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Summary. Let { W(t) : t ~ R} be two-sided Brownian motion, originating from 
zero, and let V(a) be defined by V(a)= sup {t ~IR: W ( t ) -  ( t - a )  2 is maximal}. 
Then {V(a) :as lR}  is a Markovian jump process, running through the 
locations of  maxima of two-sided Brownian motion with respect to the 
parabolas fa( t )=( t - -a)  2. We give an analytic expression for the infinitesimal 
generators of the processes {(a+t,  V(a+t)): t>=O}, a~IR, in terms of Airy 
functions in Theorem 4.1. This makes it possible to develop asymptotics for the 
global behavior of a large class of isotonic estimators (i.e. estimators derived 
under order restrictions). An example of this is given in Groeneboom (1985), 
where the asymptotic distribution of  the (standardized) L 1-distance between a 
decreasing density and the Grenander maximum likelihood estimator of this 
density is determined. On our way to Theorem 4.1 we derive some other results. 
For example, we give an analytic expression for the joint density of the 
maximum and the location of the maximum of the process { W(t) - ct 2 : t ~ IR}, 
where c is an aribrary positive constant. We also determine the Laplace 
transform of the integral over a Brownian excursion. These last results also have 
recently been derived by several other authors, using a variety of methods. 

1. Introduction 

Let { W(t) : t ~ IR} be two-sided Brownian motion, originating from zero. The main 
purpose of the present paper is to give an analytic characterization of the jump 
process { V(a) : a ~ IR}, where V(a) is defined by 

V(a) = sup {t ~ IR: W(t) - ( t  - a )  2 is maximal}. (1.1) 

This process plays a fundamental role in describing the global behavior of a large 
class of  isotonic estimators. An example of  such an isotonic estimator is the 
nonparametric maximum likelihood estimator (NPMLE) of a decreasing density, 
introduced by Grenander (1956). Grenander showed that the NPMLE f ,  of a 

* This paper was awarded the Rollo Davidson prize 1985 (Cambridge, UK) 
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decreasing probability density f on [0, oo), based on a sample X 1 . . . . .  X, generated 
by f is given by the left continuous derivative fn of the concave majorant F,, of the 
empirical distribution function F n of the sample. The concave majorant of F, is 
defined as the function/~, such that/?, (0) = 0 and le, (t) = inf {F(t) : F >  F n and Fis  a 
concave function} for all t > 0. 

Although more than 30 years have passed since the introduction of this 
estimator, still very little is known about its global behavior. In fact, one of the few 
global results we are aware of is Theorem 3.1 in Groeneboom (1985), where it is 
proved that the Ll-distance Ill--f]]1, suitably standardized, converges in law to 
a normal distribution. In order to determine the asymptotic variance of this 
Ll-distance, one needs to study the local dependence structure of the process 
{fn(t): t > 0}. This jump process has a very complicated structure; it certainly is not a 
Markov process, and the random times at which the process has jumps depend on 
the whole future of the process. The key idea which simplifies the study of this 
process is that a kind of inverse of this process, i.e. the process 

{(a, V,(a)):a____O}, (1.2) 

where V,(a) is defined by V,(0)=0, and 

V, (a) = sup {t > 0 : f ,  (t) - t/a is maximal}, a > 0, (1.3) 

is in fact a Markov process which converges locally, after suitable rescaling, to the 
Markov process 

{(a, V(a)) : a e IR}, (1.4) 

where V(a) is defined as in (1.1). 
The main result of the present paper is Theorem 4.1, where the analytical 

structure of the process (1.4) is characterized in terms of Airy functions. By a 
numerical analysis, based on this result, it is possible to determine the limiting 
covariance structure of the process (1.2), and the asymptotic variance of the L 1- 
distance Ilf, -I l l1 (see Groeneboom (1985)). In fact, it is possible to derive from this 
result all kinds of other global properties of the process, like the asymptotic 
distribution of the (rescaled) supremum distance 

sup {If, (t) --f(t)j : t > 0 } ,  (1.5) 

and the asymptotic distribution of the number of jumps of the process, but this will 
be done in subsequent papers. 

On our way to Theorem 4.1 we derive some other results which have almost 
become standard since the time the present paper was originally written (1984). We 
derive the joint density of the maximum and the location of the maximum of the 

process { W (  t) - c t  2 : t ~ ]R}, (1.6) 

where { W(t)  : t e IR} is two-sided Brownian motion, originating from zero, and c is a 
positive constant. This density is given by 

f (t) =�89 go(t) O c ( - t ) ,  (1.7) 

where the function 9c has Fourier transform 

~ (s) = (2/c)1/3/Ai (i (2 c 2 ) - 1/3 s), s e IR, (1.8) 
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see Corollary 3.3. This result was derived independently, using different methods, 
by Daniels and Skyrme (1985). 

We also obtain, as a probabilistic side result, the distribution of 

1 

e(t) dt ,  (1.9) 
0 

where {e(t) : t ~ [0, 1 ]} is a Brownian excursion on [0, 1]. The Laplace transform of 
the density of the random variable (1.9) is given by (4.13) in Lemma 4.2. Another 
derivation of this result can be found in Louchard (1984). 

2. First Passage Times of the Process { W ( t ) - c t  2 : t > = s }  

Let, for s~lR, C([s, oe); IR) be the space of continuous functions f :  [s, oo)~IR, 
endowed with the topology of uniform convergence on compact sets, and let ~.~ be 
the Borel a-field of C([s, oe);lR). Furthermore, let, for c>0,  the probability 
measure Q}S,x) on ~ correspond to the process { X ( t ) ' t  > s}, starting at x at time s, 
where X ( t ) =  W(t )  - c t  2 and { W ( t ) : t  > s} is Brownian motion (in standard scale), 
starting at x + cs 2 at time s. 

In this section we will show that the densities under Q}s'x) of the first passage 
times 

Z a = i n f { t > s : X ( t ) = a } ,  a > x ,  (2.1) 

can be written as functionals of a Bessel Bes (3) process, and we wili characterize 
analytically these functionals in terms of Airy functions (for definitions and 
properties of Airy functions, see e.g. [1]). 

Some of the relevant properties of a Bes (3) process are summarized below. A 
Bes (3) process is a one-dimensional diffusion process with transition densities 

I 2t-3/2y2(a(y/]/~),  x=O, y > O ,  

t-1/2x-ly C~ -Ok  x,y>O, 

where 4 (z) = (2 re) -~ exp (-2t-z2). The process describes the distribution of the radial 
part of 3-dimensional Brownian motion, see e.g. It6 and McKean (1974), Sect. 2.3. 
The process can also be characterized as Brownian motion (Doob-)conditioned to 
hit oe before 0, see e.g. Williams (1974) (this last interpretation is the one which is 
most useful for our purposes). 

The distribution of the first passage time ra is given in the following theorem. 

Theorem 2.1. Let, for  c>0,  s, x e l R ,  Q}S.x) be the probability measure on the 
Boret a-field o f  C([s, oo);1R), corresponding to the process {X(t): t > s}, where 
X(t )  = W(t)  - c t  2 and { W( t )  : t >= s} is Brownian motion, starting at x + cs 2 at time s. 
Let  the first  passage time % o f  the process X be defined by (2.1), where, as usual, we 
define ra = 0% if  {t > S : X ( t )  = a} = 0. Then 
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(i) Q~c~'~){za~dt} 

=exp  { -32- c2( t3 -s3)  -2c s (a  - x ) }  f fa_~( t - s )  

�9 E~ - 2 c  B(u)da ] B ( t - s ) = a - x } d t ,  
o 

where {B(u) : u > 0} is a Bes (3) process, starting at zero at time O, with corresponding 
expectation E ~ and where 0z(u) = {2 ~u 3 } -~z exp ( -z2 /2  u), u, z > O, is the value at u 
o f  the density o f  the time of  the first passage through zero o f  Brownian motion, starting 
at z at time O. 

(ii) Q~' ~) {~, ~ dt} 

= exp { - 3  c2 ( t3 -s3)  -2 sc (a  - x ) }  he, a_ x(t - s )  dt, 

where the function hc,a_ ~ :IR+ +IR+ has Laplace transform 

h'~ a_x(2) e-~hc  ,_~(u)du 
0 

=Ai( (4c)a /3(a-x )+~) /Ai (~) ,  ~=(2c2) -1 /32>0 ,  

and Ai denotes the Airy function Ai, as defined on p. 446 of  [1]. 

We will prove Theorem 2.1 by studying the structure of  the process X, which is 
killed when reaching a. It follows from the Cameron-Mart in-Girsanov formula that  
the transition densities of  this process factorize into the transition densities of  
ordinary Brownian motion,  killed when reaching a, and a factor involving an 
integral over a Brownian bridge, which is conditioned on staying below a. This 
factorization is given in the following lemma. 

