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Summary. Under general regularity assumptions, we characterize the upper
and lower almost sure classes of U, ,, where U; ,<...<U, , are the order
statistics of an iid. sample of size » from the uniform distribution on (0, 1),
and where k=k, is a non-decreasing integer sequence such that 1=k
=0(log, n) as n— co.

1. Introduction and Results

Let U, U,, ... be an iid. sequence of uniformly distributed random variables
on (0, 1), and denote for n=1,2, ..., by U; ,<U, ,<...<U, , the order statis-
tics of Uy, ..., U,.

Let k=k,, n=1,2, ... be a non-decreasing integer sequence such that, for n
=1,2,...,1=k,<n In this paper, we shall be concerned with the limiting
strong behavior of U, , as n—oo, with emphasis on the case where k,
=0(log, n) as n— 0.

Before stating our theorems, it is worthwhile to review the known results
concerning strong limiting bounds for U, ,. The case where k is constant has

received a complete treatment. In this case, we have:

(1) (Kiefer, 1972). If ¢, | then

21
P(nU, ,<c, 1.0.)=0 or 1, according as » — ck<oo or =o0.
’ n

n=1

(2) (Shorack and Wellner (1978)). If n~'c,| and either ¢,7 or
liminf c,/log, n=1, where log; stands for the j-th iterated logarithm, then

n—>
el
P(nU, ,=c,i0.)=0 or 1, according as ), - ckexp(~c,)< o0 or =o0.

n=1

It may be remarked here that (1) is due to Geffroy (1958, 1959) for k=1,
while (2) is due to Robbins and Siegmund (1972) for k=1. Earlier, Barndorff-
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Nielsen (1961) had given a variation of the same result, assuming that n='¢,}
and that (1 —n"'¢,))"|, in which case, we have

® 1
(3) PnU, ,<c,i0)=0or 1, according as Y, 081 (1-n"1¢)'<coo or =c0.
’ n

n=1

A direct application of either of these criteria shows that, for any fixed
pz4,
(4) P(nU, ,<{(logn)(log,n)...(log,n)* +*}~ % i0)

=PnU, ,zlog,n+(k+1)log,n
+logyn+...+(1+¢)log,n 1.0)=0or 1,

according as £>0 or ¢£0. These bounds are given in Deheuvels (1974).

When k100, the situation is more complex, and, up to now, only first order

terms are known, from Kiefer (1972). We state now his results, which we
reformulate, using different notations.

(5) (Kiefer, 1972). Suppose that k,1 oo, and that n= 'k, ~p, 0. Then:

—k
(5.1) If k,/log,n—w (and "By T), then lim sup iLU’ﬂv—zl as.;

log,n o 2klog,n

(5.2) If k,log,n—-ve(0, 0), and if —1<d'<0<d” are the two roots (in 8) of
the equation v~ =48 —log(l +94), then

Uon— U, ,—k
lim inf ’Lk’T"i‘:a' and limsup u’k"——=5” as.
. U, ,—k
(5.3) If k,/log,n—0, then 111;]ILSaljlp %(;k,gnjrz_':l a.s.;

(5.4) If k flog,n—0 (together with np 1 oo and 1:; - io) then
2

Py, ,<k{logn}~*+9*j0)=0 or 1, according as >0 or ¢<0.

In the expressions above, we remark that the use of an auxiliary sequence
p, to ensure regularity conditions on the rate of increase of k, is necessary, due
to the fact that there is no non-ultimately constant non-decreasing sequence k,
=o0(n) such that k,/n is non-increasing.

In the sequel, we shall precise these bounds. Our main results are stated
below.

Theorem 1. (upper-upper class). Let k=k,=1 be a non-decreasing integer se-
quence such that limsupn~'k,<1. Let also ¢, be a sequence such that

lim k;; *2(c, —k,)= + oo, and
0 k

(6) Y = k? (% cn) exp(—c,) < 0.
T n
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In addition, suppose that one of the conditions (1), (ii} or (iii) below is
satisfied:

M) nte,l;

(il For any nzl such that k,, , =k,
limsup(c,, /c,)<oo; liminfk; '(c,—k,)>0; lim(logk,, ,)/logk,=1;

n— o n— oo

m+1)"te, Sn e,

ns

(i) For any nz1 such that k,, , =k,, (n+1)"'e¢,,  Sn" "¢,

.o..c.—k c
0<lim inf -——"<lim sup ——
nvw 10E,1T  pow 108, R

< O

Then P(nU, ,>c, i.0.)=0.

Theorem 2 (lower-lower class). Let k=k,21 be a non-decreasing integer se-
quence such that limsupn~'k,<1. Let also c, be a sequence such that:

(a) If limk,= oo, then lim k; */%(c, —k )= —c0;

n—oC n— w0

(b) If lim k, < oo, then limc,=0;

n— n— 00

© 3, % k12 (% cn)k exp(—¢,) < oo.

In addition, suppose that one of the conditions (i) or (i1} below is satisfied.

@) n e,
(i) k,—c0; k,=0(n"?); lim (k,logk,)”"*(c,—k,)= —oo; for any n=1 such

that k,=k,,, (n+1)"'c, Sn"'c
Then P(nU, ,<c, i.0)=0.

n

Remark 1. The change of variable ¢,=k,(1+4,) transforms (6) into the equiva-
lent form o 11n
(7) Y. = exp(—k(5—log(1+8)) <o,

n=1

where k=k, and 6=4,. Observe that the same condition (7) is used in Theo-
rems 1-2 but with 6, uvltimately >0 in Theorem 1 and ultimately <O in
Theorem 2.

