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Summary. Let X~, X 2 ,  . . . ,  X n be independent random variables having a 
common  distribution in the domain of normal  attraction of a completely 
asymmetric  stable law with characteristic exponent c~e(0, 1) and support  
bounded below. Let X, : ,>X , : , _ I> . . .>X , :a  denote the ordered sample. 
We obtain the rate of convergence of n-~/~(X,:,+...+X,:,_k.+a) to the 
stable limit law as both n and k,--, vo. As a consequence we obtain a represen- 
tation of the sum X,: ,  + . . .  + X,:,, _ a. + 1- 

1. Main Result 

Let X 1 ,  X 2 . . . . .  X n be independent r andom variables with a common distribu- 
tion function G in the domain of normal attraction of the completely asymmetric 
stable law F ( - ;  c~, 1) with 0 < e <  1. 

Let X, : ,  > X, :n-  1 > . . .  > X,: ~ be the ordered sample. In our theorem we need 
more information on the tail behaviour of the distribution function. The restric- 
tion to completely asymmetric  stable limit laws is not essential. We can obtain 
similar results in the case of other stable limit laws. We assume that G is continu- 
ous. 

Let S . = X ~ + . . . + X . .  Darling (1952) showed that S./X.:. converges to a 
non-constant  distribution. Hence we have 

E ( S , / X . : , ) ~ ( 1 - , )  -1 for n ~ o v .  

Arov and Bobrov (1960) showed (Corollary 6), for k , ~ o o  and k, n -  ~ log n ~ 0 
as n---, oo, that, for 0 < e <  i, 

S, = X , : .  + ... + X . : , -k .+  1 + [ , ( 1 -  ~) -~ +o(1)]  k,X,:,_k.+~ 

where ~ (1) converges in probabil i ty to zero as n ~ o v .  It follows from Theorem 3 
in Cs6rg(5 a.o. (i986) that  n-1/~(X,:,+ ... + X , : , _ k . + 0  converges in distribution 
to the completely asymmetric  stable law F( .  ; ~, 1). They do not make the restric- 
tion to the case eE(0, 1) and/3 = 1. The main tool in their proof  is a new Brownian 
bridge approximat ion  to the uniform empirical process. In Mijnheer (1986) we 
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sketched two simple proofs for the assertion above. In this paper we derive 
the rate of convergence. One result about the rate of convergence is known 
in the literature. See Hall (1978). He considers symmetrically distributed random 
variables in the domain of normal attraction of F(" ; e, 0). He orders the sample 
in increasing absolute values and obtains the limit distribution for the k order 
statistics with extremal absolute values, where k is fixed and n tends to infinity. 
He derives the rate of convergence to the stable limit distribution F ( - ; e ,  0) 
as k~c~ .  In this paper we obtain the rate of convergence when k, and n tend 
to infinity simultaneously. 

In Mijnheer (1986) we derived the characteristic function ~0,,,k" of n-1/~(X,:, 
+. . .  +X , : , - k ,+  1). We obtained 

(tOn,kn (t) = E {exp (i t n-1/~ (X.:. + . . .  + X.: ._ k. + 1))} 

= E {E (exp (i t n-  1/~ G -1 (Z) [ X.: .  _ k.))} k-, 

where, given X.:._k=X, the random variable Z has an uniform distribution 
(G(x), 1). We make the following assumptions for x > xo 

1 -G(x)=x-~+r(x), (1.1) 

where r(x)=(f(x -~) for x ~ o o  and e<7.  In the case when 0 < 7 <  1 we assume 
that r(x) is monotone for x sufficiently large. These assumptions are comparable 
with those given in Cram6r's paper (1963). A comparison of our results with 
the rate of convergence obtained by Cram6r - under forgoing conditions - 
is given in Remark 2. We write X instead of X~:n_k. 

Define the function h by 

h(t, x) = E exp(i t n-  1/~ G -  1 ( Z ) [ X  ---- x). (1.2) 

Using (1.1) and by partial integration we obtain for t > 0 and x > x o 

1 

h(t,x)={1--G(x)} -1 S exp{itn-1/~G-l(z)} dz 
G ( x )  

= 1 + {1 - G (x)} -1 ; {exp (it n-1/~ y)_ 1} d G (y) 
x 

=l_ClUn- l { l_G(x ) }  1 
x 

_ ~ { l _ G ( x ) ) - i  S {exp(itn-1/~y)_l} y-~-t  dy 
0 

+ {1 - G(x)} -1 {exp(i t x n-- 1/~)_ 1} r(x) 
09 

+itn-1/~{1-G(x)} -1 ~ exp(ityn -1/~) r(y) dy, 
x 

(1.3) 

where c~ is some (known complex) constant. For  t < 0 we have h (t, x)--h (--t, x). 
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One easily shows, without any assumption on G, that for 0 < j  < k. 