Lemma 2.1. Let, for  a > x, y and s < t, the transition density qO be defined by 

Q~'~){X(t)~dy,  max X(u )<a)=q~  (2.3) 
S<--U~I 

i.e., qO is the transition density o f  the process X, killed when reachin9 a. Then 

q a ( s , x ; t , y ) = ( t - s )  ~ ~9 -qS\ .  ~ 

�9 exp { - 2 c 2 (t 3 _ s 3) _ 2 c (ty - sx)} (2.4) 

" E~'~) { exp (2c  ! W ( u ) d u ) l W ( t ) = Y } ,  

where {W(u) :u>s}  is a Brownian motion process, startin9 at x at time s, and 
killed when reachin9 a, with correspondin9 expectation operator E~o ~'~), and where 
qS(z) = (27z) ~ exp ( -~- z2). 

Remark 2.1. Here and in the following, the index 0 (for "cemetary")  is used as a 
notat ional  convention to indicate that  there is a killing going on. 
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Proof of Lemma 2.1. Let p(s,x) be the probability measure on the Borel a-field o~ of 
C([s, oo); IR), corresponding to the Brownian motion { W(t): t >s}, starting at x at 
time s. Furthermore, let ~ = a { W(z) : s < z < t }. By the Cameron-Martin-Girsanov 
formula (Stroock and Varadhan (1979), Sect. 6.4) we have 

Qff, X)(A)=EP(S'~IA.Z(t), AE~t, 
where 1A is the indicator of the set A and 

Z(t)=exp{-2c ! udW(u)-2 c2(t3-s3)}. 

The stochastic integral i udW(u) can be defined by integration by parts: 
s 

t t 

udW(u) = tW(t) -sW(s) -~ W(u)du. (2.5) 
s s 

Now let A={W(u)<a, s<u<t} and define f~=(2e)-llty_~,y+~l , where 
1 t y_ ~, y + ~1 is the indicator of the interval [y - e, y + e]. Then, if E (s' ~) is the expectation 
operator corresponding to the measure ~O (~'~), we get 

E,~,x)f~(X(t))l{m2~X(u)<,:,}.ex p {2 c2(t a _s3)} 

y - - e  s 

Let p~ {(a x - z  c/)(x +z-2a'~'~ ( ~ - ) - \ -  ~/~ j j  be the transition density of 

Brownian motion, killed when reaching a. Letting e +0, we obtain 

q~ x; t,y) 

~ "~e~"~'{ (-2ciudW(u))lW(t)=y}.exp{-2c2(t3-s3)} =p~-stX, y)z~ laexp 
s 

Relation (2.4) now follows from (2.5). [] 

It is well-known that, for a >  0, the density f ,  of the first passage time 
% = inf {t > 0" W(t) = a} of ordinary Brownian motion (without drift) { W(t)" t > 0}, 
starting at x < a at time 0, satisfies 

1 8 Ox ' lim yyy p, ( y ) ,  f . ( t )  = - ~  ,l"a 

where p~189 ~b - ~ b ,  --7 is the transition density of 
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Brownian motion, killed when reaching a. The following 1emma shows that the 
same relation holds for the drifting process X. 

Lemma 2.2. With the notation of  Lemma 2.1 we have, for s < t and x < a, 

Q(S,~) {% e dt} = - �89 0 4 qO (s, x ; t, a)dt, 

where 0 4 q~ x; t, a) =lim 0 yia ~Y qO(S'X; t,y) and %=inf  {t >s" X(t)=a}.  

Proof. We have, if a > x and t > s, 

Q}S'~){%>t} = i qe(s,x;t ,y)dy 
-oo 

(note that % > t means that the killed process has not died before time t, and hence 
has a value y < a at time t). Thus the density of% at t, induced by the measure QfS, x), 
is given by 

Since {X( t ) ' t>s}  = {W(t) 
(forward) equation 

0 0 1 
05 q (s, x; t,y) =~ 

if t > s, a n d  a > x ,  y .  Hence we 

0 i qe(s ,x ; t ,y )dy=~ 
Ot _~ 

_1 
2 

since lira qO(s,x; t , y )=0 ,  as is 
yl"a 

Lemma 2.1. [] 

0 i qe(s,x;t ,y)dy �9 
Ot _~ 

-etZ't>=s}, the transition density qO satisfies the 

~2 
~y2 q~ t ,y)+2ct  ~y q~(s,x; t ,y),  

get 

0 2 
i ~y2 q~ t ,y)dy+Zet  lim qe(s,x; t,y) 

- ~  y'pa 

lim 0 q~ 
y~a ~YY 

seen from the representation (2.4) of qa given in 

Remark 2.2. The interchange of differentiation and integration, used in the proof  of 
Lemma 2.2, can be justified in several different ways. One possibility is to use the 
representation of qe in terms of Airy functions, given in Corollary 2.1 below (which 
has a proof  that is independent of  Lemma 2.2). 

Returning to the representation (2.4) of the transition density qe, it is seen by 
reflection with respect to the line {(t, a) : t s IR} that we can write 

qO (s, x; t, y) = P~t-s( a - x, a - y) exp { -32- c2 ( t3 -s3)  + 2 ct (a - y) - 2 cs(a -x )}  

�9 Ef~ ( - 2 c  t i  s W ( u ) d u ) [ W ( t - s ) = a - y } ,  (2.6) 

where, with a change of  notation, { W(u) : u > 0} denotes Brownian motion, starting 
at a - x  > 0 at time 0, killed when reaching zero, with corresponding expectation 



B r o w n i a n  M o t i o n  wi th  a P a r a b o l i c  Dr i f t  85 

operator E~ ~ and where 

v / a :  
(2.7) 

denotes the transition density of this process. In (2.6), the time-homogeneity of 
Brownian motion is used to translate the origin of the process from (s, a - x )  to 
(0, a - x). 

Now let {pC : t >0} be the semigroup of operators, acting on the set B of 
bounded Borel-measurable functions f :  (0, oo)~lR by 

[Ptef](x)=E(o~ x > 0 ,  f e B ,  

where E0 (~ and W are as in (2.6), i.e., the semigroup {P/" t>0}  corresponds to 
Brownian motion, starting at a value x > 0, and killed when reaching zero. Let 
{Q/" t>0}  be the semigroup, acting on B by 

Then, 

[Q~f](x)=E(~176 i W(u)du) x > 0 ,  f e B .  (2.8) 

o  29, 

where R~ is the 2-resolvent (or 2-potential operator) associated with {Qt~ By the 
Feynman-Kac formula (see e.g. Williams (1979), p. 158, (39.5)), we have 

[R5f] (x) = [/~of] (x) - [1~ ~ (v . R~f)] (x), (2.10) 

where _Ra e is the 2-resolvent associated with {P~: t>0},  and where the function 
v: (0, oo)-+lR is defined by v(x)=2cx. 

The following lemma will enable us to characterize analytically the transition 
density qe of the process X, killed when reaching a, and hence, by Lemma 2.2, the 
density of the first passage time %. 

Lemma 2.3. Let f :  (0, oo)--+ lR be a function with compact support and at most a finite 
number of discontinuities, and let the resolvent R~ be defined by (2.9). Then 

(i) The function R~f  : (0, oo )--+ N is the unique continuously differentiable solution 
of the differential equation 

�89  x > 0 ,  (2.11) 

(where (2.11) holds at all continuity points x of f ) ,  under the boundary conditions 

lim y(x)=O, lim y ( x ) = 0 .  (2.12) 
xJ. 0 x--+m 

(ii) We have, for x > 0, 

[R~f](x)=29,(x) ~ h,(t)f(t)dt+2h~(x) i 9a(t)f(t) dt, (2.13) 
x 0 
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where, with 4 = ( 2cz)-1/32 > 0, 

94 (t) = zc (4 c) - 1/3 Ai (4) -1 {Ai (4) Bi (4 + (4 c) 1/3 t) - Bi (4) Ai (4 + (4 c) 1/3 t)),  (2.14) 

hz (t) = Ai (4 + (4 c) 1/3 t), (2.15) 

and where Ai and Bi are the Airy functions as defined e.g. in [1], p. 446. 

