Skip to main content
Log in

Motion sensitive interneurons in the optomotor system of the fly

I. The horizontal cells: Structure and signals

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The three horizontal cells of the lobula plate of the blowflyCalliphora erythrocephala were studied anatomically and physiologically by means of cobalt impregnations and intracellular recordings combined with Procion and Lucifer Yellow injections. The cells are termed north, equatorial and south horizontal cell (HSN, HSE, HSS) and are major output neurons of the optic lobe. 1. The dendritic arborizations of the HSN, HSE, HSS reside in a thin anterior layer of the lobula plate and extend over the dorsal, equatorial and ventral parts of this neuropil, respectively. Due to the retinotopic organization of the optic lobe, these parts correspond anatomically to respective regions of the ipsilateral visual field. Homologue horizontal cells in both lobula plates of the same animal and in different animals are highly variable with respect to their individual dendritic branching patterns. They are extraordinarily constant, on the other hand, with regard to the position and size of their dendritic fields as well as their dendritic branching density distributions. Each cell covers about 40% of the total area of the lobula plate and shows the highest dendritic density near the lateral margin of the neuropil which subserves the frontal eye region. The axons of the horizontal cells are relatively short and large in diameter; they terminate in the posterior ventrolateral protocerebrum. 2. The horizontal cells are directionally selective motion sensitive visual interneurons responding preferentially to progressive (front to back) motion in the ipsilateral visual field with graded depolarization of their axons and superimposed action potentials. Stimulation with motion in the reverse direction leads to hyperpolarizing graded responses. The HSE and HSN are additionally activated by regressive motion in the contralateral visual field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik7, 235–242 (1970)

    Google Scholar 

  • Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybern.24, 85–101 (1976)

    Google Scholar 

  • Buchner, E., Götz, K.G., Straub, C.: Elementary detectors for vertical movement in the visual system ofDrosophila. Biol. Cybern.31, 235–342 (1978)

    Google Scholar 

  • Case, R.: Differentiation of the effects ofp and CO on the spiracular functions of insects. J. Cell. Comp. Physiol.49, 103–113 (1957)

    Google Scholar 

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol.100, 5–23 (1975)

    Google Scholar 

  • Eckert, H.: Identifizierte, bewegungssensitive Interneurone als neurophysiologische Korrelate für das Bewegungssehen der Insekten. Verh. Dtsch. Zool. Ges. 1976, S. 253. Stuttgart: Gustav Fischer Verlag 1976

    Google Scholar 

  • Eckert, H.: Response properties of Dipteran giant visual interneurones involved in control of optomotor behaviour. Nature271, 358–360 (1978)

    Google Scholar 

  • Eckert, H.: Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Dipteren (Phaenicia). Habilitationsschrift, Universität Bochum 1979

  • Eckert, H.: The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata. J. Comp. Physiol.143, 511–526 (1981)

    Google Scholar 

  • Eckert, H., Bishop, L.G.: Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Dipt. Call.). J. Comp. Physiol.126, 57–86 (1978)

    Google Scholar 

  • Eckert, H., Hamdorf, K.: Action potentials in “non-spiking” visual interneurones. z. Naturforsch.36c, 470–484 (1981)

    Google Scholar 

  • Eckert, H., Meller, K.: Synaptic structures of identified, motionsensitive interneurones in the brain of the fly,Phaenicia. Verh. Dtsch. Zool. Ges. 1981, p. 179. Stuttgart: Gustav Fischer Verlag 1981

    Google Scholar 

  • Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter Muster. Kybernetik2, 15–28 (1963)

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Les phenomenes de pseudopupille dans l'oeil compose deDrosophila. Kybernetik9, 159–182 (1971)

    Google Scholar 

  • Götz, K.G.: Flight control inDrosophila by visual perception of motion. Kybernetik4, 199–208 (1968)

    Google Scholar 

  • Götz, K.G., Hengstenberg, B., Biesinger, R.: Optomotor control of wing beat and body posture inDrosophila. Biol. Cybern.35, 101–112 (1979)

    Google Scholar 

  • Hausen,K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneuronen im dritten optischen Neuropil der SchmeißfliegeCalliphora erythrocephala. Dissertation, Universität Tübingen 1976a

  • Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–633 (1976b)

    Google Scholar 

  • Hausen,K.: Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 1976, S. 254. Stuttgart: Gustav Fischer Verlag 1976c

    Google Scholar 

  • Hausen, K.: Signal processing in the insect eye. In: Function and formation of neural systems. Stent, G.S. (ed.), pp. 81–110. Berlin: Dahlem Konferenzen 1977

    Google Scholar 

  • Hausen, K.: Neural circuitry of visual orientation behavior in flies: structure and function of the lobula-complex. Invest. Ophthalmol. Visual Sci.18,4 (Suppl.), 109 (1979)

