 
log k. 

Condi t ion  (iii) cor responds  to the case where k . =  O(log 2 n), and implies that  
l im sup (%+ ~/c.)< oe. Unde r  this condit ion,  there exists a 0 > 0  such that,  for n 

n--~ oo 

large enough, 
k 1/2 exp ( - k.(6. - log (1 + 6.))) < (log n)-  0. 

By Abel 's  l emma,  we see tha t  the series ~(k.+~-k.)( logn) -~ converges,  
n 

since ~ k. n -  1 (log n)-  1 - 0 = O { ~  n -  1 (log n)-  1 - 0/2} < oo. 
n n 

L e m m a  7 completes  the p roof  of T h e o r e m  1. 

3. The Lower-Lower Class 

In  the sequel, we shall use the nota t ions  and results of  Section 2 and consider 
_ C C - -  the events F.= { Uk,.<n -1 c.} - E.. We r e m a r k  that  P(F~ c~F.+ O -  P(E.c~U.+ O. 

Our  proofs  will be based on L e m m a  1 which implies tha t  P(F. i .o . )=0  when- 
ever ~ P(F~F.+ 1) < o0 and P(F.) ~ O. 

n 

Lemma 9. Let k-=k.>_l be a non-decreasing integer sequence such that 
l i m s u p n  -1  k . < l .  Then P(F.)=P(nUk,.<c.)~O for %>0 iff : 

n~  oo 

(i) c. ~ 0 when lira k. < oe ; 
n - + o o  

(ii) k~ X/Z(c.-k.)--* - oo when l i m k . =  oe. 
n--+ ~o 

Proof Same as for L e m m a  2. 
No te  here tha t  if % =  k.(1 + 6.), the condit ions above  a m o u n t  to (i) 6.--* - 1  

if l im k. < oe ; (ii) kin 12 (~n --~ - -  oo if l im k. = oo. 
n - * o o  n---~ c~ 

Lemma 10. Let k = k . >  l be a non-decreasing integer sequence such that 
l <k.<n,  n = l , 2  . . . . .  Let c.e(O,n), n = 1 , 2 ,  .. . .  Then, if k '=k.+l,  

[C n Cn+ l \ Cn+ l 
P(P,~c~F.+ 1)~P [ ~ <  Uk,_ 1 , . ~ )  n+ 1 

- n  ' ~ l ~ k " = k " + ' ~ + P [ n < U v ' " < n - + - l ) "  
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n , 
~ E n + l ~ .  C n 

Proof In general,  F~ c~F.+ I = U k . , . > n ,  U k + ~ . + l _ n + l j  

1 ~ Let  k.+~>k..  In this case U k . . . . .  +~> Uk.,. and 

] 4 - c ( " 3 F n + l ~ ( { ~ U k  . . . .  ~ C r t ? 1 ; ( ~ U n + l  ~Cn+117~ 
' - n + l )  ( n + l J !  

-n+lJ t"+:=n+lJl' 

2 ~ ) Let  k . + ~ = k . .  We get now 

'1}{ w <U~ ~, < c . +  c~ U.+~ 
- " = n +  - n + l J ]  

The result follows. 

L e m m a  11. Let k=k,>=l be a sequence such that l i m s u p n - l k , < l .  Let 

c ,=k , ( l  + 6 , ) = k ( l  +6)e(O,n). Let A, be a sequence such that - I < A , < O ,  
n = l , 2  . . . . .  and that k , A , = O ( n  1/2) as n~oo .  Then, as n ~ o %  we have uni- 
formly in c~ E [A ~, 0], 

t ~'-'fk- 1/2 } P(Uk-  1,. ----< n -  1 c. < Uk, .) = O ~ -  exp ( --k(6 - l o g  (1 + 6))) . 

Proof. The  p roo f  is identical to the p roo f  of  L e m m a  5, up to the point  where 

we set 1 n - k }  = O { e x p ( - k 6 ) } ,  which holds for k262=O(n). 