Proof. Ad (i). It is well-known (and easily verified) that the resolvent / ~  has 
transition density 

~(x,y)=(22)-~{e-(24)~lx-Yl-e-~Z~)~x+Y)}, x,y>O. (2.16) 

Hence we have, if f satisfies the conditions of the lemma, 

I d z 
2 [K~f] (x) - ~ d 7  [K~f] (x) = f ( x ) ,  (2.17) 

except at discontinuity points x o f f (which  is, of course, an expression of the fact 
that Brownian motion, killed when reaching zero, behaves locally as ordinary 
Brownian motion during its lifetime). It now follows from (2.10) and (2.17) that 
R~f satisfies the differential equation (2.11), and it follows from (2.10) and (2.16) 
that R~~ the boundary conditions (2.12) and is continuously differentiable. 
Since we are dealing with the classical Sturm-Liouville problem on the interval 
[0, ~ )  (defining y (0 )=  lim y(x)= 0), there is only one continuously differentiable 

x+0 
solution of (2.11), satisfying the boundary conditions (2.12). 
Ad (ii). A pair of linearly independent solutions of the homogeneous equation 

�89 y" (x) - (2 + 2 cx) y (x) = 0, (2.18) 

is given by the functions t ~ A i  (~ + (4c) 1/3 t) and t ~  Bi (~ + (4c) x/3 t), where 4 and Ai 
and Bi are as in (2.14). The functions 94 and h~, defined by (2.14) and (2.15), are also 
linearly independent solutions of (2.18), where 94 satisfies the boundary condition 
04(0)=0 and h~ satisfies the boundary condition lim h4(x)=0. Moreover 

X--~ oO 

O4(x)h'Ax) -O'~(x)hAx) = 1, x ~  IR, 

by 10.4.10, p. 446 of [1]. Hence the unique continuously differentiable function y, 
satisfying (2.11) and (2.12) is given by the right-hand side of (2.13), and, by unicity, 
must be equal to R~f (For a clear exposition of the Sturm-Liouville problem and its 
solutions, see e.g. Dieudonn6 (1969), Sect. 11.7. Although he only considers 
functions on a fixed bounded interval, the treatment is not essentially different in the 
case we consider.) [] 

The main purpose of introducing the Bes (3) process (instead of limiting our 
considerations to killed Brownian motion) is to give an interpretation to limits of 
the expectations 

E~~ ( - 2 c  i W(u)du),W(t)=y} 

(see e.g. (2.6)), as x or y tends to zero. This interpretation is given in the following 
lemma. 
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Lemma 2.4. Let, for x, y > 0 and c > 0 

Ht(x,y)=E(f'X) { e x p ( - c  i W(u)du)lW(t)=Y }, 

where {W(u):u>O} is Brownian motion, starting at x at time 0 and killed when 
reaching 0, with corresponding expectation E~ ~ Then we have, i f  t > 0, 

(i) H~(x, y)= E~ {exp ( - c  i B(u)du) lB(t)= y } , 

where {B(u) : u > 0} is a Bes (3) process, starting at x at time O, with expectation 
operator E ~. 

where {B(u):u>_O} is as in (i), but starts at 0 at time O. 

(iii) l imHt(x 'y )=E~ o 

where {B(u):u>O} is as in (ii). 

(iv) ~o,y;olim Ht(x,y)=Eexp(-ct3/2ie(u)du ) , o  

where {e(u):uE [0, 1]} is a Brownian excursion on [0, 1]. 

Proof. Ad (i). It is intuitively clear that  Brownian motion,  starting at x > 0 at time 0, 
killed when reaching zero, but condit ioned to be equal to y > 0 at time t > 0 (so still 
alive at time t) has on the interval [0, t] the same distribution as a Bes(3) process, 
starting at x at time 0 and condit ioned to be equal to y at time t. 

For  a formal proof, note that  the time-space Brownian mot ion 

{(u,B(u)):O<_u<_t}, 

starting at (0, x), killed when reaching the boundary  {(u, 0) : 0 _< u_< t} and (Doob-) 
conditioned to converge to (t, y) has the transition function 

~h(tl ,Xl)-lp~ x2)dx2, if u =  t 2 - q  
R, ( (q ,  xl), (t 2, dxz)) = [0,  if u 4= t z - t 1 

where 0 < t 1 < t 2 < t, p~ , x2) is the transition density defined by (2.7), and h(s, x) 
0 X =Pt-s(,Y) is an invariant function for the (killed) time-space process. For  the 

concepts of  Doob-condit ioning and h-path transforms, see e.g. Doob (1984), Sect. 
2.VI,13, and Williams (1979), Ch. 3. It is easily seen that  the Bes (3) process on [0, t], 
"h-path t ransformed" by the invariant function 

~7(s, x) = pt-s  (x, y) ,  

where pt_s(x, y) is defined by (2.2), has the same transition function. 
Part (ii) now follows f rom part (i) and the fact that  a Bessel process, starting at 0 

at time 0, is the weak limit of  Bessel processes, starting at a value x > 0 ,  as x$0. 
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Part (iii) follows from_ (ii) by a time reversal argument. 
For part (iv), we first note that, by Brownian scaling 

i d 
and next that the weak limit of Brownian bridges between (0, x@/t) and (1, y/lit), 
conditioned to be positive on [0, 1 ], is a Brownian excursion process on [0, 1], as x ~ 0 
and y~0, see e.g. Durrett et al. (1977), and Blumenthal (1983). [] 

As a corollary to Lemma 2.3 and Lemma 2.4.(i) we have the following 
characterization of the transition density qO of the process X, killed when reaching a. 

Corollary 2.1. Let the transition density qO be defined as in (2.4), Lemma 2.1. Then we 
have, for a > x, y and t > s, 

(i) qO(s, x; t, y) = exp { _2  c 2 (t 3 _s  3) + 2ct(a - y )  -2cs(a -x )}  

"P t - s (a - x , a - y )E  a-x exp - 2 c  B(u)du ]B(t-s) 
0 

= a --y},  

where {B(u):u > 0} is a Bes (3)process startin9 at a - x  at time O, and p~ x2) is 
defined by (2.7). 

(ii) Let, for c, x ,y  > O, the function t-~rc(t; x,y), t>=O, be defined by 

- p t (  ,y)EX{exp(  ~ ) } '  rc( t;x ,y)-  x - 2 c  ~ B(u)du [B(t)=y (2.19) 

where pO t and {B(u): u>0} are defined as in (i). Then the function r~(';x,y) has 
Laplace transform 

t~ (2; x,y) = 29a(x ^y)ha(x vy) ,  (2.20) 

where x A y=min(x,y) ,  x v y=max(x,y) ,  and Ok and h a are defined by (2.14) and 
(2.15). 

Proof. Part (i) of the corollary is immediate from (2.6) and Lemma 2.4.(i). We prove 
(ii) by using a method which is similar to that used by Shepp (1982) in his 

1 

computation of the distribution of~ IBr(t)ldt, where {Br (t) : t E [0, 1]} is a Brownian 
0 

bridge on [0, 1]. 
Let f~=(2e) -1 l[y_~,y+4, where y -e>O.  By Lemma 2.3.(ii), we have 

[R~ (x) = 2ga(x ) ~ ha(t)f,(t)dt + 2ha(x) i 9a(t)f~(t) dt, x > O, 
x 0 

where 94 and h z are defined by (2.14) and (2.15) and R~ is the resolvent of the 
semigroup {Qt~ >0}, defined by (2.8). Hence 

lim [R~ (x) =2gz(x/xy)hz(x vy ) .  (2.21) 
e $0  
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We also have, proceeding as in the proof  of Lemma 2.1 and using Lemma 2.4 (i) 

[R~.f~](x)=E~~ i exp(-2t-2c i W(u)du)f~(W(t))dt 
(2.22) 

--+ i e- ap~(x,y)EX {exp(-2c i B(u)du)[B(t)=y}d t, 

as e$0. Part (ii) now follows from (2.21) and (2.22). [] 

Proof of Theorem 2.1. Ad (i). Let c, t > 0  and x > y > 0 .  By Corollary 2.1 (ii) we can 
write 

EX{exp(-2c i B(u)du)[B(t)=y}=rc(t;x,y)/pO(x,y ) (2.23) 

where r c (t ; x, y) has the representation 

rc(t;x,y)= 1 ~ e'Stgis(y)his(x)ds, (2.24) 
7"(, --09 

where i = l / ~ l  , and the Laplace transform (2.20) is inverted, using the imaginary 
axis as integration road (in fact we can take any road, parallel to the imaginary axis, 
of the type c+ilR, with c>a 1 ~ -2.3381, a I being the largest zero of the Airy 
function Ai on the negative real axis, see [1], p. 478). 

Using properties of Airy functions, it is easily seen from (2.24) that r~(t; x, y) has 
the following properties: 

lim rc(t; x,y) = 0 ,  (2.25) 
y+0 

(this also follows directly from (2.23)), 

limy+o ~Y r~(t;x,y)=- j eiStAi(i{+(4c)i/ax)/Ai(i~)ds, (2.26) 
-co 

where { = (2c 2) - 1/3s, 
O 2 

lira r~ (t" x, y) = 0. (2.27) 
y~O ~ 

It is also clear from the representation (2.24) that for each positive integer k and each 
x > 0 the limits 8 k 

lira ~ rc(t;x,y ) 
y~O 

exist and are finite. 
By l'H6pital's rule we now obtain from (2.23) and (2.25) to (2.27) 

y,o 8Y Ex exp - 2 c  B(u)du [B(t)=y 

82 ~ ~ ~ O "~ / 02 0 2 
=limy+o@T -[p~(x,y) ~y r~(t;x,y)-rc(t;x,y) ~y p,(x,y)[/~yz p,(x,y ) 

= O, (2.28) 
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(in fact, we only need that the limit at the left-hand side of (2.28) is finite). Thus we 
get from Corollary 2.1.(i), Lemma 2.4.(iii) and (2.28), 

lim ~ y*a ~Y q~ X; t,y)=exp { --3 c2( t3 --s3) --2cs(a --x)} 

"E~ { e x p ( - 2 c  ti~ B(u)du) lB( t - s )=x}  

0 o �9 lim ~y pt_~(a -x ,  a -y ) ,  
y]'a 

O 
for x < a. Since limr~a ~yy pt ~_ ~(a - x ,  a - y )  =~yy pet_s(a - x ,  a -Y)lr=a 

= - 2  ~b a _x (t - s )  (with the notation of  the statement of  Theorem 2.1), the result now 
follows from Lemma 2.2. 
Ad (ii). As in the proof  of part (i), we have that the density of Va at t is given by 

- �89 exp { - ~  c2(t 3 - s  3) -2es(a -x )}  lim 0 r~a ffYY r ~ ( t - s ; a - x , a - y ) .  