It will be proved in the sequel that P(nU, ,>c,)—0 iff k;%(c,—k,)— o,
and likewise P(nU, ,<c,)—0 iff (a) or (b) in Theorem 2 holds. It follows that
these conditions have to be assumed in order to have P(nU, ,>c, 1.0.)=0 or
PnU, ,<c,1.0.)=0 repectively.

If we assume in Theorem 1 that n= 'k, ~p,|0 and that ¢, —k,~7y log, n for
some 0<y< oo, then the conditions in this theorem sum up to (7) and (n
+1) e, =n"te, for k,, =k, Likewise we see that for k,=0(log,n), the
regularity conditions in Theorem 2 are satisfied for all sequences ¢, of interest
whenever n”tk,~p, 0.

Theorem 3 (lower-upper class, small k’s). Let k=k,=1 be a nondecreasing
integer sequence such that k,=o(log,n) as n— oo, and such that there exists a
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sequence p,| with n™ ' k,~p, as n— co. Assume further that ¢, is a sequence such
that:

C, c,

{a) 0<lim inf <lim sup

1= 00 PRL n- oo og,n

() If k,=k,,, then c,<c,,, and n~tc,2(n+1)"'c,, ;

<00}

© %k (o) ep(—e)=c

Then P(nU, ,>c, i0.)=1.

Corollary 1. Let k=k,=1 be a nondecreasing sequence such that k,=o(log,n) as
n— oo and such that there exists a sequence p,| with n™ 'k, ~p, as n— co. Then

nl, ,—log,n

(8) lim sup =1 as.

— i
(k+1) log ( °i2”>

Theorem 4 (lower-upper class, the limit case). Let k=k, be a non-decreasing
integer sequence such that k,=O0(log,n) as n— 00, and such that there exists a
sequence p,| with n='k,~p, as n— oo. Suppose that liminf k,/log,n>0. Let ¢,

| (Audivel

A
be a sequence such that c,~— log,n for 0 <A< o0, and such that, whenever k,
7

-1 —1 .
=K1 Cper2Cand n+1)" e, Sn"te,. Then, if

(7) ¥ % K12 (E c) exp(—c,)= o0,

PmU, ,>c,i0)=1

Corollary 2. Let k=k,=[vlog,n], where ve(0, ) is fixed. Let 6" >0 be the
positive root of the equation (in &) v=* =38 —log(1+ ). Then, for any fixed p=5,
we have

9) P (nUk’n> v(1+d")log,n

1+5n
+ (T) (Blogyn+log,n+...+(1+¢) log,n) i.o.) =0or 1,

according as ¢>0 or ¢<0.

Remark 2. Let F(*) be a distribution function, and let G(u)=inf{x: 1 — F(x)<u}
for O<u<1. It is easily seen that X,=G(U), n=1,2, ... defines an iid. se-
quence of random variables with distribution function F(+), and such that M, ,
=G(U,,) is the k-th maximum of X, ..., X,.

It is therefore easy to translate the preceding results in terms of M, , in
order to obtain strong limiting bounds for M, ,. By Theorems 1-4, we see that,
under suitable regularity conditions on k=k,, u, and F(-), we have
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(10) P(M, ,<u,i0)=0or 1,
according as
k2 (en k
(11) PR {7 (1—F(un))} exp(—n(l~F(u,) <o or =c.

Remark 3. For the lower-upper bound, we have only considered the case where
k=k,=0(log,n). It is worthwhile to notice that (6) gives also a sharp result
when k,/log, n— co. This can be seen from the equivalent form (7):

1/2

(7) Z% exp (—k(6 —log (14 8))) < oo,

1/2

1 .
If we take in (7) d=+(1+¢) (E log, n) , using the fact that d—log(1+9)

~168% as 80, we see that the series in (7) converges or diverges according
as >0 or ¢<0. The same can be said about the lower-lower bound. This last
result corresponds to (5.1).

Remark 4. Note that, for k=k, constant and ¢, <k, we have

k'? fe
(

@ (s )= (Ca) ewi-ersteren () )

In this case we have (6)<>(1), which means that (6) is then necessary and
sufficient for P(nU, ,<c, 1.0.)=0.

Remark 5. The series (6) converges or diverges, according as the same happens
for

k(1
(12) o (ﬁ & exp(—cn)).

Remark 6. Corollary 1 gives a result very similar to that obtained in Deheuvels
and Devroye (1984), where it was proved that if M* denotes the maximal k-
spacing generated by uniformly distributed random variables on (0, 1), then, if
k=k,— oo together with k,=o(log, n) as n— oo, we have

M*_1
lim 08" g s

oo logn
k1
Og( Kk )

This hints that some kind of identification of M} and U, , should be
possible (after changing logn into log, n) via a strong invariance principle.

We do not offer here a proof of the sharpness of the conditions in Theo-
rem 2. This will be made in a forthcoming publication. The proofs concerning
the upper-upper, lower-lower and lower-upper classes are given in the next
sections.
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2. The Upper-Upper Class

Throughout, we shall make use of the following Borel-Cantelli-type lemma,
due to Barndorff-Nielsen (1961) (see also Devroye (1981)).

Lemma 1. Let E,, n=1,2,... be a sequence of events such that P(E)—0 as
n—co. Then, if ZP(E“r\En+1)<oo or ZP(E NES, ,)<oo, we have P(E, i.0.)
=0.

