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Random Capacities and Their Distributions 

T o m m y  Norberg 

The University of G6teborg, Department of Mathematics, S-412 96 G6teborg, Sweden 

Summary.  We formalize the notion of an increasing and outer continuous 
random process, indexed by a class of compact  sets, that maps the empty 
set on zero. Existence and convergence theorems for distributions of such 
processes are proved. These results generalize or are similar to those known 
in the special cases of random measures, r andom (closed) sets and random 
(upper) semicontinuous functions. For  the latter processes infinite divisi- 
bility under the max imum is introduced and characterized. Our result 
generalizes known characterizations of infinite divisibility for random sets 
and max-infinite divisibility for random vectors. Also discussed is the con- 
vergence in distribution of the row-vise maxima of a null-array of random 
semicontinuous functions. 

1. Introduction 

Our aim is mainly to formalize the notation of an increasing and outer 
continuous random process indexed by a class of compact  sets. More specifi- 
cally, we study random processes ~ = { ~ ( K ) , K s f } ,  where f is the class of 
compact  sets in a topological space ~,  satisfying 

4(r 

~(K) < r 

~(K.)$ ~(K), 

K ~_L, 

KI ~__K2~_...,K=NKn 
n 

on a set of probabili ty one. Below any such process will be called a random 
capacity on ~,  which will henceforth be taken to be an arbitrary locally 
compact  second countable Hausdorff  space. 
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The present theory turns out to be useful in connection with some prob- 
lems about extremes of random processes on multidimensional spaces. Appli- 
cations to this field will be discussed in a forthcoming paper. 

Clearly any random measure on ~ (cf. e.g. [10]) may be regarded as a 
random capacity. Let q) be a random (closed) set in ~ (cf. [12]), let Ke~(f and 
put 

1, if q~ c~K ~=~, 

~(K)= 0, otherwise. 

It is not hard to verify that ~ is a random capacity on ~ satisfying 

~(KuL)=-r K,L~dT'. (1.1) 

We shall see that not only random sets but also random (upper) semicon- 
tinuous functions (cf. [14] and [16]) may be regarded as random capacities 
satisfying (1.1). 

Another aim of this paper is to develop the special theory for distributions 
of random capacities satisfying (1.1). It will be seen that it closely parallels the 
corresponding theory for random measures. 

Let rl be an increasing and inner continuous random process on the class 
of open sets in ~ fulfilling ~/(~t)= 0. Put 

r  inf t/(G), K ~ S .  
GmK 

It is easy to see that r is a random capacity on | Furthermore 

q(G) = sup ~(K), GEN. 
K e G  

Thus our results for random capacities apply to increasing and inner con- 
tinuous random processes on N as well. 

We will see that any random capacity may be regarded as a random 
element in a metric space of capcities. Thus the general theory of weak 
convergence of probability measures on metric spaces in [2] is at our disposal 
In particular it produces a short proof of a characterization of convergence in 
distribution for random capacities, extending a well-known fact for random 
measures. In addition this result generalizes a convergence theorem by Vervaat 
for random semicontinuous functions, see [16]. By simple manipulations we 
obtain from this result a characterization of convergence in distribution for 
random sets by the author [13]. 

We also prove a new characterization of convergence in distribution for 
random capacities satisfying (1.1), emphasizing the similarity with random 
measures. The corollary for random sets is new too. 

Convergence in distribution for maxima of null arrays of random capacities 
satisfying (1.1) is characterized. The related notion of infinite divisibility is 
discussed. Our results on infinite divisibility generalize Balkema and Resnick's 
characterization of the max infinitely divisible distribution functions on R", see 
[1]. They also generalize Matheron's results on infinite divisibility for random 
sets, see [12]. Finally we discuss a subclass of the infinitely divisible distri- 
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butions, which we believe has important applications in the asymptotic theory 
of extremes of random fields. 

Here are the titles of the following sections of this paper: 2. Spaces of 
Capacities, 3. Random Capacities, 4. Convergence in Distribution, 5. Null-Arrays 
of Maxitive Random Capacities. 

Most of the notation is introduced when the need for it arises. Here we just 
note that R + = [ 0 ,  oo) and R + = R + w { m } .  Also, (0, oo] is regarded as a to- 
pological space, in which the sets (x, oo], x > 0 f o r m  a base for the neigh- 
borhoods of oo. Note that (0, oo] is locally compact, and that each bounded 
(i.e. relatively compact) subset of (0, 001 is included in [x, 001 for some x > 0 .  

2. Spaces of Capacities 

Here we shall discuss various sets of capacities, and provide them with a 
topology, to be called the vague topology. 

Fix an arbitrary locally compact second countable Hausdorff space ~. 
Write ~ ,  ~ and Y for the classes of closed, open and compact sets in ~, 
respectively. Also, write Y for the Borel sets in ~, and N for the bounded (i.e. 
relatively compact) sets in 5<. The letters G and K, with or without subscripts, 
are reserved for sets in ~f and S ,  respectively. Unless otherwise is stated 
locally, the letter x, with or without subscripts, denotes a strictly positive real 
number. A large amount  of the notation in this paper depends on the chosen 
~, and the need may occasionally arise to indicate this dependence explicitely. 
In such cases we just add a pair of parentheses and put the space under 
consideration between them. For  instance, ~((0,  oo1) denotes the class of 
closed sets in (0, 001. Recall that a class of sets is said to be separating if 
whenever Kc_G, we have K c A c _ G  for some A__cag (cf. [131). We write Bn~B 
when B 1 c_B 2 ___ ... c ~ and B =  U B,. If the Bn's are bounded and B 7 c_B~ 

