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Summary. Consider MDAs  (X.z) and (Y.i), and stopping times %(0, 
0 < t -< 1. Denote ~(t) ~(t) 

S,(t)=ao + ~ X,i, T,(t)=bo + ~ Y,i, 
i=1 i=1 

and let q0: ]R~IR be a function. If the common distribution converges and 
if St, T t denote the corresponding limiting processes then we give conditions 
such that the martingale transforms 

~(t) 

~o(S,,,_ 1) Y,i 
i=1 

converge weakly to the stochastic integral 

t 

dT. 
0 

This result has important  consequences for functional central limit theo- 
rems: 

(1) If the MDAs are connected by a difference equation of the form 

Xni=~O(Sn,i_ l) Yni, 

then weak convergence of T.(t) implies that of S.(t), and the limit satisfies the 
stochastic differential equation 

dS=q)(S)dT. 

This observation leads to functional limit theorems for diffusion approxi- 
mations. E.g. we obtain easily a result of Lindvall, [4], on the diffusion 
approximation of branching processes. 

(2) If the M D A  (X,i) arises from a likelihood ratio martingale then the 
limit satisfies t 

S,=I+5SdT,  
0 
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which leads to the representation of the limiting likelihood ratios as expo- 
nential martingale: 

S~ = exp(T t -�89 Tit ). 

This approximation by an exponential martingale has been proved pre- 
viously by Swensen, [9], using a Taylor expansion of the log-likelihood 
ratio. 

(3) As a consequence we obtain a general functional central limit theo- 

2 X 2 i )  converges weakly to ([S,S]t), then X,i converges rem: If { 

weakly to (St), provided that the distribution of (St) is uniquely determined 
by that of (IS, Sit). This assertion embraces previous central limit theorems, 
dealing with cases where the increasing process (IS, S-lt) is deterministic. 

1. The Main Results 

For every n~N let (~2,, d , ,  P,) be a probability space and (d,k)k>O a filtration of 
d , .  A double sequence (X,k)k=>l,,__> 1 of random variables is a martingale 
difference array (MDA) if each sequence (X,k)k>=~ is adapted, P~-integrable and 
centered, n > 1. 

In this paper we are concerned with MDAs (X,k), (Y,k) which are defined 
on the same probability spaces (f2,, d , ,  P,) and are adapted for the same 
filtrations (d,k)k>__O, n~N. Let us consider the partial sum processes 

Sn(t)=S .... (t), Tn(t)=Tn,~n(O, t~[0, 1], 
where 

k 

S~k= ~ X,i, k> l, n~N, 
i=l 

k 
Tnk = 2 Yni, k >= 1, n~N,  

i = 1  

and where z,(t), 0<t_<l ,  are stopping times for the filtration (SJnk)k>=O. For 
most applications the constant stopping times z,(t)=[k~.t], 0 < t < l ,  neN,  
where k~Toe is a given sequence in N, would suffice, but our results are valid if 
the stopping times satisfy the following conditions, which are tacitely supposed 
to be fulfilled in all what follows. 

(1.1) Conditions 
(1) For each n~N, (zn(t))o<~ 1 is a right-continuous, non-decreasing process 

taking values in N • {0}. 
(2) For every n~N and every co~O, the function t~-~%(t)(co), 0 < t  < 1, takes 

all values between zero and z~(1)(co). 
The following condition on a MDA (X~i) is used repeatedly. If it is fulfilled 

then by a standard truncation argument we can replace the MDA (X,i) by an 
asymptotically equivalent MDA (2n~), which is uniformly bounded, (confer 
Sect. 2). 
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(1.2) Condition 

:~(1) 

~,, ~ ( IXn i l  " l{{Xnil>e}l~n,i_ l ) - - ~ O ,  
i = 1  

z>0. 

For convenience let us introduce some simplifying terminology. 

(1.3) A sequence of processes (X,(t))t~[0,1], nsN,  with trajectories in PC[0, 1]) 
possesses asymptotically continuous trajectories if 

lim limP,{ sup IX,(s)-X,(t)l>e}=O, e>0 .  
~o . - , o z  I s - d < o  

(1.4) A sequence of processes (X,(t))t~fo, l~, n~N, is stochastically uniformly 
bounded if 

lim lira P,{sup iX~(t)] >a} =0. 