In this section, we shall consider the events defined by E,={U, ,>n"'c,}.
First, we give conditions for which P(E,)—0.

Lemma 2. Let k=k,=1 be a non-decreasing integer sequence such that
limsupn= 1k, <1. Then P(E)=P(U, ,>n""¢c)—0asn—>o0 iff

o k=12 (e —k)— oo,

Proof. Assume in the first place that k,7k < o0o. Then nU,_, converges weakly to
a I'(k) distribution as n— co. Hence P(E,)—0 iff ¢, —>oo¢>k 12(c, —k,)— co.

Next, if k,—» o and n—k,— o0, it is well known (see e.g. Balkema and
De Haan (1978) Th. 2.2) that

{k(n—k)n=3} 12U, ,—n"'k)»N(0,1) in distribution.

It follows that, when limsupn~'k,<1, the condition k; '/*(c,—k,)— o0 is

n— oo
necessary and sufficient for P(E,)— 0.
Note here that if ¢,=k,(1+46,), this condition amounts to k}/*8,—~ o0 or
equivalently to k, 62— co.

Lemma 3. Let k=k,=1 be a non-decreasing integer sequence, and let 0<c,<n
forn=1,2,.... Then

c c
P(E <P|2<U_, . "“)J—*l
(E,nE )= ( SR ALE Y ]

c

C
+P(l]k—1,n§"nl<l]k,n> nr l{kn=kn+1}+P( <l]k n= n+1)

n+1 +1

Proof. 1°) Assume that k=k, =k, ;. Then

n k,n+1—n+1

cn Cﬂ Cn cn Cn
< ({Ukélsénli}“{‘fmﬁ}“{Unﬂ=;ﬁ}>”{f%énii}’

as requested.
2°) Let now k,, >k=k,. Then U, . ., ,2U, ,and hence

C C
E mE;+1={Ukn>—"—,U < "“}
’ n

A

c cn cn 1
EnmEn+1c{~r—l—< U"’”én;l}'

This completes the proof of our lemma.
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Lemma 4. Let 1 <k<nand O<p<1. Let aiso Z denote a random variable with a
binomial B(n, p) distribution. Then we have the following identities:

P(Uk~1,n§P<Uk,n):P(Z:k—l): (kil) pkﬁl(l _p)"‘k“,

P, ,>p)=PZLk-1)= i() p(L=py,

=0
n

kn—p) P(Z>k=2

=k J

n

) pitt=pr,

where U, ,=0.

Proof. Straightforward.

Lemma 5. Let k=k, =1 be a sequence such that limsupn~ 'k, <1. Let c,=
k(1 +6,)=k(1+8)e(0, n). Then, as n— oo, we have, uniformly in 6>0,

—1/2

1+6

P(U,_q{ ,sn” cn<Uk,n)=0{ exp(-k(é—log(1+5)))}.

Proof. By Lemma 4 and Stirling’s formula,

P(U_, <n te,<U, )= o{( (1—5))—”2(1+5)k—1(1—,,£k_5k)n_k}’

which gives the result, using the bound (1 —a) e ", ¥>0,0=Za<1.

Lemma 6. Let k=k,=1 bhe a non-decreasing integer sequence such that
limsupn='k,<1. Let ¢,=k,(1+3,)=k, be a sequence such that n~'c,]. Then

n— oo

Y P(E,NE:, |)<oo whenever

X, KL exp(—k, (5, log (1+3,) < o

Proof. By Lemma 3, P(E,nE., )sn ¢, P(U,_, ,<n "¢, <U_,), which, by
Lemma 5, implies the result.

Lemma 7. Let k=k, =21 be a non-decreasing integer sequence such that
limsupn=tk,<1. Let c,=k,(1+3,)e(k,,n) be such that k.'*3,— c0. Suppose

n—+x

further that one of the following set of conditions is satisfied:
(i) n~ 1+ 6,)=cy/k,;

Yk 2 (ks — k) exp (—k, (8, ~log (1+6,)) < o

(ii) For any n=1 such that k,, , =k,, we have (n+1)c,, , <n"'c,;

Y ky*(k, . —k,)exp(—k,(0,—log(1+4,)<co0; limsup(c,, /c,) <.

n
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c

C, C < C
Th P(J<U < "“) P(—"<U sﬂ)ﬂ < 0.
n z{ n en =y 1 + n L= 1) n+1 @

Proof. Let P=Pn 'c,<U, ,<(m+1)"*c,,,). Clearly, P,=0 when
(n+1)"*c,,,Sn"'c, Therefore, it suffices to consider the case where
(m+1)"*¢,,,>n""c,. When (i) holds, we shall use the bound

1+5n)

(1’!-‘}— 1)_1 Crit —n~1 cné(kn—}—l _kn) ( n

lIA

On the other hand, if (i) holds, the bound (n+1)"'c,,,—n 'c,
(n+1)~"¢,, , suffices for our needs.
By the assumption k}/? 8, — oo, we have, for n large enough,

1Ty k(8> 2k (140 00 )

This, in turn, implies that

@) tenss gy
p= | (k) kx*=1(1—x)*~*dx

n-1c,

<[t 0 s o] ks

By the same arguments as in the proof of Lemma 35, we have in case {i):

B=0{k; " (k,,  ~k,) exp(—k,(6,—log(1+3,))},

while in case (ii), we get
B=0{k,*(k,, 1 ~k,) exp(~k,(5,~log(1+3,)},

as desired.
Let Q,=P(n 'c,<U_, ,<(n+1)""c,, ). We get likewise, for n large

enough, ¢ ¢, (n n k u k n—k
Qé{ﬁi‘#} ) o7 o) (1-ara)

In case (i), we obtain

Q, 1= 0(Q,(1 +3,)=0{k; "k, .y —k,) exP (—F, (3, ~log (1+8,).
In case (ii), we get

ote-tafizo. 4-off () 2y ool b}

It suffices now to remark that ¢? =k?(143)? <nk(1 +5)* to complete the proof.