n 

c_B o _c ... then we write BnT•B. Interprete B,$ B and Bn$$ B analogously. 
By a capacity on ~ we understand an increasing and outer continuous 

function on X into R+, which maps ~ on 0. Thus, for any capacity c on ~ we 
have C(Kn)$ c(K) as soon as Kn$ K. The set of capacities on ~ is denoted 111. 
Let c e l l  1. By putting 

c(G)= sup c(K), GE(~ (2.1) 
K = G  

the domain of c is extended to ~C vo N. Note that c is increasing on J l  u N, and 
inner continuous on ~. Thus c(G,)'Fc(G) whenever G,I' G. Note also that 

c(K)= inf c(G), KeaU. (2.2) 
G = K  

Let ag be a separating class, and let c: d ~ R +  be increasing and such that 
cob) =0. Define 

g(K)=inf{c(A),AEd, K c_A~ K6off . (2.3) 

Then gel l  1. By (2.1) we get 

g(G)=sup{c(A), A e d ,  A -  c_G}, Ge(~. (2.4) 
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Recall that c is said to be subadditive if 

c(AI~A2)<=c(A1)+c(A2), A 1 , A z , A I U A 2 e d  (2.5) 

and strongly subadditive if 

c(AIUAz)+c(AI~Az)~c(A1)+c(A2), A1,Az,Aa~AA2,AI~AzEd. (2.6) 

Let us say that c is additive if we have equality in (2.6), and maxitive if 

c(AtkAAz)=c(A1)vc(A2) , A1,Az,Alk3AzEd. (2.7) 

It is shown in [11] that, when c is a capacity, c is additive iff c is subadditive 
and c(K 1 w K2) = c(K1) + c(K2) for all disjoint K1, K 2. 

Now suppose that d is closed under finite unions. Whenever 
A, A1, . . . ,A,~d,  we define AA. . .AAc(A ) by iterating the formula AAc(A ) 
=c(AuA1)-c (A  ) (convention: ~ - ~ = 0 ) .  Note that AAlc(A ) always is non- 
negative. Moreover c is strongly sub-additive iff AA, AA2C(A ) never exceeds 0. 
Recall that c is said to be alternating (of infinite order) [4] if 

(--1)n+I /XA...~A C(A)~O, neN, A, A1, . . . ,A,~d.  (2.8) 

We write Uls, 112, 1I~, ![ a and 11 m for the classes of subadditive, strongly 
subadditive, alternating, additive and maxitive capacities, respectively. We fur- 
ther let l~s be the set of {0, 1}-valued maxitive capacities. Note that 1law 1 I,, 
~---~[oD ~---~[2 ~----~[ls (~---~[1)" The following lemma is useful when deciding to which 
of these classes a given capacity belongs. The proof is simple. 

Lemma 2.1. Suppose, for i=  1,2, Ki,$$ K i. 7hen Kln U K2nJ,~, Kt w K 2. 

A capacity c on ~ is said to be locally finite if c(K)< oo for all K. For 
i s { l ,  ls ,2,  ~,a,m} we let !ljr be the set of locally finite c~!l;. We further put 
1~ji = {cel~, c(S)< 1} and lIjp= {c~ll;, c(S)= 1}. Note that the latter definition 
has a meaning for j = s too. 

Let us say that an increasing function c on ~ is regular if 

c(B) = sup c(K)= inf c(G), B e ~  (2.9) 
K ~ B  G ~ B  

The restriction to a~ff of such a function is a capacity if it maps ~ on 0. 
Choquet's capacitability theorem (see [-5]) shows that any ce l I  2 may be extended 
to a regular function on 5<. 

It is easy to see that (2.9) extends the additive capacities to measures. Thus 
we may identify l~,f with the well-known set of locally finite measures on 
(cf. [4]). 

Let c~U,,. Straightforward compactness arguments yield 

c(K)=supc(s), Ke~{. (2.10) 
s ~ K  

(We write c(s) for c({s}) when c~![,,.) Hence the extension of cO.l,, to a regular 
function on 5 e is given by 

c(B)=supc(s), B~S~. (2.11) 
s ~B  
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It is easily verified that (2.10) defines a bijection between ti m and the set ~+ 
of upper semicontinuous functions on ~ into R+. Cf. [4, 9] and [16]. Clearly 
this bijection maps indicators of closed sets onto 11~. Thus there is a natural 
bijection between Y and 11s- Note that the image of F e ~  under the latter 
maps K on 1 iff F c~ K =~ 0. 

Let us endow 111 with the topology generated by the families {c,c(K)<x}, 
K e Y ,  x > 0  and {c,c(G)>x}, Ge~, x > 0 ,  to be termed the vague topology 
since it extends the usual notion of vague convergence for measures. Note that 
c ,~ ,c  (read c, converges vaguely to c) iff 

lira sup G(K) < c(K), K e Y ,  
" ( 2 . 1 2 )  

lim inf c,(G) >= c(G), G e ~. 
n 

We will need the following condition for vague convergence. 

Lemma 2.2. Let c, cl ,c 2 .... be increasing functions on the separating class d ,  
vanishing at O. Suppose 

~(A~ A e d ,  A - e Y .  (2.13) 
n n 

Then ~ , ~  ~. 