Let (l/~k)k>l be adapted sequences and denote V,(t)= V,,~,.(,>, 0_<t_<l. Consider 
the martingale transforms 

r, ,(t)  

Unit) = 2 Vn,i- 1" Yni, 
i = J  

0_<t_<l. 

The following is a tightness condition for the distributions of martingale 
transforms. 

(1.5) Theorem. Assume that (Y,i) is a MDA satisjying condition (1.2), and (V,i) 
are adapted sequences. I f  

/z~(t) \ 

(1) the processes ( ~ Y,~) have asymptotically continuous trajectories, 
and - i =  1 ~is[o, 1] 

(2) the processes (V,(t))~io ' 1~ are stochastically uniformly bounded, 
the martingale transforms (U,(t))t~ro ' lj have asymptotically continuous trajectories. 

Proof. It is obvious that we may assume that (Y,i) is a truncated array in the 
sense of Sect. 2. Let a>0 ,  b>0,  and define 

Let 

o }, 

~ j ~  1 

V b = Vni.  l(IVnd<=b P 

r . ( t )  

u2' (t) = F,  v ~ . . . .  ," Y~i, te[O, 1]. 
i = 1  

Obviously, it is sufficient to prove the assertion for (u2'b(t))t~to, lj, neN,  and 
arbitrary a > 0, b > 0. Applying Burkholder's inequality we obtain 
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g~[ sup Iu~'b(s)--U~'~(t)l>~} 
[s-tl<~ 

_<.{max s u p  k=,rn((j~l),)+ lV. b a } - 1 <=j<= [ ~ ]  ~ . ( ( j -  1 )~)< ,  <-_..(jo) . . k -  1" Y/k > e 

C.b ~ '[~3 ( '-(~) 

< ~4 P~ max • (Y/k) 2 . 

By assumption (1), this proves the assertion. [] 

(1.6) Remark. If (X,i), (Y,i) are MDAs satisfying condition (1.2) and 
#IN2(D([0, 1])) is an accumulation point of the common distributions of (S,(t), 
T,(t))o<_t<=l then there are a probability space (f2,d,P),  a filtration (O~)o_<,_< 1 
and adapted processes (St), (Tt), such that # is the common distribution of 
(St, Tt)o_<t~ r Take e.g. f2=Da([0, 1]), ~=~2(D([0, 1])), P=#,  and define ~ to 
be the a-field generated by {(pl(s), p2(s)): s<t},  but completed and regulated 
from the right. If we take St=pl( t  ), Tt=p2(t), 0 < t < l ,  then these are adapted 
processes, having common distribution #. 

In the following any limiting processes of MDAs are always understood to 
be adapted relative to a common filtration. 

(1.7) Theorem. Assume that the MDAs (X,i) and (Yni) satisfy condition (1.2). 
Let ~o : N ~ l R  be a Lipschitz continuous function. I f  the common distributions of 
(S,(t), T,(t))o<t<l converge weakly to the common distribution of a pair of 
continuous processes (St, Tt)o<_t<l , where (T~)o<,<l is a square-integrable mar- 
tingale, then the distributions of the martingale transforms 

~(t) 
~o(S. ,k_~)Y.k,  O_<t_<l, n~N, 

k = l  

converge weakly to the distribution of the stochastic integral 

t 
I~0(S)d T, 0_<t_<l. 
o 

Proof. Uniform tightness of the distributions of the martingale transform pro- 
cesses follows from Theorem (1.5) together with the criterion of Lemma (2.4), 
(note Remark (2.3), (2)). Hence, it is sufficient to prove weak convergence of the 
finite-dimensional marginal distributions. 

For every (5 > 0 consider the sequence of processes 

R,,.,(6)= Z q~(S.((j-1)a)) Z Y.k, neN. 
j =  1 k=  z~((j-  1)~)+ 1 
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The finite-dimensional marginal distributions of these processes converge 
weakly to the corresponding marginal distributions of the process 

R , ( 6 )  = (S( j_  - Y(j_ ,#  
j = l  

If t 1 < t 2 < . . .  <tm is a subdivision of [0, 1] then we have 

f((R,,,t,(6))l <_i<_,,lP,~)~ Jf((Rt~(6))1<=i<=mlP), weakly. 