E {1 - G (X)} - j  n! (k . - j ) !  (1.4) 
(n - j ) !  k.! 

Using the asymptotic behaviour of the F-function (see Abramowitz and Stegun 
(1964)) we obtain 

E X 2 = (n/k.) 2/~ { l + (9 ( k ;  1) + (9 ((k./n) ~7- ~)/~)} (1.5) 

for k., n-~ ~ and k./n -~ O. 

Lemma 1. (a) There exists some positive constant fl (which only depends on ~) 
such that for k.,  n ~  

P (�89 (n/k,) 1/~ < X <_ 2 (n/k.) 1/~) = 1 - (9 (e - ~k") 

if k. = ~(n~). 
(b) Take ~ > 0 and t > O. 

r . = P ( t X n - 1 / ~ > e ) = O ( + ( t / e ) ~ ( k . + l ) ) e  - ~ - ~ )  

for  k., n ~ o o  and k . / n ~ O .  

Proof. We use the following well-known relation between order-statistics and 
the binomial distribution. For  y. = G(�89 (n/k.) TM) we have 

P(X<=�89 (n/k.)l/~)= ~. (1 -y .)Jy '~-J 
j = 0  

k. 1 (Uk.)j" 
< 2 y ]  Z 

j = 0  

The sequence ~ (2 k.), j = 0, 1, ..., k., is increasing (in j). Thus 

P ( X  < �89 (n/k.) 1/~) <_ 2 y~ k. 1 (2" k.) k-. 
= - k. ] 

We obtain the given upperbound by making use of Stirling's formula and the 
behaviour of G as given in (1.1). 

Similarly we have 

n!  1 - y .  
P(X>-2(n /k . ) ' / ' )  = S Yk"(1--Y) "-k" l dy  

k . ! ( n - - k . - - 1 ) !  o 
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where y . =  G(2(n/k.)l/~). It follows from the monotonicity of the integrand and 
Stirling's formula that 

P (X > 2 (n/k.) 1/~) = (9 (e- p k.). 

The proof of part b is analogous. [] 

In the following lemmas we shall make the following set of conditions 

C1: Itl<k~ with c~p<l 
and 

~ k n ,  n---~ o o  

C2: [k. /n  ~ O. 

Under these conditions we have n-  ~/~ I tl EX--+ 0 and it follows from Lemma 1.b 
that n -1/~ [tl X o O  in probability. 

Remark 1. Under the conditions given in C1 and C2 we have 

P(lt[ X n-1 /~  > e) = (9 (kn�89 e - Ak~l~ 

for some A > 0. 

We define the function hi by 

h l ( t , x ) = l - c l t ~ n - l { 1 - G ( x ) }  -1 for t__>0 
and 

hi(t, x ) = h l ( - t ,  x) for t<0 .  

The constant c 1 is the same (known complex) constant as in (1.3). 

Lemma 2. Under the conditions given in C1 and C 2 we have for t > 0 

E {h 1 (t, X ) }  kn = e -qt~ {1 + (9(t 2~ n-  1)} + rn(t ) 

where r. (t) is uniformly bounded by 

C k n  ~ e-Aknl~ 

for some positive constants c and A. 

Proof 

E{hl(t ,  X ) f f " = E { 1 - c l  t~n- l  { 1 - - G ( X ) } - l f f "  

= Z ( - 1 )  j " {c l t~n-1}JE{1-G(X)}  - j  
j=O 

= ~ (--1)J {c l f f n -1}J (n - - j ) ,  k.T 
j = O  �9 " 

using (1.4) 

= Z ( -  e n-1}J 
j=O 

=(1-clen-1) "- Z ( - ly  {cle--1} 
j=kn+ 1 
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The first term in the last line is equal to 

e-Cl~{l+(?(t2~n-1)} for n ~ .  

From the expression for the error term in the expansion of {1 + tn- x}n it follows 
that the absolute value of the second term on the right-hand side in expression 
for E {hi (t, X)} k~ is bounded by 

(nk,+l) {ct~n-1}kn+l{l+ct~n-1}"-gn-1 

for some positive constant c. Under the conditions in C 1 and C 2 we easily 
obtain the given upperbound. [] 

For  tn-~/~x small and t>O we have 

t n  - 1 / ~ x  

~ {exp(itn-1/~y)- l} Y-~-l dy =t~n-1 f {exp(iz)- l} z-~-l dz 
0 0 

=itn-X/~xl-~(l_cQ-l_�89 +C(t3n-3/~x 3-~) 

for n---, oo. 