Proof Fix K and choose bounded A1,A 2 . . . .  e d  with A,,,,,, K. Then 

lim sup ~,(K) < lira sup c ,(Am) < ~( A m) ~ ~( K). 
n n 

A dual argument yields the other half of (2.12). [] 

Put ~ c = { B e ~ , c ( B ~  It is not hard to see that ~c is a separating 
class, and that c , & c  iff c,(B)--,c(B) for all B e ~ c  (provided the c,'s are extended 
to increasing functions on M in such a way that c,(B~ Also, 
~ is closed under finite unions if ce l l  z (see E5], Lemma 9.11). 

The (relative) vague topology on 11m is termed the sup vague topology in 
[16]. Here it is also noted that the vague topology on tis is homeomorphic to 
Fell's topology [7] on @. See also E6] and [12]. Convergence with respect to 
the (induced) vague topology on if+ is referred to as hypo convergence in [6]. 
See also [16]. The reason is that the mapping 

f ~ h y p o f  = {(s, x), 0 < x < f (s)} (2.14) 

maps Y+, endowed with the vague topology, homeomorphically onto a closed 
subset of ~ ( ~  x(0, oo]) endowed with Fell's topology. The paper [6] also 
discusses the dual notion of epi convergence. 

Our next result, parts of which can be found in the references in the above 
paragraph, gives the main properties of the vague topology. 

Theorem 2.3. The space 111 is compact and Polish (i.e. completely and separably 
metrizable). So are also til~, 112, 11~, 11~, 11,. and 11~. 

Proof We first note that the vague topology is Hausdorff and second count- 
able. The easy proofs are left to the reader. Let ~ ' _ c X  be a countable 
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separating class closed under finite unions. Let ~31 be the set of increasing 
functions on d that map 0 on 0, endowed with the topology of pointwise 
convergence. Clearly ~1 is closed in Rd+ and therefore compact by Tychonov's 
theorem. By Lemma 2.2, the mapping c ~ F  of ~31 onto 111 is continuous. Hence 
111 is compact. The compactness of 111~ , 112, t t~ and 1i,, follow similarly. Also, 
~1~ is closed in 11 m and therefore compact too. Suppose c , ~ c ,  where {c,}___!I, 
and ce l l  2. If we can prove 

c (g  1 u K 2 ) = c ( K 1 ) + c ( K 2 )  , K 1, K2eJ f ,  K 1 ~ K 2 = 0  , (2.15) 

then it will follow that cE11~ and we can conclude that !I~ is compact. Now, if 
the left side of (2.15) is infinite, then, by subadditivity, so is the right. Assume 
c ( K l w K z ) < o o .  If K 1 , K 2 6 ~  ~ then K l w K 2 E ~ ,  and (2.15) follows by con- 
vergence. The truth of (2.15) in general now follows by Lemma 2.1. Now the 
theorem follows from the well-known fact that compact second countable 
Hausdorff spaces are metrizable. [] 

The following two propositions extend well-known results on relative com- 
pactness for measures. The easy proofs are omitted. 

Proposition 2.4. Let j~ {1, 1 s, 2, oo, a, m}. A subset M of 11j~ is relatively compact 
iff 

sup c(K) < ~ ,  K e ~ .  (2.16) 
eEM 

Proposition 2.5. Let j g { 1 ,  is,2, oo,a,m,s}. A subset M of  11;p is relatively com- 
pact iff it is tight, i.e. iff whenever e > 0  we have 

inf c(K) > 1 - e (2.17) 
c~M 

for some K E Y .  

Note that llsp is homeomorphic to Y ' = ~ \ { 0 } .  Hence a subset M of Y '  is 
relatively compact iff there is a K with F ~ K # : O  for all F~M.  

As already noted, the vague topology on ~Ial has its usual meaning. In 

particular this means that the mapping 11aI~c-*ffdc is continuous whenever 
feCgo - the class of compactly supported continuous functions on ~ into R+ - 
and that this class of mappings generates the vague topology on 11,~. A similar 
statement holds for ll[,,j. 

Theorem 2.6. The vague topology on U,, I is generated by the mappings 

c ~ s u p x c ( f  >=x), f ~cg o. 
x > 0  

The proof of Theorem 2.6 uses three lemmata, the proofs of which we leave 
to the reader. We do not claim any originality. Write 5~247 for the Borel 
functions on ~ into R+. Also write (r and Y+ for the lower semicontinuous 
and compactly supported finite upper semicontinuous functions in 5~+. Note 
that cg 0 =~ff+ ~(r 

Lemma 2.7. For f 65~+ and ce!I,,, we have 

sup x c ( f  > x) = sup x c ( f  > x) = sup f (s) c(s). (2.18) 
x > 0  x > 0  seS 
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Thus the mapping f - , s u p x c ( f > x )  is continuous from below on 5P+. Con- 
x 

tinuity from above on X+ is now a consequence of the following two lemmata. 

Lemma 2.8. I f  f,$ f, where f, f l , f2  .... eS+,  then sup f,$ sup f 

Lemma 2.9. I f  f l , f 2 ~ + ,  then f l f2e~+.  

Proof of Theorem 2.6. Clearly {c, supyc ( f>y)<x}  is a finite intersection of 
y > 0  

open sets, and therefore open, i f f ~ X +  is simple. By approximation we see that 
this set is open also for arbitrary f E S + .  It follows similarly that 
{c, s u p y c ( f > y ) > x }  is open whenever f~fq+.  Thus the mappings 

y > 0  

c ~ s u p x c ( f > x ) ,  feCgo are continuous. Equivalently, the vague topology is 
x 

stronger than the topology generated by these mappings. The converse follows 
from 

{c,c(K)<x}-- U {c, supyc(f>_y)<x}, 
f > l K  y 

{c,c(G)>x}= U {c, supyc ( f~y )>x} .  [] 
f < - l G  y 

Corollary 2.10. Fell's topology on Y is generated by the mappings 

F ~sup f (s), f ~cg o 
sEF 

3. Random Capacities 

Our main purpose with this section is to discuss some measurability questions. 
We shall also give a simple, yet useful, existence theorem for random capa- 
cities. 