(&)
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Lemma 8. Let k,T 0, 6,>0, and assume that

52

k 6
| d liminf =—"%>142r,
a0 logk an 1'1111[1Dn logk >1rer

n

where r =0 is fixed. Then

Y k2 (k, —k,) exp(—k,(6,—log (1 +4,)) < .

Proof. Note in the first place that x —log(1+x)~3x* as x—0. It follows that
there exists an &>0 and an n, such that n=n,=k,(5,~log(1+6,)>(r+3
+e)logk,, ,.

This, in turn, impiies that, for some ¢>0,

k=12 (k,y  —k,) exp(—k,(6,—log (1+4,)
=0 {k; oy —k)} =0 (k" =k}

The result follows, since Y. (k;#—k; 7)< oo.
Theorem 5. Let k=k,=1 be a non-decreasing integer sequence such that
limsupn~'k,<1. Let c,=k,(1+06,)€(0, n). Assume that k; **(c,—k)=kL?d,—

n— oo

+ o0, and that 1
y ” kL2 exp(—k, (8, —log(1+6,)) < co.

1

In addition, suppose that one of the following set of conditions is satisfied:
@ n~te,=k,n {1+, ;
k, 82 logk
(i) n= (140 ]; liminf ~29 5 1; lim 8"+l _y,

now logk, o logk, ’
(iii) For all n=1 such that k,=k,, , (n+1)"'c,,., <n 'c,;
2 logk
Iimsupgﬂi<oo; lim inf 2" > 3; O8%e1
ns Gy o logk, o l0gk,

Then P(nU, ,>c, i0.)=0.
Proof. It follows as a direct consequence of Lemmas 1-8.

Remark 7. 1°) By (5), if n=*k,~p, |0, it can be seen that
V1
nlU, ,—k,=0 (max {logZ n, —I/Oirz’z})

almost surely. It follows that the condition (i) of Theorem 5 is applicable in
the case where k,(logk,) ' k; " log, n=(log, n)/(logk,)>1 in the upper tail. This
corresponds to the situation where, for some £>0,

k,=o(log' " *n).

Likewise the range of application of (iii) includes k, =o(log*~*n).
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2°) By Lemma 8, one could extend the conditions of Theorem 5 to the case

1 gkn+1

where lim sup < 0. We shall not state such results which correspond

now  lOg
to an irregular behavior of k,. Clearly, if k,1 and n~'k,~p,|, we have
k,.1/k,— 1, and hence (logk, )/logk,— L.

Proof of Theorem 1. The first two statements of Theorem 1 (corresponding to
conditions (i) and (ii)) follow directly from Theorem 3, since

lim inf k" *(c, —k,)=lim inf §,> 0

n— o h-> a0

2

implies, if k,T oo, that l]:)gk — 00. The proof is completed by Lemma 8.

Condition (iii) corresponds to the case where k,=O(log, n), and implies that
lim sup (¢, ,/c,) < oo. Under this condition, there exists a 0>0 such that, for n

n—>co

large enough,
ky'? exp (—k,(3,~log(L +4,)) S(logn)~".

By Abel’s lemma, we see that the series Z(k,l .1 —k,)(logn)~? converges,
since 3.k, (og )10 =0 (L n~*log)*~*2) <.

Lemma 7 completes the proof of Theorem 1.

3. The Lower-Lower Class

In the sequel, we shall use the notations and results of Section 2 and consider
the events F,={U, ,<n"'c,}=ES. We remark that P(F{nF,, )=P(E,nE, ).
Our proofs will be based on Lemma 1 which implies that P(F, i.0.)=0 when-
ever Y P(F{nF,, )<oo and P(F,)—0.

Lemma 9. Let k=k,=1 be a non-decreasing integer sequence such that
limsupn~'k,<1. Then P(E)=P(nU,_ ,<c,)—0 for ¢,20 iff:

() ¢,—0 when limk, < c0;

(ii) k; '*(c,—k,)— — oo when limk,= oo
Proof. Same as for Lemma 2.

Note here that if ¢,=k,(1+9,), the conditions above amount to (i) J,— —1
if lim k, < oo; (if) k3?6, — oo if lim k,= oo
Lemma 10. Let k=k,=1 be a non-decreasing integer sequence such that
1=k, En,n=1,2,.... Let c,e(0,n), n=1,2, .... Then, if K'=k, ,,
Cnt1

n+1

C n Cn
PUSE, )P (2 <U_, 5 01)

¢ cn+1 ¢ 1
+P<Uk—1,n§_n£<Uk,n) +11“‘ _km,+P( Uk',é;”fi)~
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¢ Cnt1
Proof. In general, F,fmFHl:{Ukmn>;lﬂ, Ukn+1!n+1§n"+ 1}.
1°) Letk,, >k, Inthiscase U, , ,,,2U, ,and

c Cn Cy Ca
anEH-lC({;<l]kn+1,nén;i}m{(]n-(—1>n.:i})
C 4 C
_n_<U < n+1 U < n+1 >
U({n kn+1—1,n—-n+1}m{ n+1~n+l

2°) Let k,, ; =k,. We get now

c Cy Cp C,
EnF, < ({;<Uk,n§ﬁ}m{%+1>n;i}>
c ¢

The result follows.