But by (2.26), the Laplace transform of -~- lim =- r~(. ; a - x ,  a - y )  is given by the 
y'~a OY 

function ~,a-~.  [] 

3. The Maximum and the Location of the Maximum of { W(t)--Ct2: t ~S} 

Throughout this section, we will use the same notation as in Sect. 2; in particular, 
the process {X(t):t>s}, with corresponding probability measure Q~S.~) on the 
Borel a-field of C([s, ~);IR) ,  will denote the process {W(t)-etZ:t>s},  where 
{W(t): t>s} is Brownian motion, starting at x+cs 2 at time s. 

Consider the probability 

Q~S'x){X(t)<a, for all t>s}.  (3.1) 

It follows from the space-homogeneity of Brownian motion that 

Hence, defining 

Q~S'x){X(t) < a, for all t>=s} 

--O(s'x-a){x(t) for all t>s}.  

Kc(s,x)=Q~'-~){X(t)<O, for all t>s},  (3.2) 

we can denote (3.1) by Kc(S, a -x ) .  
The following theorem determines analytically the function s~Kc (s, x), for each 

x > 0  (clearly Kc(s,x)=O, for each x<0) .  

Theorem 3.1. Let Kc(s, x) be defined by (3.2). Then, for each x > 0 and s ~ IR, 

Kc(s, x) = exp {3 c2 s3 - 2csx} ~x(s) , (3.3) 



Brownian Motion with a Parabolic Drift 91 

where the function t)~ :IR--,IR+ has Fourier transform 

~,().) = ~ e'Z~,(s)ds 

=rc(2c2)- l /3{Ai( i~)Bi( i~+z)-Bi( i~)Ai( i~+z)} /Ai( i~) ,  (3.4) 

where ~ = (2 c 2)- 1/32, z = (4 c)1/3 x, and Ai and Bi are the Airy functions defined on p. 
446 of  [1 ]. 

The somewhat technical proof of Theorem 3.1 is given in the Appendix. 
Functions of the type K~(s, x) were studied in Chernoff's (1964) paper on estimators 
of the mode of a distribution, and apparently Theorem 3.1 solves a long-standing 
question concerning the analytical characterization of these functions. As an 
immediate corollary to Theorem 3.1 we obtain the joint distribution of the 
maximum and the location of the maximum of the process X, starting at x at time s. 

Corollary 3.1. Let Qff'~) be the probability meausre, corresponding to the process 
{X(t) : t >=s}, starting at x at time s, where X(t)= W ( t ) - c t  2, and { W(t) : t >=s} is 
Brownian motion, starting at x + cs 2 at time s. Let M and z u denote the maximum and 
the location of  the maximum, respectively, o f  the process {X(t) : t > s} (note that M is 
a.s. finite and zM is a.s. finite and unique under Qff'~)). Then we have, for a > x and 
t>s,  

Qff,~) {'cM6 dt , M ~ da} 

= Qff'~){r, ~ dt} kr 

=exp { -~2 c~2l'3~., _ s  3) - 2 c s ( a - x ) }  .hr , (3.5) 

where kc(t) =lira ~ ~ o  ~xx K~(t,x) (see (3.2)), and where the function u~hc,~_~(u ), 

u >= O, has Laplace transform 

[;c,~_~(2)=Ai((4c)l /3(a-x)+~)/Ai(r ~=(2c2)-1/32>0. (3.6) 

The function t~k~(t),  t~lR can be written 

k~(t)=exp(2 c2ta)g~(t), t~ lR ,  (3.7) 

where the function gr : IR-,IR+ has the Fourier transform 

d~(2)= ~ ei~g~(s)ds=21/3c-1/3/Ai(i(2c2)-l/32), 2~IR. (3.8) 

Proof. Let the transition density q~ x; t,y) be defined as in Lemma 2.1 and 2.2; 
i.e., qO is the transition density of the process X, killed when reaching a. Then, by a 
similar argument as used in Lemma 2.2 we can write if a > x, y, 

Qff'~){zM>t, MEda}={~o~ q~( s , x ; t , y ) kc ( t , a -y )dy}da ,  

where 

kc(t , z) = ~  Kc(t, z). 



92 P. Groeneboom 

Hence the joint density of (zM, M) at (t, a) is given by 

0 
i qe(s ,x; t ,y)kc( t ,a-y)dy (3.9) 

0t -~o 
i f a > x  and t>s. 

Since {X(t)" t > s) = { W(t) - ct 2 : t > s), the function kc(t, z) satisfies the (back- 
ward) equation 

0 kc(t,z)= I 0 2 0 
Ot 2 Oz 2 kc(t,z)+ 2ct ~z kc(t' z) 

and qO satisfies the (forward) equation 

0 ~ 1 0 2 0 q~(s,x;t,y),  Ot q ( s ,x ; t , y )=~ ~y2 qe(s ,x; t ,y)+Zet  ~y 

if t > s and a > x,y. Hence we get, after a straightforward computation, using 
integration by parts, 

0 i q~(s ,x; t ,y)k~(t ,a-y)dy 
Ot l ~  

0 
= i k~(t, a - y )  ~ qe(s, x; t , y ) d y -  i qe(s, x; t,y) ~ kc(t, a - y ) d y  

- cr3 - oo 

= -�89 kc(t)Oaq~(s, x; t, a), 

where 04q~ x; t, a)= l im 0 ySa ~Y qO(S'X; t,y). Since, by Lemma 2.2, 

Qff'x){%6dt) = -�89 04q~ x; t, a)dt, 

(3.5) now follows from (3.9). The Laplace transform nr4,_x(2) in (3.6) is given by 
part (ii) of Theorem 2.1. 

Finally, the Fourier transform of the function 9~" IR~IR+ can be computed 
using Theorem 3.1. By Theorem 3.1, we can write 

k~(t,z)=exp {~ c2t3-2ctz} . { - 2 c t ~ ( t ) +  ~--~ ~ ( t ) } .  

Furthermore, we have by (3.4), 

lim 0 +o ~zz ~ ( 2 )  = (2/c)~/3/Ai(i~), (3.10) 

where ~ = (2 C 2 ) - 1/3 ,~., using the relation Ai (z) Bil(z) - A il(z) Bi (z) = re- 1. Since 

lim kc(t, z) =exp  (~ cZt 3) lim 0 
z,0 ~,o ~ ~ ( t ) ,  

(3.8) now follows from (3.10). [] 

The following corollary gives the corresponding result for two-sided Brownian 
motion. 
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Corollary 3.2. Let 
zero. Define 

and 

W(t) : t ~ IR} be two-sided Brownian motion, originating from 

M = s u p  {W(t ) -c t2 :  t6IR} 

"C M = s n p  {t E IR: W(t) --ct 2 is maximal}, 

i.e. rM is the a.s. unique location of the (a.s. finite) maximum M. The joint density of  
(ZM, M)  at (t, a), t ~IR, a > O, is given by 

f~(t, a) = g c ( I t l ) h c , . ( I t l ) g , a ( O )  , (3.11) 

where the functions gc and he, a are as in Corollary 3.1, and the function 0, : IR ~ IR + is 
defined as in Theorem 3.1. 

Proof Let t > 0, a > 0, let M+ = max { W(t) - ct 2 : t > 0} be the maximum of the 
process { W(t) - c t  2 :t ~ 1R}, restricted to [0, ~) ,  and let zM+ be the location of this 
maximum. By Corollary 3.1, we have 

We also have 

Q}O,O) {M+ e da, z~t ~ dt} = h~,. (t) gr dadt. 

Pr { W(s) - cs z < a, for all s < 0} 

= P r { W ( s ) - c s 2 < a ,  for all s>0} 

= Q}O,O){X(s) < a, for all s > 0} 

= K~(O, a) = Oo(0), 

by (3.3) in Theorem 3.1. Relation (3.11) now follows, for the case t>0 .  The case 
t < 0 is treated in a completely similar way. [] 

The particularly simple form of the marginal density of the location of the 
maximum of the process {W(t ) -c t2 : t~IR} is given in the following corollary. 

Corollary 3.3. The density of the random variable 

Z =  sup {t ~ IR : W(t) - c t  z is maximal} 
is given by 

fz( t )  =�89 gc( t )gc(- t ) ,  (3.12) 

where the function gc has the Fourier transform given by (3.8). 