Let lIj be one of the spaces of capacities introduced in Sect. 2, and write 
qtj for its Borel sets. It is easily seen that q/j is generated by the mappings 
c--.c(K), K e W .  Also, ~'j_cq/i if !lj_clI i. Thus we may identify random elements 
in 111 with random capacities on ~. Say that a random capacity is subadditive 
if it is a.s. Ills-valued. Strongly subadditive, alternating, additive and maxitive 
random capacities are defined similarly. A.s. 1Ill-valued random capacities are 
below referred to as being locally finite. 

Note that any random capacity r on ~ trivially extends to an increasing 
random process ~/ on N with ~= 4. Some of our results are stated in terms of 
such extensions. Note however that we do not distinguish typographically 
between ~ and the extension. We are aware of two cases where there is a 
regular extension to 5 e. 

locally finite additive random capacity extends by (2.9) to a 

Proposition 3.2. Let ~ be a maxitive random capacity on ~, defined on a 
complete probability space. Then supx~(f>=x) is a random variable whenever 

x 

f ~5~+. In particular so is also ~(B) for all B~5~. 

Proposition 3.1. Any 
random measure. 
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Proof of Proposition 3.1. Proceed as in the proof of [-10, Lemma 1.4]. [] 

Proof of Proposition 3.2. Use hypo (see (2.14)) to conclude that the last asser- 
tion is equivalent to a well-known fact for random sets (see [,12, p. 30]). Then 
show the first assertion for simple feS~+, and extend to arbitrary fE6e+ by 
approximation from below. [] 

Our existence theorem for random capacities is as follows. 

Proposition 3.3. Let d ~_~ be a separating class, and let t? be a random process 
on d .  Suppose 

r/(r = 0  a.s., (3.1) 

IP{tl(A~)<x, tl(A2)<-_x}=IP{rl(A2)<=x }, x > 0 ,  A ~ , A 2 ~ d ,  A~ ~_A 2, (3.2) 

11(A,)&tl(A), A, A1,A 2 ....  ~sr A,,,,~ A - ,  (3.3) 

tl(A,)&tl(A), A, A I , A  2 . . . .  e~r A, TTA ~ (3.4) 

Then there is a random capacity ~ on ~ such that ~r ~_~r and 

r = r/(A) a.s., A e d .  (3.5) 

I f  d ~ X  then (3.1)-(3.3) is sufficient for the existence of a random capacity ~. 
satisfying (3.5). I f  d ~ fq then this result holds if (3.3) is replaced by (3.4). 

Proof. Let sr o be a countable separating subclass of ~r and write t/o for ~7 
restricted to do-  By (3.1) and (3.2), ~/0(r and r]0 is increasing on some set of 
probability one. On this set we put ~-=~o- Fix A~_d.  By (3.3) and (3.4), we get 
r/(A)=r and ~(A)=r176 respectively. This proves (3.5). The rest of the 
proof is trivial. [] 

In applications this results should be combined with the following proposi- 
tion. 

Proposition 3.4. Let ~ be a random capacity on ~, and let ~fo~_~f" be a 
separating class closed under finite unions. Consider the following five con- 
ditions. 

~(K)< oo a.s., K s S 0 ,  (3.6) 

~(K)~{0, 1} a.s., K~Xo,  (3.7) 

~(K~uK2)<~(K1)+~(K2)  a.s., K ~ , K 2 e Y  o, (3.8) 

r162 a.s., K 1 , K z ~ X  o, K I N K 2 = 0 ,  (3.9) 

~(Klt.JK2)<=~(KI)V~(K2) a.s., K 1 , K 2 f f Y  o . (3.10) 

We have: ~ is locally finite iff (3.6) holds; ~ is additive iff (3.8) and (3.9) hold; 
is maxitive iff (3.10) holds; ~ ! 1  S a.s. iff (3.7) and (3.8) hold. 

Proof. The first assertion is trivial. Let ~ ~ S o be countable, separating and 
closed under finite unions. Suppose (3.8). Clearly, ~(K 1 u K 2 ) <  ((K1)+ ((K2), 



Random Capacities 289 

K1,K2~J~f'I holds with probability one. By Lemma 2.1 we conclude that ~ is 
subadditive. It follows similarly that (3.9) implies IP{~(K 1 u K2)> ~(KI)+ ~(K2), 
K1,K2~J~ff, K l n K 2 = 0 } = I ,  and that (3.10) implies that ~ is maxitive. Note 
also that (3.10) follows from (3.9) if (3.7) is at hand. This proves the sufficiency. 
The necessity is obvious. [] 

Existence criteria for random measures (see e.g. [10], Th. 5.3) and random 
semicontinuous functions (see [16]) are easily derived from the Propo- 
sitions 3.3 and 3.4. 

4. Convergence in Distribution 

Here we shall discuss necessary and sufficient conditions for convergence in 
distribution of random capacities. We begin with a general theorem, extending 
a well-known fact for random measures (see [10], Th. 4.2) to random capa- 
cities. This result also generalizes a characterization of convergence in distribu- 
tion for random semicontinuous functions by Vervaat [161. Then we specialize 
to the maxitive case. 