Lemma 11. Let k=k,=1 be a sequence such that limsupn~'k,<1. Let
c,=k,(1+0,)=k(1+5)e(0,n). Let A, be a sequence such that —1=4,6=<0,
n=1,2,..., and that k,A,=0(n"?) as n—oo. Then, as n—» oo, we have uni-
Jormly in 6e[A4,,0],

—1/2

1446

P(U_ .17 e, < Uk,n)=0{ exp (—k(d—log(l +5)))}-

Proof. The proof is identical to the proof of Lemma 5, up to the point where
ko =k
we set (1 ——n——k) =0 {exp (—kd)}, which holds for k? 6*=0(n).
Remark. 1°) If k,=0(n'/?), we may choose 4,= —1.
2°) If k,/logn— oo, in view of (5.1), there is no loss of generality in taking
A4,=—(2+¢)k, * log, n)'/* for some £>0. In order that k, 4,=0(n'?), we must
restrict the range of k, by assuming that k,=0(n/log,n) as n— .

Lemma 12. Let k=k,>1 be a non-decreasing integer sequence such that
limsupn='k,<1 and lim k,=co. Let c,=k,(1+6,)€(0,k,) be such that

n=w n-r oo
k}?6,— —oo. Suppose further that one of the following sets of conditions is
satisfied :

D) n=H(1+6,)=c,/k,

Z k;+142(kn+ 1 —kn) CXp ( _kn+ 1(5n+ 1 _log (1 + 5n+ 1)))< OO:
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(ii) For any n=1 such that k,, =k,, we have (n+1)c,, ;<n~'c,;

n>

Z kifl (kn+ 1 —kn) exXp (— kn+ 1(5n+ 1 ——IOg (1 + 5n+ 1)))< o0

c c c c c
Then Y {P|2< U, s"“)ﬂ P(—"<U sﬂi) < 0.
¢ ;{ (n bnei—1n=p 1 1 n+1+ n e tom =4 11 x

Proof. The proof is identical to the proof of Lemma 7 up to minor changes. In

n

the first place, we have, as n—~o0, n7 !¢, < . Next, we use the bounds

- - 146,
(n+1)'e,,, —n 1cn§(kn+1—kn)( n+1+1)

1—i'5r1—§—1

144,
ék”“( n+1 _Ll)

)é(kn+1—kn)kn+1( n+1

whose validity depend on assumptions (i} or (i1). Finally, in the evaluations of
P, and Q,, we replace throughout 6, by é,,,,k, by k,,; (leaving only un-
changed the terms k, ., —k,) and ¢, by ¢, ;. We omit further details.

We dont need here (as was the case in Lemma 7) the assumption that
C,. 1/¢, is bounded from above.

Theorem 6. Let k=k,z1 be a non-decreasing integer sequence such that
limsupn~tk,<1. Let c¢,=k,(1+6,)€(0, k,). Assume that k,*"*(c,—k,)=k}?$,

n— o0

——o0 if k,Joo and that c,—~0 (i.e. 6,—» —1) if k, is bounded. Assume also
that k,d,=0(n""?) and that

¥ - K exp(—k,(6, ~log (1 +5,)) <.

In addition, suppose that one of the following sets of conditions is satisfied :
@) n~te,=k,n 1(1+38,)];

(i) n~'(1+6,)]; liminf ka0, >1;

Y e logk,” 7
(iii) For any nz1 such that k,=k,, ,,(n+1)" ¢, <n"'¢c,;

2
lim inf >3,
no lOgk,
Then P(U, ,Zc,i.0.)=0.

Proof. In view of Lemmas 10-12, the proof is identical to the proof of
Theorem 6, hence, details will be omitted. We remark only that we dont need
the assumption that (log k,, ,)/log k, is bounded from above (see Lemma 8).

Proof of Theorem 2. Theorem 2 is a direct corollary of Theorem 6.



Strong Laws for the k-th Order Statistic when k<clog,n 145
3. The Upper-Lower Class

In this section, we shall make use of the sequence n;= [exp (lojg J)]

Lemma 13. Let k=k, 1 be a sequence such that limk; *(k, ., —k,)=0. Let c,
=k(1+46,) be a sequence such that liminf$,>0 and that k; '*(c,—k,) =k} 5,1.

Then the sequence k (5, —log (1 +4,)) is ultimately nondecreasing in n.

Proof. Let k)26, ,zk./*6,, or equivalently, let 0, 120,/(1+0), where o=
(k,, 1/k,)"> —12=0. Noting that 6 —log(1+4) is an increasing function of 620,
we have:

kn+1(5n+1 ~]0g(1+5n+ 1))
, 5n
n+1{ kufk, )2 —log(1+3,) —log (1 - (1 I

= ky(6,~log(1+0,))

+kn{oc5n —(2a+a?) log(1+3,)+(1+9)° (1 j—a) (1 1 i oc)}

=k,(0,—log(l +5n))+knoc{log( }(R(é) )

Ja —(kn/k,ﬁl)l”))}

<)

S,
1+6

5 )
where R(J)= (5 —2log(1+9) —I—I%)/(log(l +9) —m> Routine computa-

tions show that R(6)>0 for all §>0, while R(§)~34 as 6—0 and R(5)~
d/log(1+8) as § — oo. Hence, our assumptions imply that « —0 while iminf R(d,)
>0. This suffices for proof of Lemma 13, since, for all 6=0, ne