But for 3 ~ 0  we have 
t 

R,(&) P,~q)(S,)dT~, OKt_< 1. 
0 

Now, let f~b(lRm). Then for every 6 > 0  

t tk~tgo(Sn,k-1) Ynk)l<i<m) dPn--~f ( (!q)(Xs)dZs)x<i<m ) d r  

t tk~=l~O(Sn,k - 1) Ynk,l<i<_m l Pn --Sf  ((Rn,ti(6))l <=i<m) d Pn 

X t 0  II <i<ml 

First, let n ~ o e  for fixed 3>0.  Then let 6-*0 on the right hand side. Applying 
Lemma (2.6) this proves the assertion. [] 

(1.8) Corollary. Assume that the MDAs (X~i) and (Y~i) satisfy condition (1.2). If 
the common distributions of (S~(t),T~(t))o<t<i converge weakly to the common 
distribution of a pair of continuous, square-integrable martingales (St, Tt)o<~<l, 
then the common distributions of 

( zn(t) zn(t) ) 
S.(t), T.(t), E S.,k-1 Y~k, E T.,k-1X.k 

k = l  k = l  0 -<t -< l  

converge weakly to the common distribution of 

S, Tt,~SdT,~TdS . 
0 0 IO<--t<--i 

Proof. This is done by an obvious extension of the proof of Theorem (1.7). D 

(1.9) Remark. (1) in [8], Rootz6n proves the following theorem: If (S~(t))o<_~l 
converges weakly on D([0, 1]) to a Brownian motion (14/t)o<~ 1, then 

rn(t) 

~X~i P" ,e, 0_<t_<l. 
i = 1  

Extensions of Rootz6n's result are proved by Liptser and Shiryayev, [5] and 
[-6], and by Jacod, [3]. A special case of Jacod's result is as follows" If 
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(Xn(t))o<t<_l converges weakly on D([0,1]) to a square-integrable, continuous 
martingale (St)o<,< 1, then the common distribution of 

s.(t), E x. k 
k = l  0_<t_<i 

converges weakly to the common distribution of (St,[S,S]t)o<=t<=l where 
([S,S]t)0__<t__< 1 is the quadratic variation process of (St)0z,_< r This result can be 
deduced from ours applying the integration by part formula 

t 

S2t --2IS~dS~=[S,S]t ,  O < t < l ,  
0 

and 
r r.(t) 

k = l  k = l  

(2) Assume that the conditions of Corollary (1.8) are satisfied. Then the 
common distributions of the processes 

rn(t) 

converge weakly to the common distribution of 

(s. T. ES, T] )o 1. 

(([S,T]~)o~t<=l denotes the mutual variation between S and T,) This is easily 
seen applying the integration by part formula 

t 

S t T t - ~ S s d T s - i T ~ d S , = [ S , T ] t ,  O ~ t _ l ,  
0 0 

and noting that 
~(t) ~(t) 

S.~.(,) T,~.( 0 - E S~,k-1 Y~k - E T,,k-1 X~k 
k = l  k = l  

~,~(t) 
= ~Xn~Y~k,  O_<t_<l. 

k = l  

Now, we give some applications of our main theorems. 
The following assertion embraces previous functional central limit theorems 

for MDAs. 

(1.10) Theorem. Assume that the MDA (X,i) satisfies condition (1.2) and 

/ ~ ( 1 )  2 ) 
(1) limP. { E Xnil{lx~d<=l} <o0. 

n---~ co \ i = 1  

Assume further that the following conditions hold: 

(2) (St)o<=t<= 1 is a continuous, square-integrable martingale whose distribution is 
uniquely determined by the distribution of its increasing process (IS, S]t)o_<t_< 1- 
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(3) The finite-dimensional marginal distributions of 

~n(t) 
~X2k,  0_<t_< 1, n6N, 

k = l  

converge weakly to the corresponding distributions of IS, Sit , 0 <-t <-1. 
Then 

~((S,(t))0_<t_<l I P,)~ ~q~((St)o ~t_<_l In) 

weakly on P([0, 1]). 