Theorem 4.1. Let ~'~1,~2,"" be random capacities on ~. I f  ~ , ~  and if d o 
___,~= {BEN, ~(B~ is finite, then 

(~,(A), A E~Co)& (~(A), A Ed0). (4.1) 

Conversely, ~ , ~  if there is a separating d G N  (e.g. ~ )  such that (4.1) holds 
for all finite ~r ~ d .  

Proof The necessity of (4.1) follows from [2, Th. 5.5], while the sufficiency is a 
consequence of the continuity of the mapping c~g,  proved in Lemma 2.2 (cf. 
the proof of Th. 2.3). That ~ is separating may be seen by a straightforward 
extension of the arguments in the proof of Lemma 4.3 in [10], which treats the 
case where ~ is a random measure. [] 

A collection {~,} of locally finite random capacities on ~ has a locally 
finite limit point with respect to convergence in distribution iff {~,(K)} is tight 
for all Kea~((. The necessity of the latter statement is obvious. To see the 
sufficiency, suppose that {~,(K)} is tight for all K in a countable separating 
class Y0___d(. Then {(~,(K0, ..., ~,(Km))} is tight for all m~N, Ka, . . . ,Kme~(  o. 
A variant of the diagonal procedure now produces a subsequence {~,~} and a 
random process r/= {r/(K), KeYo} , such that 

(~n~(K1) . . . .  , ~,~(Km))-Ca (~/(K1) . . . .  , ~/(K~)), meN,  K 1 .. . . .  Kme3U o. 

Clearly q(0)=0. Furthermore it is not hard to verify that r/ is increasing. Now 
4 , & q  follows from Theorem 4.1, and we conclude that ~ is a locally finite 
limit point of {~,}. 

More can be said if additivity or maxitivity are at hand. In the former case 
we refer to [10]. The latter case is treated below. 
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It has been known since Choquet [4] (cf. [12] or [-13]) that the mapping 
lIap(~ ) ~ / ~  T~e ~i~o l, where T~(K) = # {F, F r~ K # 0}, is bijective. Straightforward 
calculations using Theorem 4.1 and the homeomorphism between ~i s and if, 
now show that this mapping is a homeomorphism. This reestablishes [13, 
Th. 2.1]. Clearly ll,p(o ~ ' )  and Hoo p are homeomorphic too. Hence, by Proposi- 
tion 2.5, a family {~ot} of a.s. non-empty random sets in ~, has an a.s. non- 
empty limit point with respect to convergence in distribution iff whenever e > 0 
there is a K such that inflP{cpt~K #0} > 1 -e .  Also, a family {~t} of maxitive 

t 

random capacities on ~, satisfying ~t # 0  a.s. for all t, has an a.s. non-zero limit 
point with respect to convergence in distribution iff whenever e>0  there is a 
pair (K,x) with i n f l P { # t ( K ) > x } > l - e .  To see the latter statement, use the 

t 

former and the homeomorphism between ~I,,(~) and a closed subset of 
~-(~ x (0, oo]). 

Theorem 4.2. Let 4, ~ ~, 4 2 .. . .  be maxitive random capacities on ~. Then ~,& ~ iff 

]P ~ {~n(Ul)<~xi} "-~]p ~ {~(Bi)<~<-xi}, 
i = 1  i = 1  

meN,  xi>O, Bi~N, IP{~(B[-)<xi}=IP{~(B~ l <_i<m. (4.2) 

In the locally finite case, we further have ~,& ~ iff 

s u p x ~ , ( f > x ) & s u p x ~ ( f > x ) ,  fECgo . (4.3) 
x x 

Corollary 4.3. Let (P,(ol, o, 2 . . . .  be random sets in ~. Then q),&q~ iff 

sup f (s )&supf (s ) ,  fSCgo . (4.4) 
S ~ n  S E ~  

Proof of Theorem 4.2. Note that (4.2) is equivalent to 

IP{hypo ~, ~ V Bi x (xi, oo] = 0} ~lP{hypo ~ c~ ~ B i x (x i, oo] = 0}. 

So the necessity and sufficiency of (4.2) is a consequence of the homeomor- 
phism between H,p(ff (~ x (0, oo])) and lifo 1(~ x (0, oo]). We leave the details to 
the reader. 

Now suppose that ~ and the ~,'s are locally finite. By Theorem 2.6 we see 
that (4.3) is necessary for ~,&~. Assume (4.3) is at hand. By approximation 
with functions in C~o, we get 

l imin f lP{supx~, (k>x)<l}>IP{supx~(k>=x)<l} ,  k e Y + ,  
n X x 

l i m s up lP{supx~ , (g>x )< l }<IP{sup x ~ ( g > x ) < l } ,  gsN+. 
n x x 

Fix meN.  Choose, for l<_i<_m, x i and Bi according to the requirements in 
(4.2). Assume that x l < . . . < x  m. This is no restriction, since we may always 
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renumber the B~'s. Put y~= 1/x v We get 

(+1 ot } lim sup IP (~ {~,(B~ < x~} = limsup IP y ~ ,  B <1 
n " i= j 

= < ~ = < = B x~ 
i= j 

=IP~{r Yi~ U B2 <1 
i i j {m(,)}  

<l iminf lP  VlYid ~ 7 1 B f  <1 =l imin f IP~{: , (B i - )<x i} .  
= -  i =  " j 

This proves (4.2), and ~,& ~ follows from the first assertion of the theorem. [] 

5. Null-Arrays of Maxitive Random Capacities 

We shall now discuss convergence in distribution of maxima V ~,j of inde- 
J 

pendent maxitive random capacities on ~. The ~,j.s are supposed to form a 
null-array in the sense that 

sup IP{~,j(K)__> x} ~0 ,  Ke~f,  x>0 .  (5.1) 
) 

In the {0, 1}-valued case this condition reduces to 

sup lP{cpnS~ K # 0} ~0 ,  K e X ,  (5.2) 
J 

where qo,j= {se~, ~,j(s)= 1} (cf. [12] and [13]). Of course we have a particular 
interest in the class of possible limit laws. 