0
1 ——->0
og(1+9) 332

Remark. The assumption that n=*k,~p,| implies that lim k; ' (k,, , —k,)=0, if
knT' n— w0

Lemma 14. Let k=k, =1 be a nondecreasing sequence such that k,=O(log,n).
Let ¢,=k,(1+6,)=k(1+0) be such that liminfd >0 and that k;**(c,—k,)

i imalve)
=k}/?3,1. Assume further that there exists a sequence p,| such that n~'k,~p,
as n—oo. Then, if

oo

(14) ) ;I;k”z exp(~k(d—log(1+9)=

n=1

we have

(15) 2%

i j

11’2

exp(—k, (8, —log(L+9,))= co.
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Proof. Evidently (i4)<5 p, k™% exp(—k(6—log(l +8)))=co. By Lemma 13,

this in turn implies that i
Y (5 —n) p, kM exp( ~k, (0,,—log(1+34,)))= co.
j

But this suffices for (15), since (n;, ; —n) p, ~n; '(n;. —n)k, ~k, flog,n;.

In the sequel, we shall assume throughout that k=k, =1 is nondecreasing
and such that n=*k,~p,| as n— co. We shall also assume that there exist fixed
constants 0 <¢<d < oo such that, for n=3,4, ...,

{16) clog,n<c,—k,=k,6,<c,=k,(1+3,)<dlog,n.

There is no loss of generality in assuming that ¢, <d log, n for some finite d.
This follows from the fact (see (5)) that nU, ,=O0(log,n) whenever k=k,
=0(log, n), and that (6) holds for ¢,=d log, n and for a large enough d. Hence
(14) is unaffected if we replace ¢, by min(c,, d log, n).

. 1 .
Likewise, we know from (4) that U, ,= Uk’ngﬁ log,n i.o.as. Clearly if we

can prove that P(nU, ,Zmax(c,, log, n) io.)=1, we will have also prove that
PnU, ,=c,i0.)=1. These arguments justify (16).

k,n=
Lemma 15. Let (16) be satisfied, and assume that, for any n=1 such that k,, ,
=k,, 0,,,20,. Then (14)=(15).
Proof. First observe that there exists an o>0 such that, for a large enough,

exp(—k,(0,—log(1+4,) <(logn)~= It follows that for the proof of Lemma 15,
it suffices to show that

Z ny Mg, —n)k, (logn)~* L, 1, 5y < 90
J
This in turn follows from
Y. (logn)~* L, by < O
J

Next, we note that, as j— co, (logn )™ *=0(;j~*?), while

Z 1(kn“1>kni §knjzo(]og-])
i<j
The proof of Lemma 15 is completed by Abel’s lemma and the fact that
Y j~*~*(log jy< oo for all a>0.
J

Remark. Lemma 15 implies Lemma 14 when (16) holds. Under the assumptions
of Lemma 15, we see that in (15), we may restrict the summation to those j’s
for which k, . =k, .

Lemma 16. Let k=k,=1 be such that n='k,—0. Let =96, be such that k4,
=o(n'? and 0<n~te,=n""k,(1438,)<1. Then, we have, as n- oo,
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—1/2

(17 P(Gn):P(Uk—l,nénﬁlCn<Uk,n)~—1-T—5—

exp (—k{o —log(1+5))),

where B is a constant. If k,—oo, B=(Q2n)" Y2, while B=k""Y2/(k—1)! if
k,Tk<oo.

Proof. We proceed as in the proof of Lemma 5.

Lemma 17. Under the assumptions of Lemma 15, if

(14) 2 %k”z exp (—k(d —log(l+ )= co,
then )
(18) Z P(Aj)= 00,

jeJ

where A;=G,, G,={U,_, ,£n "¢, <} and J={jz1:k, =k

nLj—(log J')Z]}'
Proof. (14), jointly with Lemmas 15 and 16, implies that ) P(A ;)= 00 whenever

J
(16) holds. Let v;=P(4;. By the arguments in the proof of Lemma 14, we
know that, as j— oo, vjzo(j“ﬁ) for some f>0. It follows that

Z Uj= O(Zj_ﬂ(log.])s 1{k,,].+ 1 >k,.j})< ®,

iy j
by Abel’s lemma, as in the proof of Lemma 14.

Proof of Theorem 3. By the Hewitt-Savage zero-one law, with the notations
above, we know that P(4; i0.)=0 or 1. Theorem 3 will be proved if we show
that P(4; i.0.)=1. For this, it suffices to show that there exists a constant C>0
such that, for all j,, there exists a j, = j, with

(19) P( O Aj)>c.

Jj=Jo
jed

Throughout, we use the assumption that ZP(Aj)zoo, which holds by

je
Lemma 17. In the proof, we shall make use of a Jlower bound of the probability
in (19). In order to simplify notations, let us make the convention in the sequel
that the summation ) stands for > . By an inequality of Chung and Erdds
(1952), Y Jjed

(20) P(Q AJg{i p(Aj)}z{zl ) _P(AinAj)Jr_i P(Aj)}‘l.