We define 

he(t, x)=hl(t, x ) -  i c~(1 _ e ) - i  {1 - -  G ( x ) }  - 1  tn-1/~x1-~. 

Lemma 3. Under the conditions given in C1 and Ce we have 

[E {h2(t, X)}k"- E {h~ (t, X)}kn[ ~-~C It] k~- X/" e-~l'l~+ r, 

where c and ~ are positive constants and r, is given in Lemma 1 (b). 

Proof We use the following elementary equality 

C t = Z : j  - 
\j=0 

From the definitions of h2 and G it follows that under the conditions given 
in C1 and C2 we have 

h2(t, x ) - h l ( t  , x )~  ic~(1 __~)--1 txn-1/~. 

Using (1.5) we obtain 

{E(h2(t, X ) - h l  (t, X))2}~<c It[ k; 1/~ 

for some positive constant c. It follows from Lemma l(b) that It]Xn -~/~ is 
small with probability larger than 1 - rn .  
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On the set where It] X n -  1/e is small we have 

and 

Then 

[hl (t, X)I~  1 - a  Itl~n- l { 1 - G ( X ) }  -1 

Ih2(t, X) I~  1 - a  I t l = n - l { 1 - G ( X ) }  -1 

k ~ -  1 

Ihl(t, X)l a Ih2(t, X ) I  k n - j - 1  

j =o  

__<k,{l-a I t l~n-l  { l - - G ( X ) } - l }  k~-l. 

The result follows as in Lemma 2 using Schwarz's inequality. [] 

Define for t > 0 

and for t < 0 

h 3 (t, x )= h 2 (t, x )+ {1 - G (x)} -1 {exp (itn-1/~ x ) -  1} r (x) 
oo 

+ i t n - 1 / ' { 1  -G(x )}  -1 ~ exp(i tn-1/~y) r(y) dy 
x 

h3(t, x ) = h 3 ( - t ,  x). 

Lemma 4. Under the conditions given in C 1 and C 2 w e  have 

]E{h3(t, x ) }k" -E{h2( t ,  X)} k- ] 

< c  It[ k(]-t)/~n-(~-~)/~e-~ltL~+r. 

for some positive constants c an ~. The error r, is given in Lemma l(b). 

Proof Take t > 0. 
When t x n-  1/~ is small we have 

Ih2(t, x ) -h3( t ,  x)l <=ct x 1-~+~ n-1/~. 

The assertion follows as in Lemma 3. []  

Corollary 1. Similarly we can obtain an estimate for E {h(t, X)} k" -  E {h a (t, X)} k". 
It follows from the Lemmas 2, 3 and 4 and this estimate that under the conditions 
given in C 1 and C2 we have 

I~O,,k,(t)--e-Clltl~l <__ce-~ltl~{ltl k~- l/~+ ltl2~ n-1} +r  .. 

Next  we consider the characteristic function * q)..k. Of 

We have 
n-1/~{X.: .+ ... + X. : . -k .+ 1 + k. c~(1- ~) -1 X.: .-k .} .  

(p.*k.(t) = E ['{h (t, X)} k" exp (it n -  x/~ ~ (1 - c 0-1  k. X)]. 

(1.6) 

Note that in the last term in (1.6) we have X.: ._k.  and in the expression given 
by Arov and Bobrov we have X.: . -k .+ 1. 
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L e m m a  5. Under the conditions given in C1 and C2 we have 

I E {hi  (t, x ) }  ko - I 

~c{[ t [  1+~ ky a/= + l tl k(#- l)/~ n-(,-~)/~} e-eltl~+ r., 

where c and ~ are positive real constants and r. is given in Lemma 1 (b). 

Proof We can write 

(p*,g.(t) = E {h(t, X) exp(i t n -  a/~ e(1 - ~ ) - 1  x)}k.. 

For  t > 0  and t x n  -a/~ small we have 

h(t, x) exp(i t n -  a/~ ~(1 - ~)-  1 x) 

=ha(t, x ) - c  a i ~ ( 1 - ~ )  -a  ta +~n- a-a/~{1-G(x)}-  l x 

+ O(t 2 x z n -2/~) q- O(t n-  1/'x1-7+~). 

The assert ion follows as in L e m m a  3. [ ]  

Corol lary 2. Similarly as in Corollary 1 we obtain that under the conditions given 
in Ca and C2 we have 

I q)*,k.(t) -- e - ~  I*1= I 

The following lemma describes the behaviour  of  the characterist ic functions 
for larger values of  t. 