Let us say that (the distribution of) a maxitive random capacity ~ is 

infinitely divisible if, whenever neN, we have ~ -  ~/ ~i for some independent 
i=1 

and identically distributed maxitive random capacities ~1 . . . . .  ~.,. In the {0, 1}- 
valued case this reduces to the notion of infinite divisibility for random sets (cf. 
[12] and [13]). We shall write oe for the capacity which is infinite at all non- 
empty sets. 

Theorem 5.1. The formulae 

h(K)=sup{x ,~(K)>x a.s.}, K e Y ,  (5.3) 

# 0 {c>=h,c(K,)>=x,}= -logm (~ {r 
i = 1  i = 1  

neN, KieY;f, xi>h(Ki), l <_i<_n 
(5.4) 

define a bijection between the set of all infinitely divisible distributions I P ~  - 1 ,  

not carried by {oe}, and the set of all pairs (h,#), where heUm\{Oe } and # is a 
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locally finite measure on Hh= {cell,,, c >=h, c+h}. Also, each infinitely divisible 
on S has a representation 

~ h v  V ~ ,  (5.5) 
i 

where ~1, ~2 . . . .  are the atoms of a Poisson process on ll h with intensity #. Let 
be a maxitive random capacity on ~. Then ~ is infinitely divisible iff whenever 
n e N  and x~ .. . .  , x , > 0 ,  the capacity c on {1 . . . . .  n} x ~, defined by 

c {i) x K  i = - l o g I P  {~(Ki)<xl}, KieoU, l < i < n ,  (5.6) 
i i = l  

is alternating. 

Proof. Let ~ be a maxitive random capacity on ~. It is easily seen that h and 

the c's are capacities. Suppose ~ is infinitely divisible. Then 0 {i} x {~>xi} is 

an infinitely divisible random set in {i . . . . .  n } x ~  for each n~N and 
x I . . . .  , x , > 0 .  Thus, by [13, Th. 2.4], the c's in (5.6) are alternating. 

In particular so is c x = - l o g l P { ~ ( . ) < x } .  Note that h(K)>x iff cx(K)= oo. 
Now h ~ l ~  follows by subadditivity. Also note that h(K)< oo if ~(K)< oo with 
positive probability. 

Clearly hypo ~ is an infinitely divisible random set in ~ x (0, oo]. Put H 
={(s,x), (s ,x)~hypo~ a.s.}. By [12, Lemma 3-1-1], H e ~ ( ~ x ( 0 ,  oo]) and, for 
all K ~ X ( ~ x ( 0 ,  oo-1), we have Kc~H=O iff IP{hypo~cnK=~)}>0.  It is not 
hard to verify that H = h y p o h .  Suppose now that h4= oo, or, equivalently, H 
+ ~ x (0, oo]. Note that K e S ( ~  x (0, ~ ] \ H )  iff K e ~ ( ~  x (0, oo]) and K c~ H 
=0.  It follows that h y p o ~ \ H  is an infinitely divisible random set in 

x (0, o o ] \ H  without fixed points. By [12, Prop. 3-2-1], there exists a unique 
locally finite measure v on ~ ' ( ~  x (0, oo] \H) \{~}  satisfying 

v{F ,V~K+-O}=- log lP{hypo~c~K=O} ,  K ~ S ( ~  x (0, oo]), Kc~H=O. 

Note that we may regard v as a measure on {Feo~(~  x (0, oo]), F~_H, F+H} .  

Fix a set F o in the latter space, and suppose that FoChypoY +. Choose 
points s e ~ ,  x ,y>O with h(s )<x<y  such that (s,y)eF o while (s,x)r o. Then 
choose KsoU, e > 0  such that h ( s ) < x - e  and ( s , x ) ~ _ K ~  
- e, x + e] c F~. Clearly 

FoE{F~_H, F g:H,F ~ K  x [ x - e , x  + e]=O, F c~K ~ x ( y - e , y + e ) 4 : 0 } .  

The v-measure of this open neighborhood of F o is easily seen to be zero. Hence 
v is concentrated on hypo{fe@+,  f > h ,  f ~ h } .  Note that this space is ho- 
meomorphic to ~1~. We conclude that (5.2) defines a unique locally finite 
measure on 1I h. 

Thus, the mapping defined by (5.1) and (5.2) is into. Since it is clearly one- 
to-one, it remains to prove that it is onto. For  this, fix he~lm\{oo}, and let # 
be a locally finite measure on lIh. Also, let tlt,tl2 . . . .  be the atoms of a Poisson 
process t/ on 11~ with intensity #, and put ~ =h  v ~/~/i. It is obvious that ~(~) 

i 
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=0, and that ~ is increasing and maxitive. Suppose that K.+K and ~(K)<x. 
Then q{cel l  h, c(K)>x}=O. Therefore r/{c611 h, c(K,)>x}=O for some neN. 
Hence ~(K,)<=x for sufficiently large n. Now ~(K,)$~(K) follows, and we 
conclude that ~ is a maxitive random capacity on S. 