Remark. 1 ~ If  k,=O(nl/2), we m a y  choose A~= - 1 .  
2 ~ If  kJlogn-- ,o% in view of (5.1), there is no loss of general i ty in taking 

A~ = - ( ( 2  + e)k~-1 log e n)1/2 for some e > 0. In  order  that  k, A, = 0(nl/2), we must  
restrict the range of k, by assuming tha t  k,=O(n/ log e n) as n ~ oo. 

L e m m a  12. Let k = k  >=1 be a non-decreasing integer sequence such that 
l i m s u p n - l k , < l  and l i m k ~ = o o .  Let c,=k~(l+b~)~(O,k~) be such that 

n--* oo n--~ oo 
kl,/2 6 ~ - o o .  Suppose further that one of the following sets of conditions is 
satisfied: 

(i) n-~( l  +6.)=cJk, ,$;  

-- ii'2 ~ k.+, ( k . + a - k . ) e x p ( - k ~ + l ( 6 ~ + l - l O g ( l  +6.+l)))< oo; 
n 



144 P. Deheuvels 

(ii) For any n> l such that k . + l = k  ., we have (n+ l )c .+t  <=n -1 c.; 

E bl l  (l. '~.+ 1 t'~.+ 1 - k.) exp ( -  k.+ 1 (6.+ 1 - log (1 + 3.+ 1))) < 00, 
n 

T h e n ~  P <Uk+ 1 1 , . = n + l ] ~ l + P  ~ < U k +  _<c"+~];<oo.  
- . . . . .  n + l ] J  

Proof. The proof is identical to the proof of Lemma 7 up to minor changes. In 
k n - 1 

the first place, we have, as n ~ o o ,  n -1 c . < ~ - f f _  I . Next, we use the bounds 

1 {1+6.+1~ 
(n+  1) -1 c.+1 -n-  c.<(k.+l -k.) \ - ~ + i - !  

i 1 + ~ . + 1 \  (1+~.+1~ 
_-<k.+l 1-k.)k.+l 

whose validity depend on assumptions (i) or (ii). Finally, in the evaluations of 
P~ and Q., we replace throughout 6. by c~.+ 1, k. by k.+ 1 (leaving only un- 
changed the terms k.+ 1 - k . )  and c. by %+ 1- We omit further details. 

We dont need here (as was the case in Lemma7)  the assumption that 
c.+ 1/c. is bounded from above. 

Theorem 6. Let k = k n > l  be a non-decreasing integer sequence such that 
l i m s u p n - l k . < l .  Let c .= k.( l + a .)e(O, kn). Assume that k.- ll2 ( c . -  k.)= k.1/2 0n 

n~ oo 

- - . - o o  if k.Too and that c.--+O (i.e. 6 . ~ - 1 )  if k. is bounded. Assume also 
that k. 6 .=O(n 1/2) and that 

1 1/2 . ~ n  k. e x p ( - k . ( 6 . - l o g ( l + 6 . ) ) ) < o o .  

In addition, suppose that one of the following sets of conditions is satisfied: 

(i) n - l  c . = k . n - l ( l  +5.)+; 

(ii) n-  1 (1 + 6.) ~.' lira inf - -  > 1 ; 
' . -~oo l o g k .  

(iii) For any n > 1 such that k. = k.+ 1, (n + 1)- 1%+ 1 < n-  1 c." 

Then P(Uk, .<c.  i.o.)=0. 

Pro@ In view of Lemmas 

2 

lira inf k. 6. > 

10-12, the proof is identical to the proof of 
Theorem 6, hence, details will be omitted. We remark only that we dont need 
the assumption that (log kn+ 1)/log k. is bounded from above (see Lemma 8). 

Proof of Theorem 2. Theorem 2 is a direct corollary of Theorem 6. 
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3. The Upper-Lower Class 

In this section, we shall make use of the sequence nj = [exp (loY~gj) ].  

Lemma 13. Let k=1%1" be a sequence such that limk21(k.+a-k.)=O. Let c. 
n--+ co 

= k(1 + 3.) be a sequence such that lim inf 6. > 0 and that k 21/2(c.-k n) = kl./2 cs.T. 
n ~  oo 

Then the sequence k,,(c5 - log O +3.)) is ultimately nondecreasing in n. 