Proof. By Corollary 3.2 we have 

fz(t)=gc([tl) ~ hc, a(ltl)~,(O)da. (3.13) 
0 

Suppose t > 0. By part (ii) of Theorem 2.1 the density o f z  a at t, under the probability 
measure Q~O,O) is given by h~,,(t). Hence, by Lemma 2.2, 

exp ( _2  c2t 3 ) h~,. (t) = Qr e dt}/dt = -�89 34 q~ O; t, a). 
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Since ffa (0) = O~O,O){X(s) < a, for all s > 0) = Pr { W(s) - cs 2 < a, for all s < 0}, we get 

exp { _ 2  c2t 3) ~ hc,,(t)~a(O)da 
0 

_ 1 ~ Pr{W(s )_cs2<a ,  all s<O}O4qe(O,O;t,a)da 
2 0  

_---1 ~ 02qO(_t ,a .O,O).Pr{W(s)_cs2 <a ' '  all s>O}da 
2 o  

where the last equality follows from a simple time reversal argument. We also have 

1 ~ ~2qO(_t ,a;O,O) .Pr{W(s)_csZ<a ' all s>O}da 
2 o 

_ i  lim 0 ~ qO(_t,y;O ' _a).Q~O,_o){X(s)<O, all s>O)da 
y , o  o �9 

1 l im 0 =2 y,o ~Y Q~-"r){X(s)<O' all s > - t }  

1 
2 ko(-t) .  

Hence, by (3.7) and (3.13) 

fz( t )=gc(t)  ~ hc,.(t)O~(O) da 
0 

- 2  gc( t )k~(- t )exp { cat 3} 

1 - -0At)gA-t). 

The case t < 0 follows by symmetry. [] 

The tail behavior of the random variable Z = sup {t e IR : W(t) - ct 2 is maximal} 
is given in Corollary 3.4. 

Corollary 3.4. The function 9c, definino the density f~ in Corollary 3.3, has the 
following properties 

(i) 9c(t) = (4C)  1/3 ~ exp ((2c2) 1/3a.lt[)/Ai I(a.), 
n = l  

/ f t  <0, where the a, are the zeros o f  the Airy function Ai on the negative real axis. 

(ii) g~(t) . .~4ctexp(-2cZta),  as t ~ .  

Hence we have 

(iii) f z ( t )~ �89 c21t[a +(2c2)l/3alltl}/Ail(al), 

as It[ ~ ~ ,  where al "~ -2.3381 is the largest zero o f  the Airy function Ai and where 
Ail(a0~0.7022 (see [1], p. 478). 
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Proof By (3.8) we can write 

gc(t)=(2/c)l/3 1 c~+i~o - -  ~ e-'"/Ai((2cZ)-l/3u)du (3.14) 
2hi c~-i~ 

where c I > al,  al being the largest zero of the Airy function Ai. Here we use the fact 
that Ai is an analytic function and that 

as I s l - - '~ ,  s e lR .  
If t < 0, we can shift the integration road to the left, obtaining the series of 

residues given in (i). 
Ad (ii). Again using the representation (3.14) of go(t), it is seen that the integrand 
has a saddlepoint at (approximately) u = 2c2t 2, as t ~  ~ ,  using the relation 

Ai (z) "-~ exp ( - ~  Z3/2)/2 7C�89 1/4, Re z ~  ~ .  

Hence, taking c 1 -= 2c 2 t 2, we obtain by Laplace's method (see e.g. Olver (1974), 
Sect. 3.7) 

23/2 too 
exp (~c2ta)gc(t)--~n/c2 5 2 [//~exp (�89 c2t3y2)dy 

- - i o a  

1 
�9 ~ e-~Y2dy=4ct. =4ct ~ -~o 

Finally, part (iii) of the corollary follows immediately from (i) and (ii). [] 

Remark. It is clear from part (iii) of Corollary 3.4 that the density of Z has a very 
thin tail. Using the expansion 10.4.59 in [1], it is possible to give a complete 
asymptotic expansion of the density fz(t), as t-~oo, just by plugging in this 
representation of Ai in the proof of (ii) in Corollary 3.4 and using Watson's lemma 
(see e.g. Olver (1974), p. 71). We shall, however, not go into this. 

The representation of go(t), for t < 0, given in Corollary 3.4.(i), has been derived 
from Theorem 4.3 in Groeneboom (1985), using different methods, by N.M. 
Temme (personal communication). 

4. Excursion Integrals and the Grenander Estimator 

Let { W(t) : t E IR} be two-sided standard Brownian motion on lR, originating from 
zero, and let the process { V(a):a s IR} be defined by 

V(a) = sup {t E IR : W(t) - ( t  -a)  2 is maximal}. (4.1) 

It is easy to see that V is an increasing pure jump process, generated by Brownian 
motion sample paths. A picture of the situation is shown in Fig. 4.1. V(a) is the 
location of the point where the parabola f ( t )= (t-a)2+ c, sliding down along the 
line t = a, hits two-sided Brownian motion, originating from zero. 

The process { V(a):a E IR} plays a fundamental role in describing the global 
behavior of the Grenander maximum likelihood estimator (MLE) of a monotone 
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Fig. 4.1 

density. In particular, if ~,~ is the class of nonincreasing left continuous densities on 
the interval [0, oe), and X1, .. . ,  X, is a sample generated by a density f ~  ~-, then the 
Grenander M L E f ,  off ,  under the restriction t h a t s  should belong to ~ ,  is given by 
a left continuous version of the slope of the concave majorant P~ of the empirical 
distribution function F,, based on X 1 . . . . .  X~, and the asymptotic variance of  the L1- 
distance II/o -fill can be expressed in terms of covariance structure of the process 
{ V(a) : a ~ IR} (under some regularity conditions on the density f ) .  For details (and 
pictures) we refer to Groeneboom (/985). 

It is clear that the process { V(a) : a E IR} generates the endpoints of "excursions 
below parabolas", so it is perhaps no surprise that the structure of the process 
{V(a):aelR} can be described in terms of functionals of ordinary Brownian 
excursions (with the help of the Cameron-Martin-Girsanov formula). 

We recall the definition of a Brownian excursion. A Brownian excursion on 
[0, 1 ] is a nonhomogeneous Markov process {e(t) : t s [0,1 ]} with marginal densities 

fe(0 (x) = 2x 2 exp { -x2/(2 t(1 - t))}/{2 ~t 3 (1 - t )3}  ~ , (4.2) 

and transition densities 

re(t) ]e(s ) (y lx)  

= {nt-s(Y - x )  - n  t_ ~(y + x)} "(1 -s)3/2y exp { -y2/(2 (1 - t ))} 

�9 {(1 -t)3/2xexp {-xZ/(2( l  -s))}} -1, x ,y>O,  

(4.3) 

where n,(x)=u-~qS(x/]~) and 4) is the standard normal density (see e.g. It6 & 
McKean (1976), p. 76). Intuitively speaking, a Brownian excursion is a Brownian 
bridge, "conditioned to be positive" (see e.g. Durrett et al. (1977) and Blumenthal 
(1983)). More generally, we can consider excursions ~ on an interval [a, b], which are 
obtained from the excursions defined by (4.2) and (4.3) by putting 

~(t) = (b -a)+e((t -a ) / (b -a ) ) ,  t E [a, b]. (4.4) 
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Now let v(t, x, w) be defined by 

v(t, x, w) = Q~t'x){z o 6dw}/dw, (4.5) 

where ~o and Q~t'x) are defined as in Theorem 2.1. We will show that  the infinitesimal 
generator  of  the time-space process {(a, V(a)) : a ~ IR} can be expressed in terms of  
the funct ion 

a 
vz(t, w)= - ! i r a  ~xx v(t,x, w) (4.6) 

and the funct ion 

kl (t) = lim ~ x+O ~x Kl(t'x)' (4.7) 

where K 1 (t, x) is defined by (3.2), with c = 1. We will first show that  v2 (t, w) can be 
expressed in terms of  an expectat ion of  a funct ion of  a Brownian excursion integral 
(Lemma 4.1) and we will compute  the Laplace t ransform of  the density of  this 
Brownian excursion integral (Lemma 4.2). 

Lemma 4.1. Let v 2 (t, w) be defined by (4.5) and (4.6). Then we have 

v2(t' w)={27c(w-t)3}-~ exp { -  ~ (w3-t3)} " Eexp { - 2  i e(u)du} (4.8) 

where { e (u) : u ~ [ t, w]} is a Br ownian excursion on [ t, w] (see (4.2) to (4.4); we write 
e (u) also for excursions defined on intervals different from [0, 1 ]). 