Clearly ~ is infinitely divisible. Suppose x>h(K). Then ~(K)<x iff t/{ceU~, 
( 

c(/() > x} = 0. To see this, just note that ~(K)>x implies that q~cell~,, c(K)>x 
t_ 

l ;  >1  for all neN with x - !  >h(K). Now (5.4)is obvious. 
n j  n 

Since ~>h,  we must have IP{~(K)>x}=I  whenever x<h(K). To see the 
converse, suppose that IP{~(K)>x}=I .  Then the event t/{call h, c(K)>x}=O 
has probability zero. Hence #{cel ia ,  c(K)>x} = o% so the set {cellhm, c(K)>x} 
cannot be bounded, which means that we cannot have x>h(K). This showes 
that (5.3) holds. 

Suppose finally that the c's in (5.6) are alternating. Fix heN and write Q, 
={k .2 - " ,  k = l  ... .  ,22n}. By [13, Th. 2.4], there exists an infinitely divisible 
random set (p, in Q, x ~ satisfying 

Ip{~0,~ U { q } x K q = 0 } = l P  ~ {~(Kq)<q}, Kqe2g(; qeQ,.  
qeQn qeQn 

There is an infinitaly divisible maxitive random capacity ~, on ~ with values 
in Q,, satisfying ~,(s)>q iff (q,s)eo, for all (q,s)eQ, x ~. It is easily seen that 
~ , ~ .  We conclude that ( is infinitely divisible. Now all assertions of the 
theorem are established. []  

By applying this result to the case ~ = { 1  . . . . .  n}, we obtain Balkema and 
Resnick's [ l ]  (cf. [8]) characterization of the max infinitely divisible distribu- 
tion functions on R". 

We now characterize convergence in distribution of the maxima V ~,j. The 
J 

abnormal case when the distribution of these maxima is concentrated at c~ in 
the limit, is easy to handle and therefore left to the reader. 

Theorem 5.2. Let (,i, n , jeN and ~ be maxitive random capacities on ~. Suppose 
that the ~,j's form a null-array, and that ~ 4: oQ with positive probability. Then 
~/ ~ , ~  ~ iff ~ in infinitely divisible and moreover 
J 

Z I P  ~ {~,j(K~l>x~}~# ~ {c>h,c(K,l>__x~}, 
j i = 1  i = 1  

meN, KieX', xi>h(Ki), #{c>h,c(Ki)>xi, c(K~ 

1 <_i<_m, (5.7) 

ZIP{~,~(K) > x} ~ oo, K e Y ,  O<x<h(K), 
J 

(5.8) 

where (h,l~) is defined in Theorem 5.1. Let sd~_N and Q~_(O, oo). Suppose that 
the class formed by taking finite unions of sets in d is separating, and that Q is 
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dense. Also, suppose 

ZIP ~ {~,j(Ai)>=xi}~-logIP ~ {~(Ai)<x,}, (5.9) 
j i=l i=1 

meN, Aia~ , xia Q, l <_i<m. 

7hen V ~.j& ~. 
J 

Proof Suppose ~. ,=V ~,j&~. Fix meN, and let IP{~(Ki)<xi}=IP{~(K~ 
J 

for 1 < i _< m. By Theorem 4.2, 

I~IP 5 {~nj(Ki)<xi} --~]P ~'~ {~(Ki)<xi}" 
j i = 1  i = 1  

By well-known facts for the logarithm, this implies 

ZIP tr tr 
j i = 1  i = 1  

It follows by the last assertion of Theorem 5.1 that { is infinitely divisible. 
Define h and # by (5.5) and (5.4), respectively. It is easily seen that, whenever 
x>h(K), we have IP{~(K)<x}=IP{{(K~ iff #{c>h, c(K)>=x, c(K~ 
=0. Now the necessity and sufficiency of (5.7) and (5.8) follow easily. 

To see the sufficiency of (5.9), we just note that it implies 

IP ~-~ {~n(Ai)<xiI-.ip 5 {~(Ai)<xi}' 
i = 1  i = 1  

meN, AiEd , xiEQ, l <_i<_m. 
Therefore 

(~.(A 0 ..... ~.(A,.))&(~(A~) . . . . .  ~(A,.)). A s . . . . .  d i n e d .  

This assertion obviously extends to finite unions of sets in sue, so, by Theo- 
rem 4.1, we get ~,&~. [] 

We say that (the distribution of) a maxitive random capacity ~ on S has 
independent peaks (cf. [15]), if ~(K1) . . . . .  ~(K,) are independent whenever 
K1,...,K . are disjoint. It follows from the next result that the distributions 
with independent peaks are infinitely divisible. 

Proposition 5.3. Let hell,., h+-oQ, and let m be a locally finite measure on 
x (0. oe] \hypoh .  Then there exists a maxitive random capacity ~ on ~ with 

independent peaks satisfying 

IPi=~ ~ {~(Ki)<xl}=exp ( - m  i=10 Ki x [xl, ~176 , 

heN, KiE.,~ff, xi>h(Ki), l <i<n, 
(5.10) 

IP{~(K)<x}--0,  KEJ{', O<x<h(K). (5.11) 



Random Capacities 295 

Conversely, let ~ be a maxi~ive random capacity on ~ with independent peaks. 
Then ~= oo a.s., or (5.10) and (5.11) hold for some pair (h,m) as above. 