Proof Condition (3) implies by Lemma (2.4) and Remark (2.5) that the distri- 
butions of (Sn(t))t~[O,l~, neN, are uniformly tight on D([0,1]). From (1) it 
follows by easy arguments that every weak accumulation point of (Sn(t)),~to,1 j, 
neN,  is a continuous, square-integrable martingale. Hence, by Remark (1.9), 
(1), the assertion is proved by an obvious compactness argument using the 
uniqueness condition (2). [] 

(1.11) Remark. The uniqueness condition (2) is certainly satisfied if IS, Sit=t, 
0_<t< 1. Then the limiting process is a Brownian motion. The uniqueness 
condition is also satisfied if [S,S]t=A(t), 0 < t <  1, where A is a nondecreasing, 
deterministic function. Thus, we obtain functional central limit theorems of the 
type given by Helland, [2], Sect. 3, Gaenssler and Haeusler, [1], Theorem 1 A. 

The functional central limit Theorem (1.10) is proved by a combination of a 
compactness argument and a uniqueness condition. A uniqueness condition 
different from (1.10), (2), is obtained if the limiting process necessarily satisfies a 
stochastic differential equation. This is the idea of the following application. 

(1.12) Theorem. Assume that the M D A  (X,i) possesses stochastically uniformly 
bounded row sums (S,(t)) satisfying the equation 

~(t) 
S,(t)=ao+ ~ e(Sn,i_l)Y,i, tel0,  1]. 

i = l  

I f  the M D A  (Ynl) satisfies condition (1.2) and if the distributions of (Tn(t)) 
converge weakly to those of a continuous, square-integrable martingale (T(t)), 
then the distributions of (Sn(t)) converge weakly to the solution (St) of the 
equation 

t 

St~-ao + ~q~(S)dT, 0_<t_<l. 
0 

Proof It is easy to see that the M D A  (X,~) satisfies condition (1.2). Hence, 
Theorem (1.7) might be applied if we knew that the common distributions of 
(S,(t), T,(t))0<t< 1 converge weakly on D2([0, 1]) with asymptotically continuous 
trajectories. But we only know that those common distributions are uniformly 
tight on DZ([0,1]) with asymptotically continuous trajectories, by Theorem 
(1.5). The limit of each convergent subsequencc satisfies the stochastic differen- 
tial equation. By the weak uniqueness of solutions of stochastic differential 
equations the limit distributions of all convergent subsequences coincide, which 
proves the assertion. [] 
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(1.13) Example. Consider a random walk situation where the distance of a 
jump depends on the position of the particle. To be precise, let q0: IR--+~, be a 
Lipschitz continuous function and assume that 

e. {x.~ = r On-~} = P. {x.k = - ~ots.,~_ 1), -~} =�89 

Then the MDA Y,k=X,k/q)(S,,k_l) satisfies condition (1.2) and converges 
weakly to a Brownian motion, since 

[nt] 2 1 
E E~ = -  [ . t ] - . t ,  

k = l  Yl 

We observe that 

O_<t_<l. 

[hi] 

s . (o  = E q,(s.,,_ ~) L, .  
i = 1  

In order to apply Theorem (1.12) we have to show that the processes (Sn(t)) 
have stochastically uniformly bounded trajectories. This is easily seen from 

1 2 2 

< 1  2 2 = ~o (o) + s., k-1 (1 + c2/n) 
n 

which implies by induction that 

< r exp(C2). 

Thus, we may apply Theorem (1.12) which shows that the limiting process (S~) 
of (Sn(t)) satisfies 

t 

St=~cp(Ss)dWs, te l0 ,  1]. 
0 

(1.14) Example. Let us derive from Theorem (1.12) a result of Lindvall, [4], 
concerning the diffusion approximation of branching processes. 

Let ~u, i>  1, j >  1, be i.i.d, random variables taking values in N o. Let P(~u) 
= 1, P ( [ ~ u -  112)--fl 2 >0,  and define 

r/t 0 = 1, j > 1, 

~j ,k- -  1 

~jk= Y,~u, k > l , j > l .  
i = l  

Thus, for every j ~ l  the sequence (t/io , r/j1 , ..., t/jg . . . .  ) represents the progeny 
of a branching process. Define 

Z,k = ~ rljk, 1 <-- k <_ n, 
j=l 
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to be the sum of n independent branching processes. Let us show that the 
distributions of the processes 