Proof. Let k~/+zl 6.+ > l< 1/2 .~ 1=,. .  v., or equivalently, let 6.+1->~$./(1+c0, where c~= 
(k.+l/k.)l12-1>O. Noting that 6 - 1 0 g ( 1 + 3 )  is an increasing function of 3>0,  
we have: 

k.+ 1 (c$.+ 1 - l o g  (1 + 6.+ 1)) 

>=k.+ , {6,,(k,]k.+ l)li2-1og(l +~5.)-log ( t -  ( & )  (1-(k,]k,,+ l)*12)) } 

> k.(6. - log (1 + 6,,)) 

+ 1 c~ k"{cz6"-(2c~ + c~2)l~ (1 + 6~)+ (1 + ~)2 (1+6~"6,)(-  1 ~ )  } 

= k ~ ( 3 - l o g  (1 + 6.))+ k. c~{log (1 + 6.) - 1 @ ~ }  (R(an) - c 0 

l \ t 1 \ 0  6 
where R ( ~ ) = [ 6 - 2 1 o g ( l + 6 ) + ~ ) l ~ l o g ( l + 6 ) - ~ .  Routine computa- 

tions show that R(6)>0 for all ~>0,  while R ( 6 ) ~ 6  as 6-+0 and R(6).~ 
a / log0  + 6) as ~ ~ oo. Hence, our assumptions imply that c~ -+0 while lim inf R(a,,) 
>0.  This suffices for proof of Lemma 13, since, for all 6>0 ,  .~o  

log(1 +6) - 1 + ~ > 0 .  

Remark. The assumption that n -1 k,,~p,,j, implies that tim k~-l(k.+ 1 - k . ) = 0 ,  if 

Lemma 14. Let k=k.>= 1 be a nondecreasing sequence such that k .=O( log2n  ). 
Let c .=k.( l+3.)=k( l+3)  be such that l i m i n f 6 . > 0  and that k2112(c.-k.) 

n--* oo 
1/2 =k. 6.T. Assume further that there exists a sequence p.j. such that n -1 k .~p.  

as  n --+ oo. T h e n ,  i f  

(14) 

we have 

(15) 

k 1/2 exp( -k (~  - log(1  +6)))= o% 1 

n = l  l'l 

k~/2 
"J exp (-k. ;(3~ - l o g  (t + 6 )))=- oo. 

�9 log 2 nj 



146 P. Deheuvels 

Proof  Evidently ( 1 4 ) * ~  p. k-*/z  e x p ( - k ( O - l o g ( i  + ~)))= co. By Lemma  t3, 
n 

this in turn implies that  

(n j+ 1 - n  j) p.j k~*/2 exp ( - k . j ( 6 . j  - l o g  (1 + 6,,j))) = oc. 
J 

But this suffices for (15), since (nj+ 1 - n j) p., ~ n j- * (n~+ a - n~) k ~ k., / log 2 nj. 
In the sequel, we shall assume th roughout  that  k = k . > l  is nond~'ecreasing 

and such that  n-  ~ k . ~ p . $  as n--, co. We shall also assume that  there exist fixed 
constants  0 < c < d < co such that, for n = 3, 4, . . . ,  

(16) c l o g 2 n < - _ c . - k . = k .  6 < c  = k . ( l  + 6 . ) < d l o g 2  n. 

There  is no loss of generali ty in assuming that c.<=d log 2 n for some finite d. 
This follows from the fact (see (5)) that  n U k , . = O ( l o g 2 n  ) whenever k=k, ,  
= O(log z n), and that  (6) holds for c . = d  log z n and for a large enough d. Hence 
(14) is unaffected if we replace c. by min(c . ,  d logzn) .  

1 
Likewise, we know from (4) that  Uk, .>Uk , .>  n logzn  i.o,a.s. Clearly if we 

can prove  that  P ( n U g , . > m a x ( c . , l o g 2 n  ) i .o.)=1,  we will have also prove  that  
P(n Uk,. > c. i.o.) = 1. These arguments  justify (16). 

L e m m a  15. Let  (16) be satisfied, and assume that, for  any n >  1 such that k .+ ,  
= k . ,  6.+ ~ > 6.. Then (14)~(15).  