Proof Fix he~Im, h +  oo. Wri te  H = h y p o h ,  and let m be a locally finite measure  
on ~ x (0, o o ] \ H .  Then  mK x Ix, ~ ]  < ~ whenever  x>h(K) .  Fur the rmore ,  let 
t/ be a Poisson process on ~ x (0, o o ) \ H  with intensi ty m, and write ~(K) for 
the m a x i m u m  of h(K) and sup{x , t /K  x [x, o o ] >  1}. It  is not  hard  to verify that  

is a maxi t ive  r a n d o m  capaci ty  on ~,  with independent  peaks  satisfying (5.10) 
and (5.11). 

Conversely,  let ~ be a maxi t ive  r a n d o m  capaci ty  on ~.  Suppose  ~ has 
independent  peaks  and that  IP { ~ = ov } < 1. No te  that  c x = - log IP { ~ (.) < x } e 1 I .  
To  see this, first check that  c~ is a capacity.  Next  fix K1, K 2 and choose G~_K 1 
such that  

�9 {~(K 1) < x} - c =< n~{ ~(G) < x} _<_ ~P{~(K 1) < x}, 

where e > 0 is a rb i t ra ry  b~t  fixed. Then  

IP{~( /1 )  < x} IP{~(K2) < x} < IP{ff(G) < x} I P { ~ ( K 2 \ G  ) < x} + 

< l P { f f . ( a ) < x , ~ ( K a \ a ) < x } + e < I P { ~ ( K i u K 2 ) < x } + e .  

Hence  Cxe!lls, and our  claim now follows f rom the fact that  Cx(KiuK2)  
= cx(K 1) + cx(K 2) whenever  K 1 n K 2 = ft. 

Define h as in T h e o r e m  5.1. Clear ly h ( K ) < x  iff cx (K)<  oo. N o w  h e ~ I m \ { ~  } 
follows as in the p roof  of T h e o r e m  5.1. 

Let us define a set funct ion ~l on a semi-ring, which generates the Borel-~r- 
field on ~ x (0, o o ] \ H ,  where H = h y p o h ,  by 

VnK\L x Ix, y) = c~(K) - c,(K) + cy(K c~ L) - c~(K n L), 

K, Le#l ,  h ( K ) < x  < y<__oo. 

Clearly m0 = 0  and ~ is additive. Suppose  K \ L  x Ix, y)c_ V Ki \L i  x [xi, Yi), and 

fix e > 0 .  Choose  G~_KcnL and u < y  such that  O<Cx(G)-cx(Kc~L)<e and 
0 < c , ( K \ G ) -  cy(K\G) < e. A s imple calculat ion yields 

Vn K \  L x [x, y) < gn K \  G x [x ,u )+2~ .  

For  each fixed i, we next choose uz>x~ and M ~ e S  with Kz~_M ~ such that  
O<=cu,(Ki)-Cx,(Ki)<~2 -i  and O<c,~(Mi)-c~(Ki)<e.2 -i We get 

VnM~\L~ x [u~, y~) <ffaK~\L~ x [x~, y~) + 2 e 2  -~. 

No te  that  K \ G  x Ix, u] ~_ ? M ~  • (ui,Yi). By compactness ,  K \ G  x Ix, y) 

~- 0 M i \ L i  x [u~, Yi). By finite subaddit ivi ty,  
i = 1  

FnK\L x [x,y) <__y ~nKi\L ' x [xi,Yi) + 4E. 
i 
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Thus, rh is countably subadditive. By [3, Th. 11.3], th extends to a measure on 
x (0, oo)\H.  
Write m for the sum of this measure and the restriction to ~ x {oo}\H 

( "=  "S \ {b  = oo}) of Coo. Clearly 

~ e x p ( -  mK x Ix, oo]), x>h(K),  
~P{~(K) < x} = (0,  x __< h(K). 

In particular this showes (5.11). Let us define 

~ ( K \ L ) =  sup ~(s), K, Leoaff. 
s ~ K k L  

Fix K, L e J s  and suppose Gn$ L. It is easily seen that ~(K\Gn)T~(K\L).  More- 
over, if x > h(K) then 

IP{r  = e x p ( - m K \ L  x [x, oo]). 

i 

Fix n~N, and let xi>h(Ki) for l<_i<_n. Write L o = 0  and Li= ~)I~. for 
j = l  

l<_i<_n. Suppose x ~ < . . . < x , .  This is no restriction since we may always 
renumber K~, . . . ,K, .  Now we get 

IP ~ ( r < xl} = IP ~ ( r < xi} = IP ("] ( r L i_ 1) < Nil 
i = 1  i i 

= lq[ IP{~(Li\L i _ ,) < xi} = exp( - ~ m L i \ L  i_l x [xi, oo ]) 
i i 

n 

This establishes (5.10). The proposition is proved. []  

Let ~ be a maxitive random capacity on (0, oo) with independent peaks. Put 

x~ = r t]), t > 0. 

Clearly {X, , t>0} is increasing and right continuous. Moreover, whenever 
0 < t ~ < . . . < t ,  and 0<x~  < . . . < x , ,  we have 

i=1 i= 1 F&_ I(Xi)' 
where t o =0  and 

E(x)=Ip{~((o,t])<__x}, t>o, x > 0 .  

Hence {Xt} is an extremal process as defined in [17]. Conversely, it can be 
shown that to each right continuous extremal process {X~} there exists a 
maxitive random capacity ~ on (0, ~ )  with independent peaks satisfying 

(Xtl, .... Xt.)&(~((O, t l ]  ) . . . . .  ~((O, tn]) ), n~N, t 1 . . . . .  t,>O. 

The proof is left to the reader. 
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