1 
S.(t)= n Z. , [ . t j -  1, O_<t_<l, 

converge weakly to the distribution of a diffusion (St) defined by the equation 

t 

s ~ = p l / ~ + l d w ~ ,  0_<t_<l. 
0 

For this, we denote 
1 

Xni~-~(Zn i -  Zn, i_ l), 

Y.i=(z~176 ~)l(~/~, i_ ~). 
The obvious relation 

x. ,= y.,. fil/2-.,,_ ~/n 
gives us 

[nz] 

s.(t) = Z ~l/s. , i_ 1 + 1. Yoi. 
i = 1  

It is easy to check the assumptions of Theorem (1.12). In particular, the MDA 
(Y,i) satisfies [nt] 

y p . ( r . ~ l d o , i _ l ) ~  ~ ,t, t~E0,13, 
i - - 1  

and the Lindeberg condition 

[nt] 

~P.(r.~-l(,yo~,~.>lsJ.,i_,)~" ,0, ~>0. 
i = 1  

It follows that the distributions of (T,(t)) converge weakly to those of a 
Brownian motion. This proves the assertion. 

Our last application deals with possible limits of likelihood ratios. Let 
(f2,, d , ,  P,) be probability spaces where filtrations {~, ~?,} = d ,o  ~ d,1 _c... _ d , .  
are given. Let Q , [d ,  be probability measures and denote P,k=P, Is~,k, Q,k 
=Q,]d ,k ,  l < k < n ,  n~N. The following theorem is proved by Swensen, [9], 
applying a completely different method. Roughly speaking, Swensen's result is 
based on a Taylor expansion argument which is often used in statistics. Our 
argument is as follows: We show that the likelihood ratios have to fulfill in the 
limit a linear stochastic differential equation, whose solution is an exponential 
martingale. 

(1.15) Theorem. Assume that the MDA 

Y,i = (dQ"i /dQ"'i--1 ) 
\dp, i /dP,, i-1 1 , l<-i<n, 
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satisfies condition (1.2). I f  

[iv 
\ \ i = l  /0-<z-< 11 / 

on D([0,1]), where (T~)o<t<l is a continuous, square-integrable martingale, then 
the distributions of the likelihood ratios 

dQ.[.,]] , h e N ,  
dP,[,t] 1o zt<_ 1 

converge weakly to the distribution of the exponential martingale 

exp(Tt - �89 IT, Tit), 0 < t < l .  

Proof. First, we note that the processes 

d Qn[nt] S,(t) = , 0_<t<l ,  nEN, 
dP,[,tl 

are stochastically uniformly bounded since 

P, t m a x  dQ"i >2a[<lfdQ""dP,,< !,  a>0.  
(l<=i<n dPni J = a  J dP,, = a  

Consider the identity 

dP.[.tl +j~=l dPnj~-; \dP.j / dPn, j_ 1 

This means, that 
[nt] 

s . ( t )  = a + y .  s . , j_  1 Y.j. 
j = l  

Now, it follows from Theorem (1.12) that (S.(t))o<=t< 1 converges weakly to the 
solution of the stochastic differential equation 

t 

St=I+SSdT, 0<t_<l ,  
o 

which is the exponential martingale of (Tt) o <_t< 1. [] 

2. Auxiliary Lemmas 

Let (Xn~) be a MDA which satisfies condition (1.2). We shall apply repeatedly 
the following truncation procedure. Let 

Xnl = Xni" l{ix~,l __<~}-P,(X,I" l{Ix~,l __< @}1 d , , i -  1). 
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Then (Jf,~) is a MDA, uniformly bounded by one such that 

max 12 il P" ,0. 
1 =<i =< rn(1) 

As is well-known the MDAs (X.i) and (J~.i) are asymptotically equivalent in 
the sense that 

~.(s 

i = l  
and 

r~(1) 
Y lx i-Ys ,o. 

i=1 

Applying the truncation argument to martingale transforms gives 

(2.1) Lemma. Assume that the MDAs (X,i) and (Y,,~) satisfy condition (1.2). Let 
cp: I R o N  be a Lipschitz continuous function. I f  the processes (S,(t))t~[o,u , naN, 

/-c,~(1) \ 

are stochastically uniformly bounded and if { E y2) is stochastically bounded, 
then ~i= 1 /n~ 

1 - k -  ~n(1) i=1 i=1 

Proof Note that 

k 

k 
+ max I~o(S~,z_,)t ~, IY, z -  ]?,il- l<i<k i=1 

It is clear that the second term converges to zero. 
To show the same for the first term, denote for arbitrary 8 > 0, b < oo 