It follows that for (19) it suffices to show that, for j, > j,— oo, we have

o1 L rura)zs L el

Josj<izjs
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where, as usual, ieJ and jeJ. The problem reduces therefore to the derivations
of adequate upper bounds for P(4;n4)).
Let us introduce for sake of convenience the following notations:
j<i,  k=k,sk'=k,, 06=6,, =46,

ni

w;=n;te, =n; k(1+9), w=n;"c,=n7 K (1+8).

n 13 i

In general, for u;<u;, we have

k-1 411 TAVES
22 Puala)= ¥ (1) (2
o\ ! u;
TR n.—n.
== i J K—k+l(] g ymi—ny—k +k—1
( ”j) (k'—k—l—l) “ (1 —u)

In the first place, we see that, for j> L, large enough,
23) (L —uv ="K +41 <2 exp (—(n,—n,) u,)
This follows from the fact that

kK —k<k'—k+1<k'—1=0(log,n)=0(logi), u;=0(n;"logi),
and
(kK —k+Du,=0(@m;"'log?i)-»0 as i—oco.

We have used here the bound (1 —u)" <exp(—ru), r>0, 0su<l.
kel k—1 .
Next, we note that Y ( l )(ui/uj)""‘l(l —(u;/u))' =1, which, by (22) and
(23) implies 1=0

k-1

1 i
24 P(Ai|Aj)§2120 i (ni_nj)ui}l exp(—(n—npu), izj=L,.

Observe for further use that (24) remains valid for u;>u;.

Next, we split the range of i>j into two subsets:

(d) iza()=min{/>:1—j=(log(log, )}.

In j<i<al()).

It may be checked (see e.g. Devroye (1982)) that the following evaluations
hold, for some appropriate constants L, and L,.

— For j2L,, a(j)<j+2(log j)(log, j) and

i—j n, i—j 2 )
25 ——=<log (L) £ —— [1-—=);
25) logi_0g<ni)— logi (1 logi/’
i—j 3(i—j)) n, _i—j
6 {1~ <l
(26) logi ( logi /= n," logi
— For j=L, and i<a(j), we have
n. 2
27 log (1) < —(log, i) [1 ——
@) o () = ~(logs 1 (1= ).
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and

(28) -2 "

—i<1.
logi= m—

Lemma 18. Under the assumptions above, we have, uniformly in iz a(j), P(4;|A))
—0(P(4)).

Proof. By (27), (n;—n)u,= (l—ﬁl> K(1+0)~k(1+49). Also, by (16), we have
n;

liminfd,>0. By (24) and using the arguments in the proof of Lemma 5, it

n-* o0

follows that

P4, Aj)zo{ ((ni_n’j) “i)k"l CXP(—(”;‘_”J') ”i)},

1
(-1

which gives in turn, by Stirling’s formula,

P(A,rlAJ»):O{% exp (—k’{(l —%) (1+)—1—log ((1 ~%) (1+5'))})}

k=12 s -
:O{W exp(—k'(6' —log(1+6 )))}—O(P(Ai)),

where we have used Lemma 16 and se fact (see (16} and (28)) that

2c log, n )
1+6 H=0().
K+ ) "logz ( logi o)

This completes the proof of Lemma 18.
By Lemma 18, we have

Jj1 2
(29) > P(AfmA,-)=0{( Y. P4)) }
joSi<ali) Sigjs Ji=Jo
as desired. It remains to obtain similar results for case (II) to complete the
proof of Theorem 3. For this, we need only consider the case where k=K (see
Lemma 17), u;Su;, ¢, 2c¢, , ieJ and jeJ.

By (22), we have the upper bound

(30) P(AilAj)§2]l(;1 (k I 1) (—)k o (1 ——) ll (ni—nj)ui}l exp (—(n; —n;) uy).

U;

Let us use now the assumption that ¢, ¢, . We have

=

<< *t<1 and 011+
noou, u; n;

This, jointly with (30), yields the bound

kll

(31) P(4;14)=2 Z l'{ (1 “%)}l ?1" {(n;—ny ”i}leXp(“(”i_nj) u;)-
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Lemma 19. There exists an absolute constant R < oo such that, for all x>0,

) xll

32 <Re?*.
2 zgo an=

o) 21 1 o0 2l n21
Proof. We have ) _x_(—Zliz Y x 2 (———1+8(l) ), where £()~0 as [— o0,
hence result, =0 @D IS @D \i4y/mi

By (31) and (32), we have
: 1/2
(33) P(4;] 4, <2R exp (_ (1—ﬁ) nu, (1_2(_’1) ))
1; nu;

If we assume now that k,=o(log, n) as n— oo, it follows from (16) and (33)
that, for i large enough,

(34) P(4;| 4 <2R exp (— (1 —%i) (clogi)(1 +0(1)))

<2R exp (—g (1 _ﬁ) log i),
n;

where we have used the fact that log, n,~logi.
Let us now choose d >0, and split (II)={ieJ: j<i<u(j)} into two subsets:

UD,={ieJ: j<i<p(j)} and (I),={ieJ: p()<i<a(j)},

where f(j)=max {I{>j:[—j<dlogl}. There exists an L, such that j=L, im-
plies f(j}<a(j), which will be assumed to hold from now on.
By (25) there exists g =g(d) such that, for j= L,, if j<i<f(j), we have

n, i—j
1—izgl—=1>0

n 1 (log i)
Likewise, there exists r =r(d) such that, for p(j)<i<uw(j), we have

i
——LZ=r>0.

n;

By all this and (34), there exists L5 such that j= L. implies (for i, jeJ):

P A)g2Rexp (- i), for j<i<pO)
and

P(4,14)<2R exp(—%logi), for () <i<a(j).

It follows that, as j — oo,

2 —cqf2

Re . N er
=z H4R(og jlog, ) j~*=0(1).