    Google Scholar 

  • Hausen, K.: Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges., 1981, pp. 49–70. Stuttgart: Gustav Fischer Verlag 1981

    Google Scholar 

  • Hausen, K.: Movement sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. (1982) (in press)

  • Hausen, K., Wolburg-Buchholz, K.: An improved cobalt-sulphide silver-intensification method for electron microscopy. Brain Res.187, 462–466 (1980)

    Google Scholar 

  • Hausen, K., Wolburg-Bucholz, K., Ribi, W.A.: The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res.208, 371–387 (1980)

    Google Scholar 

  • Heisenberg, M., Wonneberger, R., Wolf, R.: Optomotor-blind H31-aDrosophila mutant of the lobula plate giant neurons. J. Comp. Physiol.124, 287–296 (1978)

    Google Scholar 

  • Hengstenberg, R.: Spike responses of non-spiking visual interneurone. Nature270, 338–340 (1977)

    Google Scholar 

  • Hengstenberg, R.: Drehspezifität von Vertikalzellen in der Lobula Platte der Schmeißfliege. Verh. Dtsch. Zool. Ges. 1981, S. 180. Stuttgart: Gustav Fischer Verlag 1981

    Google Scholar 

  • Hengstenberg, R.: Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora. J. Comp. Physiol. (1982) (in press)

  • Hengstenberg, R., Hengstenberg, B.: Intracellular staining of insect neurons with procion yellow. In: Neuroanatomical techniques. Strausfeld, N.J., Miller, T.A. (eds.), pp. 307–327. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  • Hengstenberg, R., Hausen, K., Hengstenberg, B.: The number and structure of giant vertical cells in the lobula plate of Calliphora. J. Comp. Physiol. (1982) (in press)

  • Jack, J.J.B., Noble, D., Tsien, R.W.: Electric current flow in excitable cells. Oxford: Clarendon Press 1975

    Google Scholar 

  • Katz, B.: Nerve, Muscle and Synapse. New York: McGraw-Hill 1966

    Google Scholar 

  • Kirschfeld, K.: The visual system of Musca: studies on optics, structure, and function. In: Information processing in the visual system of arthropods. Wehner, R. (ed.) Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Levick, W.R.: Another tungsten microelectrode. Med. Biol. Eng.10, 510–515 (1972)

    Google Scholar 

  • Lillie, R.D.: Histopathologic technique and practical histochemistry. New York: McGraw-Hill 1965

    Google Scholar 

  • Pierantoni, R.: Su di un tratto nervoso nel cervello della mosca. In: Atti della prima riuniore scientifica plenaria. Soc. Ital. Biofis. Pura et Applicata 231–249 (1973)

  • Pierantoni, R.: A look into the cockpit of the fly. The architecture of the lobula plate. Cell Tissue Res.171, 101–122 (1976)

    Google Scholar 

  • Pitman, R.M., Tweedle, C.D., Cohen, M.J.: Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science176, 412–414 (1972)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik13, 223–227 (1973)

    Google Scholar 

  • Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. Part II. Toward the underlying neural interactions. Q. Rev. Biophys.9, 377–438 (1976)

    Google Scholar 

  • Poggio, T., Reichardt, W., Hausen, K.: A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften68 443–446 (1981)

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q. Rev. Biophys.9, 311–375 (1976)

    Google Scholar 

  • Reichardt, W., Poggio, T., Hausen, K.: Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry (1982) (in preparation)

  • Ribi, W.A.: The first optic ganglia of the bee. II. Topographical relationships of the monopolar cells within and between cartridges. Cell Tissue Res.205, 1–10 (1976)

    Google Scholar 

  • Soohoo, S.L., Bishop, L.G.: Intensity and motion responses of giant vertical neurons in the fly eye. J. Neurobiol.11, 159–177 (1980)

    Google Scholar 

  • Stewart, W.W.: Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell14, 741–759 (1978)

    Google Scholar 

  • Strausfeld, N.J.: Atlas of a insect brain. Berlin, Heidelberg, New York: Springer 1976a

    Google Scholar 

  • Strausfeld, N.J.: Mosaic organizations, layers and visual pathways in the insect brain. In: Neural principles in vision. Zettler, F., Weiler, R. (eds), pp. 245–279. Berlin, Heidelberg, New York: Springer 1976b

    Google Scholar 

  • Strausfeld, N.J., Hausen, K.: The resolution of neuronal assemblies after cobalt injection into neuropil. Proc. R. Soc. Lond. B199, 463–476 (1977)

    Google Scholar 

  • Tyrer, N.M., Bell, E.M.: The identification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method. Brain Res.73, 151–155 (1974)

    Google Scholar 

  • Wilson, M.: Generation of graded signals in the second order cells of locust ocellus. J. Comp. Physiol.124, 317–331 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. Biol. Cybern. 45, 143–156 (1982). https://doi.org/10.1007/BF00335241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335241

Keywords

Navigation