Erratum

Biological Cybernetics © Springer-Verlag 1983

Dynamic Connections in Neural Networks

Jerome A. Feldman

Computer Science Department, University of Rochester, Rochester, USA

Biol. Cybern. 46, 27-39 (1982)

Inter-unit

	One-end	Dual	Block	
Idle	Low	High Block	Blocked	
Low	High Block	High Block	Blocked	Idle
High	(Low)		×	Low
Blocked		×		Idle

Εn	d-ı	unit

	Start	inter	
Idle	Low	Low	
Low	High	High	Idle
High		(Low)	Low

Fig. 4. State and output tables for dynamic connections

On p. 28, second column, the second formula should be $v \leftarrow$ if $\underline{p} > 0 \dots$ On p. 30, next to last sentence in the last full paragraph, the final "B" should be "not B". On p. 33, the formula in the first column should read

$$\bar{P} = (1 - F)^{\mathbf{B}^{\mathbf{K}}}$$
.

On p. 35, the formula $v \leftarrow 2p$ should be $v \leftarrow 0.2p$. Also on p. 36 there is a long formula. The first bracket after the equals is empty. It should be

which is read "d choose k" and is the number of different combinations of k choices from a total of d alternatives.

 \bar{P} = Probability that there is no link from X to y

N = 'Number of Units in a "Layer"

 $B = \text{Number of Randomly Outgoing Branches/Unit } \approx \sqrt{N}$

F = B/N (Branching Factor)

K =Number of Intermediate Levels (2 in diagram above)

 \bar{P} for B = 1000; different numbers of levels and units

N = K =	106	10 ⁷	108
0	0.999	0.9999	0.99999
1	0.367	0.905	0.989
2	10-440	10^{-44}	10-5

Fig. 7. Making a connection

Random networks: N nodes each connected to \sqrt{N} others

Assume $v = 0.2^*$ potential; decay is 2

	\boldsymbol{F}	I	G	L	0	\boldsymbol{A}	N	
T = 0								
1	10	10		0		0	0	0
2	10	10	0	2	4	2	2	
3	10	10	0	2.8	6	2	2	
4	10	10	1	4	8.6	2	2	
5	10	10	1	6.3	10	2	2	

Fig. 8. Random chunking network