Proof  First observe that  there exists an a > G  such that,  for n iarge enough,  
e x p ( - k . ( O . - l o g ( 1  + a,,))) < (log n) -~, It follows that  for the proof  of Lemma  15, 
it suffices to show that  

n 7 * (n j+ 1 - n)) k.j(log n j)-  ~ l{k.j +~ > ~.) < CO. 
J 

This in turn follows from 

(log nj) -~ l{k.j+l >k.9 < CO. 
J 

Next,  we note  that, as j ~  co, (logn~)-~'=o(j-~/2),  while 

l{k . . . .  >k.~I < k , , = O ( l ~  �9 
i<j 

The proof  of L e m m a  15 is completed by Abel's lemma and the fact that  
~ j - * - ~ ( l o g j ) <  oo for all ~>0 .  
J 

Remark.  L e m m a  15 implies L e m m a  14 when (16) holds. Under  the assumptions 
of L e m m a  15, we see that  in (15), we may restrict the summat ion  to those f s  
for which k,~ +, = k , ;  

L e m m a  16. Let  k=k.>= 1 be such that n-*  k . ~ O .  Let  c~=a. be such that k . b .  
-= o(n l/z) and 0 < n -  t c,, = n-  1 k.(1 + 6,,) < 1. Then, we have, as n ~ co, 
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(17) P(G,)=P(Uk_I,  <n - t  
B k - 1 / 2  

c" < Uk")' 1+5 exp ( - k(6 - l o g  (1 + 3))), 

where B is a constant. I f  k . ~ ,  B=(2g)  -1/2, while B=kk-1 /2 / (k -1 ) !  
k ,~k< oo. 

Proof. We proceed as in the proof of Lemma 5. 

Lemma 17. Under the assumptions of Lemma 15,/f  

if  

(14) 

then 

1_ k~/Z exp( -k (3  - log(1 +5)))= az, 
n = l  n 

(18) ~ P(Aj)= o% 
jeJ 

where Aj = G,j, G, = { U k_ 1,, < n-  1 c, < Uk, ~} and J = {j > 1 : k,j = k,t j_ oog j)2l }" 

Proof. (14), jointly with Lemmas 15 and 16, implies that ~ P(Aj) = oo whenever 
J 

(16) holds. Let vj=P(Aj). By the arguments in the proof of Lemma 14, we 
know that, as j---, o% vj=o(j  -~) for some fi>0. It follows that 

F, v~ = 0 ( ~  j - P ( log j)~ 1~~ + ~ > ~ @  < 00, 
)r J 

by Abel's lemma, as in the proof of Lemma 14. 

Proof of  Theorem 3. By the Hewitt-Savage zero-one law, with the notations 
above, we know that P(Aj i.o.)=0 or i. Theorem 3 will be proved if we show 
that P(Aj i.o.)= I. For this, it suffices to show that there exists a constant C > 0 
such that, for all Jo, there exists a Jl ~Jo with 

(19) P >C.  
J 
j~J 

Throughout, we use the assumption that ~ P ( A ) = o G  which holds by 
jeJ 

Lemma 17. In the proof, we shall make use of a lower bound of the probability 
in (19). In order to simplify notations, let us make the convention in the sequel 
that the summation ~ stands for ~ .  By an inequality of Chung and ErdSs 
(1952), j j~s 

[ Jl \ ( Jl ) 2  ( Jl 3-- 1 
(20) P {  U A j } > {  Z P(Aj)~ {2 Z P(Aic~Aj)+jZoP(Aj)=j 

\J=Jo / {.J=Jo ) (. jo<=j<i<=j~ 

It  follows that for (19) it suffices to show that, for Jl >Jo ~ 0% we have 

C ( Jl P )2 
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where, as usual, ieJ and j~J. The problem reduces therefore to the derivations 
of adequate upper bounds for P(Aic~Aj). 

Let us introduce for sake of convenience the following notations: 

j<i, k=k.  <=k'=k.~, 6=6,j, c5'=6,,, 

uj=n]-1c,j=n71k(l+cS), ui=n[ac,=nSlk ' ( l+3') .  