L e m m a  6. Let M be some positive real number. There exists some positive real 
constant c2 such that for n and k. sufficiently large, each of the functions p.,k.(t), 
Cp*k.(t) and E {h3 (t, X)} k" is in absolute value bounded by 

e x p ( -  Ca ] t l~)+r.  

for kV. < [ t[ < M k 1/~ and r. is given in Lemma 1 (a). 

Proof By L e m m a  l(a) we m a y  assume that  x=(9((n/k.) ~/~) for n, k . ~ o o ,  with 
an error  less tha t  r.. Then  we use that  

c~ 

( 1 -  cos y) y -~-1  dy 
z 

decreases as z increases. [ ]  

N o w  we state our  theorem. 
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Theorem. Under the conditions given in C2 we have 

(a) sup IP(n-1/~(X,:,+ ... +X, , : ,_k .+I)<x)--F(x;  c~, 1)l 
X 

= (9 (max(k1 - 1/% n-  1)). 

(b) suplP(n-1/~(X,: ,+ ... + X , : , _ k . + a + k , ~ ( 1 - - e ) - I x , : , _ k  <X)--F(x;  ~, 1)[ 
X 

= (9 (max(k; 1/~, k(~- 1)/~ n -(~- ~)/~, n-  1)). 

Proof We invoke the so-called smoothing lemma. See Petrov (1975), Chap. V. 

sup IP(n-1/~(X,:, + ... + X,:,_k.+ j < x)-- F(x; c~, 1)1 
X 

T 

<b ~ t -1 ]~O.,k.(t)--exp(--Cl It[')l d t+cr (b )T  -1, 
- T  

where r(b) is a positive constant depending only on b and b > ( 2 ~ ) - <  In part a 
we take T= k2 a + a/~ and p = 1 / ~ -  1. The assertion given in part a of the theorem 
follows easily from Corollary 1. 

In order to prove part b we take T=Mkt,/~ and p such that c~p<l. We 
use Corollary 2 in order to obtain an estimate for the integral over [ - k ,  p, k,P]. 

For  k, p < i t  I_< M k~,/~ we make use of Lemma 6. 

Mk~/~ 

t -1 [qo*k.(t)[ dt=(9(max(k~/~r,, k ; W e x p ( - f l k ~ ) ) ) .  

Similarly we estimate 

t -~le-cl~=ldt. [] 
k~ 

Remark 2. Cram6r (1963) showed under the same conditions 

sup [P(n- ~/~(X~ +.. .  + X, )<=x)-F(x;  c~, 1)]= (9(n -~4~) 
x 

where 2=min(1,  y - a ) .  If k, tends slowly to infinity, for example k,~( logn)  p, 
we obtain a very poor rate of convergence for the sample extremes. We have 
the rate (9(k. ~ -1/,) in part a of our theorem and (9(k; 1/9 in part b. 

Remark 3. We can improve the rate of convergence. Let the random variable 
Y have the distribution function given by 

1--P(Y<=y)=y -~-1 for y > l .  

The characteristic function of Y has the following expansion 

l + i t ( c ~ + l ) e - l + c ~  -1F(1--a)t~+~e'i(~+l)/2+(9(t 2) for t ~ 0 .  
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Here we make use of some integrals occurring in the derivation of the characteris- 
tic function of a stable distribution. (See for example - Laha and Rohatgi 
Theorem 5.4.4.) 

Define the random variable Y* independent of X by 

and for t > 0 

and 

Y*=c{Y- - ( c t+  I ) o : - I } + ~ ( 1 - ~ )  -a 

h 4 (t, X ) =  h (t, X) e x p ( - i t  n-  1/~X Y*) 

h4(t, X ) = h 4 ( - t ,  X) for t<0 .  

Now we can choose c such that the first term in the expansaon of h 4 (t, x ) -  h 2 (t, x) 

has the form t z x 2 n-  2/~ in the case �89 < e < 1 and t 1 + 2 ~  Xl + 2e n -  2 - 1/a in the case 
0<c~< 1. For  k, as in Remark 1 we can improve the rate of convergence to 
(9(k~ -2/~) in the case � 8 9  and (9(k21-1/') in the case 0 < e < � 8 9  We need 
an upperbound for the characteristic function for values of t which satisfy I tl 
> M k~,/L This upperbound is given in Lemma 3 of Mijnheer (1986). 

Remark 4. It follows from our theorem that 

n -  1/e(Xn: n "~... -~- Xn:n-kn + 1) 

has the same distr ibution as 

Yo + k. n-1/~ Xn:n-k, + l Y** 

where Y** is a random variable end/(1 +c~, 1) and Yo has distribution function 
F ( ' ;  ~, 1). 
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