{ ' 1 B ~ =  tq}(S~,i_i)-q)(S~,i_l)r<e, ~ Y~<b . 
j = l  

Then for every ~ > 0 an application of Kolmogoroff's inequality yields 

m~Pn {1 ~/mc'-<~x(1)[i~l(~~ 1Bn i )(~}-~Pn (i~@=ll)Brni) 
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Now, let n--*oo. Since e>0 and b<oo can be chosen arbitrary, the assertion 
follows. [] 

The following assertion is a basic approximation lemma. A similar approxi- 
mation has been used by Rootz6n, [8], 

(2.2) Lemma. Assume that (Xni) is a MDA satisfying condition (1.2). If the 
processes (S,(t))t~[o ,lj have asymptotically continuous trajectories and if 

(1) lim sup lira Pn { 2 (S,(J6)-S,((J-I)6)) a>a : 0 ,  
a~ce 6>0 n--*ao j 

then for every e > 0 

(2) lim lim P.~ sup I S xz,--jS(Sn(j6)--Sn((j--1)6)) 2 _ _ _ 1  >e l  =0. 
a-- ,o  ~ o o  lo<t<lli=l 

Although, the ideas of the proof are contained in Rootz6n, [8], let us 
recapitulate the main steps for the reader's convenience. 

Proof. W.l.g. we may assume that (X,i) is a truncated array. Repeating a 
truncation, also used by Rootz6n, ]-8], we define 

zn6(j)--min{k=zn(U-1)6)+l, zn( j f i ) :  i=zn((j_l)3)+lXni ~1}. 

The same arguments as in Rootz6n, [8], show that, denoting 

Znd(j) 2 ( zna(j)j-- 1 )2 

k=zn((j- 1)6)+ 1 

it is sufficient to show that 

l imlimP, I sup ~V,j(~5)>e}=0,  e>0. 
6--*0 n~oo kO----<t= <1 j = l  

Let t/> 0. Then by assumption there is a(~) such that 

Defining 

0,,6=min {k: j=~l (~=~,(I]-~I))o)+1X'~)2 >a(t/)} c~ [~] '  

we arrive at stopping times 0,,~=%(3. On, o). 
Now, we perform a truncation 
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obtaining a M D A  (J(,~) such that 

[~] ~ ,~  
lim P. U U {X.k +)7.k} < t/, ~ > 0. 
n ~ m  j = l  k=~n((j--1)5)+l 

Since in this inequality the bound ~/>0 is uniform in 5>0 ,  it is sufficient to 
prove 

lim lim P , /  sup 17,;(6) >e  =0,  a>0 .  
,3~0 n~Qe {. 0 - < t < 1  j = l  

For this, let 

and 

L 0) = Y l=<j=< , 
k= tn((j-- 1)6)+ 1 

Z,(6)= max 

Then (2~,(~)) is uniformly bounded and 

lim lim e~{12,(,~)l>e}=0, e>0. 
~ 0  n--+ oo 

It follows that 

P~ (o=<,-< sup j=l t?j(cS) >e  _-<~-P. (j[~] f- (j)4) 

c p.(2,(a)2(a(O+2.(,~))2). 
<7" 

[] 

(2.3) Remarks. Assume that (X~) is a M DA satisfying condition (1.2). 
(t) It is easy to see that condition (1) of Lemma (2.2) is satisfied, if 

( ~ ( 1 )  \ 

i~= l X2i)ne N i s  stochastically bounded. 

(2) If the distributions of the processes (S,(t)),~[o ,11, n~ N, converge weakly 
to those of a continuous, square-integrable martingale, then the conditions of 

l r~( i )  \ 

Lemma (2.2) are satisfied and it follows that { ~ X,2i) is stochastically 
bounded. \i= 1 ~ , ~  

We apply repeatedly the following tightness criterion for MDAs. 

(2.4) Lemma. Assume that (X,i) is a M D A  satisfying condition (1.2). The 
following assertions (1) and (2) are equivalent: 

(1) The processes (S,(t))t~[o ' i> n e N,  have asymptotically continuous trajecto- 
/~n(1) k 

ries and I E X~i} is stochastically bounded. 
\ i = 1  /nun 

(2) The processes X2i , n elN, have asymptotically continuous 
t=  1 I t  e[0,  11 trajectories. 
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Proof. (1 )~  (2): This is almost obvious by Lemma (2.2) and Remark (2.3), (1). 
(2) ~ (1): W.l.g. we may assume that (X,i) is uniformly bounded by one. 