In general, for ui<uj, we have 

k - - 1  

= \ u j  / 

uj! \ k ' - k + l !  

In the first place, we see that, for j > L o large enough, 

(23) (1 -ui) "~-"~-k' +k-t <2 exp ( - ( n  i - n  j) ui). 

This follows from the fact that 

k ' -k<k ' -k+l<k ' - l=O(log2n~)=O(logi ) ,  ui=O(n71 log/), 

and 
(k'-k+l)ui=O(n(llogZi)--+O as i~oo .  

We have used here the bound ( 1 - u ) r < e x p ( - r u ) ,  r>0 ,  0 < u < l .  

Next, we note that ~ (ul/u~) k-z- 1(1-(u]uj))l= 1, which, by (22) and 
l = 0  (23) implies 

k'--i 1 
(24 )  P(Ai]Aj)<=21~ ~ . {(ni-n~)ul} ~ exp(-(nl-n~)ui) , i>j> L o. 

Observe for further use that (24) remains valid for u~ > u s. 
Next, we split the range of i>j  into two subsets: 

(I) i>  c~(j)=min {l>j:l- j>(log/)( log 2 l)}. 
(II) j < i < c~(j). 

It may be checked (see e.g. Devroye (1982)) that the following evaluations 
hold, for some appropriate constants L 1 and L 2. 

- For j>LI,  c~(j)<j+2(logj)(log2j ) and 

(25) i - J < l o g  n(~)< i - j  ( l@gi) 
-log~-~= = ~ 1 -  ; 

i--j [1 3(i--j)~ " " 
(26) logi \ l o ~  ] -< 1 _n~< ~- j  

- n i = l o g  i" 

- For j => L 2 and i =< ~(j), we have 



Strong Laws for the k-th Order Statistic when k < c  log 2 n 149 

and 

(28) 1 - - - 2  <1 nj<l. 
log i - n~ - 

Lemma 18. Under the assumptions above, we have, uniformly in i>c~(j), P(Ai [ A j) 
= 0 (P (A~)). 

Proof By (27), (n,-nj)ui= (1 -n2] k ' ( l + 6 ' ) - k ' ( l + 6 ' ) .  Also, by (16), we have 
\ n i l 

l iminf6 ,>0 .  By (24) and using the arguments in the proof of Lemma 5, it 
n~oo 

follows that 

O 1 P(A, IAj)= { ~ ( ( n l - - n , ) u l ) k ' - l  exp(-(n,-nj)u,)}, 

which gives in turn, by Stirling's formula, 

P ( A i l A j ) = O t f ~ - e x p (  - ~ - )  (1 + 6 ' ) -  1 - l o g  ( ( 1 - ~ )  (1 

=O~k '-1/2 ) 
exp ( - k'(c~' - l o g  (1 + 5'))); = O(P(A~)), ( 1 + 

where we have used Lemma 16 and se fact (see (16) and (28)) that 

-- ~nj<2c"'-O(~]=O(1). 
k'(l +6') n i=,og , -  \ ,ogt ! 

This completes the proof of Lemma 18. 
By Lemma 18, we have 

{( (29) ~ P(Aic~Aj)=O , 
Jo=<J<~(J)-<i=<Jl J 

as desired. It remains to obtain similar results for case (II) to complete the 
proof of Theorem 3. For this, we need only consider the case where k = k' (see 
Lemma 17), ui <u j, c,,i> c,: ieJ and j~J. 

By (22), we have the upper bound 

k--1 1 

(30) P(AIIAj)~21~ 1 (k--1)(uilk-l- (l--Uil '1 = 1 \uj! uj/ N. {(ni -nj) ui} z exp ( -(n i -nj) ui). 