Proof. By part  (i) of  Theorem 2.1 we have, for  x > 0, 

Q~t, - x){z ~ E dw} = exp { _ 2  (w 3 _ t 3) _ 2 tx} O~ (w - t) 

" E~ {exp( -2  Wi~ B(u)du)lB(w-t)=x}dw. 

where Oz(u)=(2rcu3)-~zexp(-za/2u), u,z>O, and {B(u):u>O} is a Bes(3) 
process, starting at zero at t ime 0. Moreover ,  by par t  (ii) of  Theorem 2.1, we have, 
for u > 0 ,  

x 1 @x(u)E~ ~ ~ ei~"Ai(41/3x+i~)/Ai(i~)d2, 

where ~ = 2-1/3 2. Define, for  x, u > 0, 

F , ( x ) = 2 ~  ~ eia"Ai(22/ax+i~)/ai(i~)d2. (4.9) 

The funct ion F,(x) can be represented as the series of  residues 

F,(x)=21/a ~ Ai(22/3x+a") 
, = 1 Ai I (a,) exp (21/a a,u) 

where the a, are the zeros of  the funct ion Ai on the negative halfline. Hence we have 
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lim F ' (x )=2  ~ exp(21/3a,u), 
x$O n=l  

lim F~; (x) = O, 
x$O 

and lira F"(x)--27/3 ~ a.exp(21/aa.u). 
x,t0 n=l  

Thus we get, applying l'H6pital's rule, 

o { o 

=lim 0 ~+o ~x {F"(x)/O~(u)} 

1 lim c~x F[, (x)O~(u) -F.(x) ~ O~(u) 
2 x+O 

- - 0 .  

We therefore obtain, by Lemma 2.4, 

/)2(t, W)=exp  { _ 2  (w3 - - t3 )}  

(4.10) 

�9 lim E ~ exp - 2  B(z)dz [B(w-t)= "~x ~x(w-t) 
x$O 0 

= (2 ~(w-t)a)-~ exp { -  2 (wa-t3) } " Eexp { - 2  ~ e(z)dz} 

noting that Eexp{ -2  i e(z)dz}=Eexp{-2(w-t)3/2 i e(z)dz}. V1 

The following lemma gives an analytic characterization of the function/)2 (t, w) 
1 

and also gives the Laplace transform of the excursion integral ~ e(u)du. 
o 

Lemma 4.2. Let VE(t, w) be defined as in Lemma 4.1. Then we have 

(i) /)2 (t, w) = exp { _2 (w 3 - -  ta)}p (w - t), 

where the function u~p (u), u > O, satisfies the relation 

e-Z,{p(u)_(Z~ua)-~}du=22/3AiL(~)/Ai(~)+~, ~=2-a/32. (4.11) 
0 

(ii) The function p : IR+ ~IR, defined in (i) has the following representation 

p(u)=2 ~ exp(21/3a,u), u > 0 ,  (4.12) 
n=l  

where the a, are the zeros of the function Ai on the negative halfline. 
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1 
(iii) The density of the random variable ~ e(u)du has the Laplace transform 

o 

where the a, are defined as in (ii). 

Proof Ad (i). By part  (ii) o f  Theorem 2.1 we have (arguing as in the p r o o f  of  
Lemma 4.1), 

re(t, w)=exp { - ~ ( w  3 - - t 3 )}  �9 l i m  F~_t(x), 
x$0 

where Fu(x ) is defined by (4.9), for x, u > 0 .  Hence 

p (u) = lira F,~(x), u > 0. 
x$O 

For  x > 0, the function u~F[,(x) has the Laplace t ransform 

~e-;.UF/,(x)du=22/3Ai 1(~+22/3x)/Ai(~),  ~ = 2 - 1 / 3 2 .  
o 

Thus we get 

0 

= lira {22/3 ai l (~ + 22/3 x)/Ai (~) + 1 / ~  exp ( - x ~/222-) } 
x20 

= 22/3 a i l ( r  (r + ~ / ~ .  

Since we also have 

lim ~ e-;~U{F,(x)_ 0 -~ } x~o o ~XX (2~Zu3) ~ x e x p ( - - x 2 / 2 u )  du 

= e-Z"{p(u)-(2=u )-'}du, 
o 

(4.11 ) follows (noting that p (u) - (2 rm 3 ) - 4 = (9 (i), u + 0). 
Ad (ii). This is just  relation (4.10). 
Ad (iii). By Brownian scaling, we have 

Eexp{-2 i e(u)du}=Eexp{-2ta/Z i e(u)du } �9 

Thus (4.13) follows from part  (ii) by taking 2 = 2 t  3/2. [] 

The structure of  the jump process { V(a) : a e IR}, defined by (4.1), is determined 
in the following theorem. 
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Theorem 4.1. Let B denote the set of  bounded Borel measurable functions f :  IR 2-+ IR, 
and let {Pt : t > 0 }  be the semigrou p of  linear operators on B defined by 

[Ptf] (a, x) = E {f(a + t, V(a + t))l V(a) = x}. (4.14) 

Let C~ (]R 2) be the space of  functions f :  IR2--+IR, which have compact support and 
continuous derivatives of  all orders, and let C(IR 2) be the space of  continuous 
functions f :  ]R 2 -'+ ]R. Then the semigroup {Pt : t > 0} has the infinitesimal 9enerator 
G : C~ (IR 2) ~ C(IR2), defined by 

[Gf] (a, x) =~af (a  , x) 

+ 2 S (y - x )  {k t (y -a ) /k  1 (x - a ) }  {f(a, y) - f (a ,  x)} v 2 (x -a ,  y -a)dy  
x 

- ~a f ( a ,  x)  

+ 2  ~ ( y - x )  {gl(Y -a ) /g l (x -a ) }  {f(a,y) - f (a ,  x ) }p (y - x )dy  (4.15) 
x 

where the functions k 1 and 91 are defined as in Corollary 3.1 and the function 
p: IR+--~IR+ is defined as in Lemma 4.2. In particular the function 91 has Fourier 
transform 

9a(2)=21/3/Ai(i2-x/32), 2~IR,  (4.16) 

(see (3.8)), and the Laplace transform of the function Po : IR+ ~IR, defined by 
3 _ a  po(u)=p(u)_(2rcu ) 7, u > 0  (4.17) 

(the regularization removes the singularity of  the function p of  order (2 ~u 3) - ~ at zero) 
is 9iven by 

Po (')0 = 22/3 { Ail (~)/Ai (3)} + 1 / ~ ,  ~ = 2-1/3 2, (4.18) 

(see (4.11)). 

Proof. First we note that  for the process { V(a) : a ~ IR} of  locations of maxima the 
"pinning down"  of  two-sided Brownian mot ion at zero is immaterial;  we could just 
as well pin down Brownian mot ion at another place, without  changing the structure 
of the process { V(a): a s IR}. Now consider the process {X(t) : t > to}, starting at x 0 
at time to, where X ( t ) = W ( t ) - t  2, and {W(t):t>=to} is (one-sided) Brownian 
motion,  starting at x o + t 2 at time t o. Let M denote the maximum of the process 
{X(t) �9 t > to}, and let "c M denote the (a.s. unique) location of  this maximum. Then ~M 
is a last-exit time for the process 

{(X(u), M(u)) : u => to}, 

where M(u)= max {X(z) : t o <_ z =< u}, since %t is the time of the last visit to the set 
{(x, x) : x >=Xo}. F rom the results on the decomposit ion of Markov  processes at last- 
exit times in Meyer, Smythe and Walsh (1972) it then follows that, conditionally, 
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given "c M = t 1 and M = a, the process {X(t) : t > t 1 } is a (nonhomogeneous)  diffusion, 
which we shall denote by { Y ( t ) : t  > tl}, with transition probabilities 

Pr { Y(w) ~ dy[ Y(t)  = x} 

= K l ( t , a - x ) - ~ q ~  t l < t < w ; x , y < a  , (4.19) 

where K 1 (u, z) is defined by (3.2), and where q~ x; w, y) is the transition density of  
the process X, killed when reaching a (see (2.3)). The marginal densities of the 
process Y are given by 

P r { Y ( w ) e d y } = 2 k l ( t t ) - l v ( - w , y - a ,  - q ) K l ( w , a - y ) ,  (4.20) 

where the functions v and k 1 are defined by (4.5) and (4.7), respectively. This 
follows from (4.19), by taking the limit as tJ, t I and x'Fa, noticing that 
q~ x; w, y) = qO( - w ,  y;  - t, x) and that, by Lemma 2.2, 

v( - w , y - a ,  - t l )  = - � 8 9  O4qO(-w,y;  - t ,  a). 

Define, for b > 0, 

z ( b ) = s u p  {t > q : Y(t)  + 2 b ( t - q )  is maximal}.  

It is easily seen that  we have 

Pr { V(b) e dt 2 [ V(0) : t~ } = er  {z (b) e dr2 }. (4.21) 

A sample path of  the process { Y(t)  + 2 b (t - t 1) : t > t 1 } can only have a maximum at 
t 2 > tl ,  if the sample path is of  the form shown in Fig. 4.2. 

(to,m) (t2,m) 

1 
a+2b (u-t I ) ~/~[[ 

l 
( t ,  , a ) ' ~ / l ^ .  I J -  ! 

t J ....  I 

t I t o t 2 

Fig. 4.2 

The sample path in Fig. 4.2 attains its maximum value m at time t 2 ; the point 
(to, rn) is the intersection of  the lines f ( u )  = a + 2 b (u - q)  and f ( u )  = m, hence t o = t 1 
+(m -a) / (2b) .  