(33) % P(4;1 4) =7

J<i<a(j)

The proof of Theorem 3 follows from (21), (29) and (35).
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Proof of Corollary 1. The result is known for k=constant (see ¢.g. (4)), hence
we shall limit ourselves to k=k,1co. We shall make use of the following
lemma.

Lemma 20. Let k=k, 1o and suppose that k,=o(log,n) as n—>co. Then, as

n— o0,
1
(36) (k+1)log ( °i2”> —o(log, n);
(37) logsn=0 ((k+1)log (loizn));
1
(38) KL k1) log (logZ”) —0 (k log (I-O—g%—'f))
log, n k k

Proof. See Deheuvels and Devroye (1984), Lemma 1.

lo
Let c®=k,(1+3,)=log,n+k,(1+a)log ( 1%2
By Lemma 20, we see that ¢ satisfies condition (iii) of Theorem 1 and con-
ditions (¢ —b) of Theorem 3.
Using Lemma 20 again, it is straightforward that

), where a> —1 is constant.

Lo, fe LV
S — k) —cﬁ) exp(—ci)<oo or =o0,
wn k,
according as a>0 or a<0. The proof of Corollary 1 is completed by Theorems
1-3.

Proof of Theorem 4. The proof is identical to that of Theorem 3, up to the
point where one has to show that

a(Jj)

Y, P(4;]4)< .

i=j+1
For this, assuming as usual that i, jeJ, k=k'=K+1, u;su;, ¢, 2c,, we
deduce from (30) that
K XK
(9) P, |A)<2{1—(1 —u—)} S iy K =) =)}t exp (=, =) )
1

=0

§2€XP( (1 “g‘) (n; —n) u; +2{K(n, —n))(u; —u, }1/2)

:2exp(—{1/(n,.— VR (ufu; ——1}2+K(—75_)—2).
i%

Let us assume in the first place that ie(II)], L.

j<i<B(y=max{l>j:l—j<dlogl},
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where d >0 will be precised later on. We have by (25), as in the proof of (30),

U u; u

i i

There exists an Lg such that j= L implies 6=0, = 4>0. It follows that

n; —

%K1+ A).

(”i“”j)”ig o

K (ﬁ—1) <K (ﬂ—l) <Ke! ("i_”f).

u; le

Also, we have

We now choose d>0 such that
A4
(144 —e¥?)*—e(e? - 1)=§ and e‘<1+4.
We obtain that, for all j<i< §(}),

P a)zexp (~5 () k) sexp(~Dl-)

i

for some conveniently chosen D>0. Here, we have used the fact that log,n
=0(k,) and (26). By all this, we have

BU) e D
(41) Y PAA)S——=5=0(1)
i=j4 1 l—e

Let us now use the assumption that un~% log, n, where A is a constant.
We now choose E>d, to be precised in the sequel, and let 0(/)=max {{>j:1
—j=Elogl}. Let p=1——buT", and consider in the first place the case where
B()<iZ0(j). We get easily ifrom (25) and (30) that

k-1

k—1 11 P 1
@) PUlA)z2 Y (7)) U= F ok + ) exp(—pk(1-+2)

N A—1
where 1+ 4= (1 —ﬁ) (1 —&) (149,)~149,. Furthermore, there exists L.,

i Uj
jointly with A4>0 and 0<pjl§p2<oo such that i= L, implies that p, <p=<p,
and A= 4.

Next, we denote by U a random variable with a Binomial B(k-—1, p)
distribution and by V a random variable with a Poisson P(kp(1+ 1)) distribu-
tion.

By (42), we obtain the bound

(43) P(A;| A)S2{P(U —kp2kA/2)+ P(V —kp(1 +2) <kA/2)).
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By Chernolfl’s theorem or by Jensen’s inequality, it can be verified that we
can find p, depending continuously in p and 4 only and p, depending
continuously on p(1+41) and 4 only, such that, by (44),

(45) P(4;14)=2{p+p5}, 0<p,, p,<L.

By continuity, we see that the supremum p of max {p,, p,} when p and 2
vary (in a compact set) is such that p=e~"<1.
It follows that for §(j)<i<8(j) we can use the bound

P(A;] A)<4p*=4exp(—tk)=0("") for some a>0.

Here, we have used the fact that k=k, and that liminfk,/log,n>0. It
follows that, as j— o0, nme

(46) Y. PA14)=0(""logj)=o(l).

B <iZ8())
Up to now, the choice of E>d has remained open. Let us choose E such

that, for any i=6(j), (n,—n)u;= (1 —ﬁ) k(1+96)>k. This is always possible
since lim inf &, > 0. 1

n— o

By (30), we have then, for iz 6()),

P(4;14;) <2 max {% ((n;—ny) u)' exp (—(n, —ny) ui)}

1=i<k

:m {(ni _I’lj) ui}k~ 1 exp ( "'(ni —-nj) Mi)'

By the same arguments as used in the proof of (29) it follows that
—1/2 n.
P(Ai|A,-)=0{m exp k(6 ~Tog(1+5) +k(1+8) 2 (1 +o(1)))}
Choose now D so large that, for i=6()), k(1+8)=1(6'—log(1+ ") E. In
this case, there exists a b>0 such that P(4,]| 4 j)=0(i“b). Here again 1

(47) Y. P(4,14)=0("(ogj)(log, j))=o(1).

8 <izald)

(47), jointly with (29), (41) and (46) suffices for proof of Theorem 4.
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