Let us use now the assumption that % > %. We have 

nA<_u~<<_l and 0 < 1 - u ~ < 1  nj 
H i 1Aj Uj  n i 

This, jointly with (30), yields the bound 

k-1 1{  (x_nJt; '  1 (31) P(AilAi)<2t=o ~" ~ k \  nil)  ~. {(ni-nj)ul}Zexp(-(ni-nj)ui). 
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Lemma 19. There exists an absolute constant R < oo such that, for all x > O, 

(32) 

Proof We have L 
X 21 (2l)! 

hence result, l=o (21)! l!1! 
By (31) and (32), we have 

X2l Re2X" <= 

xZ/2el ( l §  
l=0 (2/)! l + l / / ~ -  , where e(l)-~0 as l--,oo, 

(k tlj2tt  33, , A LAj, 2Rexp( (1  ) iui(1 2 - -  
\n iu i !  / /  

If we assume now that k.=o(log2n ) as n ~ ,  it follows from (16) and (33) 
that, for i large enough, 

(34) P(Ai,Aj)<2R ex p ( - ( 1 - ~ ) ( c l o g i ) ( l  +o(1))) 

__2eexp 1 - ~ -  log/ , 

where we have used the fact that log a n i ~ log  i. 
Let us now choose d>0 ,  and split (II)= {isJ: j<i<c~(j)} into two subsets: 

(II)~= { i~J : j< i<f l ( j )}  and (II)' d'= {i~J: fl(j)__<i<e(j)}, 

where fl(j)=max{l>j: l - j<d log l } .  There exists an L 4 such that j>L4 im- 
plies f ( j ) <  e(j), which will be assumed to hold from now on. 

By (25) there exists q=q(d) such that, for j > L  1, if j< i</?( j ) ,  we have 

1 - n~ > i - j  

ni 

Likewise, there exists r =r(d) such that, for f ( j ) < i <  c~(j), we have 

1 -nJ->r>O. 
gl i 

By all this and (34), there exists L 5 such that j > L  5 implies (for i, jsJ): 

(cq t P(AilAj)<2R exp - ~ -  ( i - j )  , for j<i<fl(j), 

and 

(cr t P(A~[Aj)<=2Rexp - ~ - l o g i  , for fl(j)<i<c~(j). 

It follows that, as j ~ o% 

2 Re- cq/2 
(35) ~, P(A, IAj)< , +4R(logj)(logzj)j-cr/Z=O(1). 

j < i < c t ( j )  : 1 - - e  - c q / 2  

The proof of Theorem 3 follows from (21), (29) and (35). 
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Proof of Corollary 1. The result is known for k=cons tan t  (see e.g. (4)), hence 
we shall limit ourselves to k=k,~ov. We shall make use of the following 
lemma. 

Lemma 20. Let k=k,~oo and suppose that k,=o(log2n ) as n~oo. Then, as 
n --> O0 , 

i3 ) 

(37) l o g 3 n = o ( ( k + l ) l o g ( l ~ ) ) ;  

log 2 n 

Proof See Deheuvels and Devroye (1984), Lemma 1. 
a__ (l~ n] 

Let ck-k , ( l+6,)=logzn+k,( l+a) log \ k, 1' where a > - I  is constant. 

By Lemma 20, we see that c~ satisfies condition (iii) of Theorem 1 and con- 
ditions (a - b )  of Theorem 3. 

Using Lemma 20 again, it is straightforward that 

n k, c~ e x p ( - c ~ ) < o o  or 0% 

according as a > 0 or a < 0. The proof of Corollary 1 is completed by Theorems 
1-3. 

Proof of Theorem 4. The proof is identical to that of Theorem 3, up to the 
point where one has to show that 

~(j) 

P(Ai]Aj)< ~. 
i = j + l  

For this, assuming as usual that i,j~J, k = k ' = K + l ,  u~<uj, cn>c,j, we 
deduce from (30) that 

{K(ni -nj ) (uj  -u i )  } exp ( -(n i -hi) ui) 

< 2 exp ( -  K ( 1 - ~  ) -(ni -nj) ui + 2 { K (nl -nj)(uj-u~) } 1/2 ) 

=2exp  ( - {l/(ni -nj) ui - ]/-K (uj/u~ - l ) }2 + K (uj -u~)Z t 
u s u j  / "  

Let us assume in the first place that ie(II)' d, i.e. 

j<i<fi( j)=max {l> j :  l-j<=d log l}, 
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where d > 0 will be precised later on. We have by (25), as in the proof of (30), 

(40) (u j -u i )2<(UJ- l t2<(n ' - l )2<(ea-1)ed(n l -n-~t  
bl i Uj  = \ U  i ] -= \ n j  ] = \ n i / "  

There exists an L 6 such that j > L 6 implies 6 = b, > A > 0. It follows that 

Also, we have 

n i - - H j  (nl-nj)ui> --  K(1 +A). 
ni 

K ( U J - 1 ) < K ( n i - l t < = K e a ( n i - n j  = \nj ! \ n i / 

We now choose d > 0 such that 

A 
( ~  - ed/2) 2 -ed(e  d - 1) 

We obtain that, for all j<i<fl(j), 

and e d < 1 + A. 