Since X,2~ is necessarily stochastically bounded for every e >0  there 
\ i =  1 h e n  

is a(~) such that 
(.=1[~"(:) } l i m P , , ~  X.Z,>a(0 <~. 

n---> co 

Let 

Lj= I 

It is sufficient to prove the assertion for the MDA (X~), By Burkholder's 
inequality we have for every 6 > 0 

P.{ max s u p  k=zn((j~__l)6)+lX:k >t~} 
l = < j _ - < [ 1 ]  ~ . ( ( j - 1 ) a ) < / a z n t j s )  

=~3 P. (X~k 2 
j = 1 k = ":n ((J - 1) 6) + 3. 

It is not difficult to see that 

lim lim ~ I P , [ (  " i  ~ (X:k) 2) 1 = 0 .  
6~0 n~o~ j= k=zn((j-1)5)+ l 

This proves the assertion. [] 

(2.5) Remark. Condit ion (2) of Lemma (2.4) is satisfied if 

lira lim P. max ~ X.Zk>~ =0 .  
5-->0 n--~oO {,.1~j~[1] k=zn((j--1)7))+l 

Hence, it is sufficient for the validity of condition (2) that the finite-dimensional 

distributions of X~ , n ~ N ,  converge to those of a continuous 
process. /~s[o. 13 

Our last lemma contains an approximation of martingale transforms, which 
is similar to the approximation given in Lemma (2.2). 

(2.6) Lemma. Assume that (X.i) and (Y.i) are MDAs satisfying condition (1.2). 
Let 9: I R ~ .  be a Lipschitz continuous function. I f  the processes (S.(t))t~to,1 ] 

have asymptotically continuous trajectories and if Y,~ is stochastically 
bounded, then the processes -i= 1 neON 

~.(t) 

U.(t)= E 9(S.,i-1) Y.i, ta[O, 1], n~]N, 
i = 1  
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satisfy for every e > 0 

~olim lim P~ I ~ -  ~ Lo_-<t_-<sup 1 [~]=1 } U . ( t ) - ~  q)(S,((j- I)5))(T.(]'6)- T.((j- I)6)) >e =0. 

Proof. In view of Lemma (2.1) we may assume that (X,i) and (Y.i) are truncated 
arrays. For e>0 let a(e) be such that 

k('~"(:t)=~ } lira P~ ~ ~ ii2 > a ( c )  < x, 
n--~ oo i 

and define 

} Y,~i- L~ 1 ~ 
Y,,:~ --< a(e) 

L j =  1 

It is sufficient to prove the assertion for (Y,~/) instead of (Y,,,i). Let z.a(j), 

~>0, be the stopping times which have been defined in the proof 

of Lemma (2.2). Denoting 

~ . ~ ( j )  

U . j ( 5 )  = ~ (~ (S.,k_ ,) - q~ (S,,(O - 1) 5))) Y,;~, 
k = ~.((j- t ) ~ ) +  1 

we have to show that 

l imlimP.  I sup [~]U. j (5 )>@=0,  ~/>0. 
6-~0 n-~co  L O  < t < l  j = l  

By Kolmogoroffs inequality we have 

Since 

we have 

where 

t sup uoj(6) ,7 =< F, P~(U~(5)). 
( . 0 6 t ~  1 j = l  j = l  

( ' f  ) P . ( U 2 ( 6 ) )  = P~ (q~(S., k_ ~) - cp(S. ( ( ;  - l )  6))) 2. (Y/k) 2 , 
k =  r . ( ( j - -  1 ) 6 ) +  1 

[�89 ~ ~.(i) \ 

E P,,(u$(~))<_ c. P,, (<(~)~. Z (<)g 
j = l  - -  ' ,  i = 1  / 

< C. (a(e) + 1). P~(Z.(5)2), 

Z.(5)= max sup IS~,k_ 1 -S . (0"-  1)5)1. 
1 <j< [�89 ~.(u- n~)<k<~n~(j) 

This proves the assertion. [] 
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