Let {Z(t) : t >  tl} be the process defined by Z( t )  = Y(t)  + 2 b ( t  - t l ) .  By (4.20) we 
have 

Pr {Z(to) ~ d ,v } /dy  = er  { r ( l o )  @ - 2D (l  - t 1) -~- d y } / d y  

= 2 k l ( t l ) - l v ( - t o , y - m ,  - t l ) K l ( t o , m - y  ) . (4,22) 
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Let M b denote the maximum of the process {Z( t ) : t> t l )  and let z(b) be the (a.s. 
unique) location of this maximum (see (4.21)). We will show 

Pr {M b ~ din, �9 (b) ~ dt2) 

= 2k l (q )  -1 m v(-- to ,Y--m,  --q)v(t o - b , y  - m ,  t 2 - b )dyk l ( t  2 -b)dmdt  2 
- -  o 0  

(4.23) 

For the proof of (4.23), we consider the process { U(t) : t > to}, starting at y at 
time to, with corresponding probability measure R (t~ on the Borel field of 
C([to, ~ ) ;  IR), where 

U(t) = W(t) - t 2 + 2b(t - tl), (4.24) 

and { W(t) : t > t o} is Brownian motion, starting at y + t 2 - 2b (to - tl) at time t o. 
Let r~(s, x; t, y) be the transition density of the process U, killed when reaching 

m, let L(t, x) be defined by 

L(t ,x )=R(t ' -x ){U(z)<O,  for all z > t ) ,  x > 0 ,  

and let 
#(t, x) =~--~ L(t, x). 

Furthermore, let M denote the maximum of the process { U(t) : t > to}, and let ~M be 
the (a.s. unique) location of this maximum. Then we have, arguing as in the proof of 
Corollary 3.1, 

R(t~ {r~ > tz, M~clm} = { joo r~ Y; t2,z)~e(tz ,m-z)dz} dm, 

and the joint density of (z M, M) at (t2, m) is given by 

-21 #(t2) 84re(to, y; tz, rn), (4.25) 
where 

#(t) =lira ~(t, x). 
x~o 

But by (4.24), we can write 

U(t)= W ( z ) - z  z, z = t - b ,  (4.26) 

where { W(z):z  > t o - b }  is Brownian motion, starting at y + (t o - b )  2 at time t o -b .  
Hence we get from (4.25) and (4.26) 

R('~ y) {~M E dt 2, M E dm}/dt2dm 

= - ~  kl (t 2 -b)~r - b , y ;  t 2 - b ,  m) 

= k l ( t  2 - b ) v ( t  o - b , y  - m ,  t 2 - b ) .  

Relation (4.23) now follows, since by (4.22) 

Pr {M b ~dm, ~(b) ~dt2) 

= ~ ( 2 k l ( t l ) - l v ( - t o , y - m ,  -tx)Kl(to,  m -y ) )  
- -  O D  

�9 (K 1 (to, m - -y)- i  R (r~ y) {zM ~ dr2, M ~ dmlj) dy. 
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Furthermore,  since a <_ m < a + 2b(t 2 - tl), if ~(b) = t z, (see Fig. 4.2), we obtain 
from (4.23) by integration with respect to m 

Pr {'c (b) e dt 2 }/dt 2 
a+2b!z-tl) 

7 = 2 k l ( q  ) 1 o v ( _ t o , y _ m , _ t l  ) 
-oo 

�9 v(t o - b , y  - m ,  t 2 - b ) k l ( t  z - b ) d y } d m .  

Letting b tend to zero, we obtain 

Pr {r (b) e dt2}/dt 2 = 4bk 1 (G)- 1 kl (t2) 

"! { ~  v ( - t o ,Y , - t l )V ( to ,Y ,  t2)dy}dto 

+ o ( b ) ,  as b+0, (4.27) 

making the change of variables m = a  + 2 b ( t  0 - t l ) .  
By Theorem 2.1 (i) and (4.5) we have 

v ( - to ,  y ,  - t l )  v ( t o ,  y ,  t2)  

=l- E { e x p ( - 2  ! e (u)dule( t~  

.{2rc(t 2 G)3}--~exp 2 3 - { - x  (t2 - tx~)} ,  

where {e(u):q < u < t2} is a Brownian excursion on [q, t2], and fe(to)(--Y) is the 
density ofe(to) at - y  ( > 0). This is easily seen by gluing the two (conditioned) Bessel 
processes of Theorem 2.1, on [ - to, - q] and [to, t2] respectively, together at t o (not 
unlike the construction in Sect. 2.10 of  It3 & McKean  (1974)), applying time 
reversal and translation on the Bessel process on [ - t o ,  - t l ] .  Hence we get 

0 
v( - to ,Y ,  - tl )V( to, Y, t2)dy 

-oo 

-2-a {2rC(tz-q) } "exp { (t~-tg}Eexp - 2  e(u)du . (4.28) 

Thus we obtain, f rom (4.27), (4.28) and (4.8) 

Pr {z (b) e dt 2 }/dt 2 = 2bk I (t 1) -1 kl (t2) {2 ~ (t 2 - tl) } - ~ exp { - ~  (t~ - t3)} 

. E e x p { - 2 ! e ( u ) d u } + ~ ( b )  

= 2 bk 1 (t 1)-1 kl (t2) ( t  2 _ t l )  u2 ( t l ,  t2 ) + ~ ( b ) .  (4.29) 

The first equality in (4.15) now follows from (4.21) and (4.29), noting that  the 
distribution of V ( a ) - a  is independent of a (and hence equal to that  of  V(0)). The 
second equality follows f rom Lemma 4.2.(i) and (3.7). Finally, (4.18) also follows 
f rom Lemma 4.2.0). [] 
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A different version of Theorem 4.1 is given in Sect. 4 of Groeneboom (1985) (see 
Theorem 4.1 of that section), where also a different approach, based on integral 
equations is given. The integral equations are further analyzed in Temme (1985). 

We finally want to note that the process { V(a) : a e IR} not only describes the 
limiting global behavior of the Grenander maximum likelihood estimator of a 
(smooth and strictly decreasing) density (see Groeneboom (1985)), but also 
describes the limiting behavior of certain "isotonic" estimators of distribution 
functions and hazard functions�9 In particular, by using the properties of this 
process, a simple proof of results in Kiefer and Wolfowitz (1976) can be given, which 
at the same time clarifies the connection between these results (on the estimation of 
concave distribution functions) and results on the estimation of a monotone 
density. These statistical applications will be discussed elsewhere. 

5. Appendix 

Proof of Theorem 3.1. We have, for x > 0, 

K~ (s, x) = Qff' - x) {X(t) < 0, t => s} 

= lim Q}S,-x){X(u)<0, s<u<t}. 
t ~ o 0  

Furthermore, by Corollary 2.1, 

0 

.___<.=_<t}= qO(., -x;t,y)dy 
- o o  

= exp { - 2  c 2 (t a _ s a) _ 2 csx} 

where 

�9 ~ exp(2cty)rc(t-s;x,y)dy, 
0 

rc(u;x,y)=p~ {exp(-2c i B(z)dz)lB(u)=Y }, 

see (2.19). We will show that 

lim exp{-2c2 t3}  S exp(2cty)rc(t-s;x,y)dy= ~ ~ e-iSa~x(2)d2, 
t ~ c o  0 - -o0 

(5.1) 

(5.2) 
from which (3.3) and (3.4) immediately follow. 

First of all, since, by (5.1), re(t-s; x, y) < 1, if t - s >  1, we have for each M >  0, 

M 

lim exp { 2  cZt 3} ~ exp(2cty)rc(t_s;x,y)dy 
t --+~ 0 

lim exp { - ~  cZt3+2ctM} = 0 .  
t ~ o o  
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Taking M > x ,  we obtain from (2.20) 

~ eZCtYrc(t-s x , y ) d y -  e y - - ~ e  '(t s))'2giz(x)h~;.())d2 } ; " , 
M M ov 

(5.3) 

where gi~(x) and hi~(y ) are defined by (2.14) and (2.1 5) (with 2 replaced by i,~). We 
note that, if y > x > 0, the Laplace transform 

2-~2g~(x)h~(y) 

can be inverted along any line of the form c 1 + iN, parallel to the imaginary axis, 
with cl > al, and a~ the largest zero of the Airy function Ai on the negative halfline 
(this wilt become clear from the computations below). 