A (ni-nj] k ,~)<exp(-D(i- j ) ) ,  P(AilAj)<exp ( - ~  \ ni / 

for some conveniently chosen D>0.  Here, we have used the fact that logzn 
= O(k,) and (26). By all this, we have 

fl(J) e D 
(41) ~ P(A,[Aj)< 0(1). 

i = j + l  = 1  - - e  - D  

A 
Let us now use the assumption that u,~ n log 2 n, where A is a constant. 

We now choose E>d, to be precised in the sequel, and let O(j)= max {l > j: l 
U i - j>Elog / } .  Let p =  1 - - - ,  and consider in the first place the case where 
Ui 

fi(j)<i<=O(j). We get easily from (25) and (30) that 

(42) P ( A ~ L A ) < 2 ~  k /  (1 ~. {pk(l+2)}~exp(-pk(l+2)),  
/=0  

( nj)( _ tl where 1 + 2 =  1 - ~  1 (1 + 6 , ) ~  1 + 6 ,  Furthermore, there exists L7, 
U j ]  ~ i 

jointly with A > 0  and 0 < p a < p 2 < o o  such that i>L,  implies that pl<=p<=p2 
and 2>A.  

Next, we denote by U a random variable with a Binomial B ( k - l , p )  
distribution and by V a random variable with a Poisson P(kp(1 +2)) distribu- 
tion. 

By (42), we obtain the bound 

(43) P(AilAj)<2{P(U-kp>=kA/2)+P(V-kp(I+2)<kA/2)  }. 
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By Chernoffs theorem or by Jensen's inequality, it can be verified that we 
can find Pl depending continuously in p and A only and P2 depending 
continuously on p(1 +2) and A only, such that, by (44), 

+ P 2 } ,  0 < P l ,  P2 <1. (45) P(A i ] Aj)<2{p] k 

By continuity, we see that the supremum p of max {Pl, P2} when p and 2 
vary (in a compact set) is such that p = e-t< 1. 

It follows that for fi(j)<i<O(j) we can use the bound 

P(AilAj)<4pk=4exp(--tk)=O(i -a) for some a>0 .  

Here, we have used the fact that k=k,, and that liminfk,/log2n>O. It 
follows that, as j ---, o% "-~ ~ 

(46) ~ P(A~ IAj)= O(j -a log j)=o(1).  
f l ( j )  < i < O ( j )  

Up to now, the choice of E > d  has remained open. Let us choose E such 

that, for any i>=O(j), (nl-nj)ui:(1-n~)k(l+~')>k. This is always possible 
since lim infc5 > 0. \ r~ i ] 

n ~  oo 

By (30), we have then, for i>O(j), 

P(A~lAj)<2max { l((n~-nJ)ui)~exp(-(n~-nJ)u~)}~<=~<k �9 

2 
- ( k  - 1)! {(nl -nj) ui} k- 1 exp ( -(n i -hi) ui). 

By the same arguments as used in the proof of (29) it follows that 

P(A i [Aj)= 0 ( ~ 7  ffk- 1/2 exp (-k(f'-log(l+c~'))+k(l+f')nJ(l+o(1)))}--n~ " 

Choose now D so large that, for i>O(j), k(l+6')>�89 In 
this case, there exists a b > 0  such that P(AilAj)=O(i-b). Here again nj 

(47) ~ P(A~ [Aj)= O(j-b(logj)(log2 j ))= o(1). 
O(j)  < i <=tit j )  

(47), jointly with (29), (41) and (46) suffices for proof of Theorem 4. 
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