We now show that we can interchange the order of integration in the expression 
at the right-hand side of (5.3). We have, by (2.14) and (2.15), 

gi;~(x)hiz(y) = rc(4c) -1/3 Ai (i~ + y 0 A i  (i~) -1 

�9 { A i ( i ~ ) B i ( i ~ + x l ) - B i ( i ~ ) A i ( i ~ + x l ) } ,  (5.4) 

where ~=(2cZ)-l/S2,  x 1 =(4c)l/Sx and Yl =(4c)1/3Y �9 First suppose that 4>0. By 
10.4.9 in [1], we can write 

Bi (z) = i Ai (z) - 2  ie ~i/3 Ai (ze-2 ~i/3). (5.5) 

Hence we have 

Ai (i~) Bi (i~ + x 1) - Bi (i~) Ai (i~ + xl) 

= 2 e - r~i/6 {Ai  ( i { )  A i  (e - rgi/6 ( ~  - -  ix 1)) _ A i  (e - ~i/6 ~. ) Ai  (i~ + x 1) }, 

and therefore 

hAi (i{) Bi ( i{  + x l )  - Bi  ( i~)  A i  (i~ + x~)l 

~r t -{{-1 /4exp( �89  as r  (5.6) 

using the asymptotic equivalence 

Ai(z) ~�89 �89  3/2"~ [z]-+ oo [arg (z)[ < ~z, (5.7) 3 )~ 

see 10.4.59 in [1]), and the expansion 

[exp { _23 \~[~ -- ~ i /6  \'vg 7" __  i x l ) ) 3 / 2 } 1  

= exp { - ~  ~3/2 ~/2 +�89 ] / ~ }  (1 a~ + (9({-})), 

as {--+ oe. A similar analysis shows 

IAi (i~ + y,)/Ai (i{)[ = (9 (exp { - } r  3/2 (cos 23. 0 + 2 -~ sin 3/2 0)}), (5.8) 

as r~oo ,  where r= ly l+ i~[  , y l = r c o s O  and {=r s in0 ,  0 < 0 < �8 9  
Since c o s } 0 + 2 -  ~ sin a/20=r -3/2 R e  {(i~q-yl) 3/2 _ ( i ~ ) a / 2 } ,  the function 

f :  0--+cos 2 a- 0 + 2 -~ sin 3/2 0 is strictly positive on the interval [0, �89 and is zero at 
0=�89 A Taylor expansion of the function f in a neighborhood of 0=�89 shows 
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f ( O ) ~ 3 " 2 - ~ c o s O ,  as 0]'�89 (5.9) 

m 

[Ai (i~ + Ya)/Ai (i~)[ = (9 (exp ( - � 8 9  ~)), (5.10) 

as ~--,oo and y ~ / ~ O .  
Thus, by (5.4) to (5.10) and the choice of M > x ,  we have, i f y > M ,  

[e 2ctygi ~ (x) hi~ (y)] = (9 (exp {2 cty - c~ ( y ~ / ~  + y3/2)}) 

for a fixed constant cl > 0, as 2 ~ o e  and/or y ~ o e ,  implying that the function 

(y, 2 )-+e2"y g,~. (x) h~z(y ) (5.11) 

is absolutely integrable on [M, oe) x (0, oo). 
Similarly, using the representation 

B i  ( z )  = - i A i  ( z )  + 2 ie - ~ /a  Ai (ze 2 ~i /3) ,  

instead of (5.5) (see 10.4.9 in [1]), it is seen that the function (5.11) is absolutely 
integrable on [M, oe) x ( - o% 0). Hence we can apply Fubini's theorem, yielding 

e 2C~y ei(t-S)Zgia(x)hi~(y)d2 dy 
M 

Fix 2~IR. Then, as t~oo,  

~exp  (2c ty )h~(y )dy-  exp (2cty)Ai(i~ + yOdy 
M M 

(4 c)-1/3 exp {2 c 2 t 3 _ it2 }. (5.12) 

This asymptotic relation can be derived by first writing (using the change of 
variables y = ctZu) 

~ e x p  (2 cry) Ai (i~ + y~) dy 
M 

=ct 2 ~ exp(2c2t3u)Ai(i~ +(2c2)2/3t2u)du, 
m/c t  2 

and next, using (5.7), by expanding the integrand at u = 1, which is the approximate 
location of its saddle point for large t. This yields 

exp (2cty) Ai (i~ + yt)dy 
M 

~ 2 - 7 / 6 ~ - ~ C  2/3 t 3/2 exp (~cgt 3 --it2)" ~ exp { -zlc  2 t3(u - l )2}du  
0 

~(4c)-*/3exp(Z cZt3- i t2) ,  t~oo.  
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Thus we obta in ,  for  f ixed a > 0, 

1 e x p ( _ 2  c2t3 ) exp(i( t_s)2)giz(x ) exp(2cty)Ai( i~+yl)dy d2 
7"C - - a  

1 i exp(-is2)~x()~ as t--*oo. (5.13) 
~2~z a 

Hence we are th rough ,  if we can show that  we can take  a = oo in (5.13), or, s ta ted  
differently,  tha t  

l im e x p ( - Z  c2t 3) ~ exp(i( t-s)2)gi~(x) 
t,a-~oo 2 > a  

�9 ~ (2cty) Ai (i~ +yOdyd2 = 0, (5.14) 
M 

and s imilar ly  tha t  the in tegra l  over  the region ( - oo, - a )  x [M, oo) tends to zero as 
t ~  oo and a ~  oo. We will only  show (5.14), since the other  case can be t rea ted  in a 
comple te ly  s imilar  way. 

By the change  o f  var iables  y=ct2u and 2=2c2t2v, we get 

lexp (i(t -s)2)glz(x) ~ exp (2cty)Ai(ig + yl)ldyd2 
).>a M 

~ 2 - 3 / 2 7 " C - l C 2 t  3 ~ exp@z xlt(2c2)l/3~2v) dv 
v > a/2 c2t 2 

exp {2 c 2 t 3 (u - 2  Re {(u + iv) 3:2 - -  (iv) 3/2 })} du , 
u > M/ct 2 

as a ~ o o .  I f  0 < v < 2 ,  we have 

exp {2 c 2 t 3 (u - 2  Re {(u + iv) 3/2 -(iv)3/2})} du 
M/ct 2 

un i fo rmly  in v ~ [0, 2), where 

f (v)  = u, _2  Re {(U 1 -'}- iv) a/2 -- (iv)3/2}, 

g (., ~) = �88 {Re (ul + iv)-  ~} (.  - . 1 )  2 , 

and u I is the unique so lu t ion  o f  the equa t ion  (in u) 

Re {(u + iv) -~} = 1. (5.16) 

It  is clear  tha t  the roo t  u I of  the equa t ion  (5.16) is a strictly decreas ing func t ion  o f  
v s [0, 2], with u 1 = 1, if v = 0, and  u 1 = 0, if  v = 2. The funct ion  f is also strictly 
decreas ing in v, wi th  f ( 0 ) = ~  and  f ( 2 ) = 0 .  F o r  the proof ,  we write u 1 = r c o s 0 ,  
v = r sin 0, which yields 
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ul - -2 Re {(u 1 + iv) 3/2 -- (iv) 3/2} 

= r cos 0--  2 r3/2 {cos 23 0 - 2 -  ~ sin 3/20 } 

= x  + t a n ~  2 ~-s 0 -- 4 tan3/2 �89 0, (5.17) 

if r ~ cos �89 0 = Re (u 1 + iv) ~ = 1, as can be verified by writing cos 0 = cos 2 �89 0 -  sin 2 �89 0, 
cos32 0=cos3 � 8 9  3cos�89 �89 and 2-~sin3/20=2sin3/2 �89 �89 Since 
tan 0 = v/u s , and u s is a decreasing funct ion o f  v, it is seen f rom (5.17) that  f ( v )  is 
a strictly decreasing funct ion o f  v (using that  t an2 �89189  is strictly 
decreasing in 0, 0 __< 0 < �89 re). 

I f  v__> 2, we have 

exp {2 c 2 t 3 (u - 2 Re {(, + iv) 3/2 - (iv) 3/2 })} du 
M / c t a  

= (9 {Mit 2 exp { - 2~ cZ t3 v-~ u}  du} 

= (9 exp ( - c t M ~ / - 2 v )  , (5.18) 
c2 t 3 ~ / ~  

as t ~  oo uniformly in v 6 [2, oo), since in this case the function u ~ u  _ 2  Re (u + iv) 3/2, 
u > 0, is decreasing on [0, oo). 

Thus we obtain,  f rom (5.15), (5.17) and (5.18) 

exp {2 c 2 t 3 (u - 2 Re {(u + iv) 3/2 - (iv)3/2)))) du 
M / c t  2 

= C0(exp % t - aM1/2 )) 

if V > 8 > 0, uni formly in v ~ [6, oe), where c 1 is a positive constant  (depending on 6) 
such that  cl <2 .  This shows 

exp ( - 2 c 2  t 3) S exp ~2-x 1 t(2c2) 1 /3 /~v )dv  
v__>~ 

exp { 2 c 2 t a ( u - 3  Re {(u+ iv)a/2-(iv)3/2})}du~O, 
u > M / c t  2 

as t ~ o e ,  (5.19) 

since x 1 = (4 c) 1/3 x and hence c t M  > �89 x 1 t (2 c2) 1/3 ~ / ~  (using M > x). Finally, if v ~ 0, 
but  2 = 2 c 2 t a v ~ oe, we get 

t 3 ~ exp { 2 c Z t 3 ( u - 2 R e  {(u+iv)  3/2-(iv)a/a})}du 
M / c t  2 

= C {exp (2 t 3 _ ~  c 2 t 3 (2v)3/2)}, (5.20) 

using the same techniques as in the derivation o f  (5.12). 
Relat ion (5.14) now follows f rom (5.19) and (5.20). [] 
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