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Summary. We consider the d-dimensional basic contact process obtaining 
the limit value of the probability of survival when d--. + oe, and showing 
that the finite dimensional distributions of the upper invariant measure 
become of the product form as d ~ + oc. 

The basic d-dimensional contact process of Harris is a Markov (and Feller) 
process (~Az(t): t>0)  with states in {0, 1} v.  Here As{0, 1} z~ denotes the initial 
state, and when the process is at state is{0,  1} ~" the "transition" or "flip" rates 
are given by 

at xsZ  a rate 

1 ~ 0  1 

0- .1  2 y~ ~(y) 
y~N(x) 

(1) 

where N(X)= {yE~d: ]y--x[=I}.  (IXt= ~ Ixil, for x=(x I . . . . .  Xd)ST~,d.) 
i = l  

As usual we identify {0, 1} zd with the set of all subsets of Z a, so that each 
Ae{0, 1} e~ is identified with {xsZa: A(x)=l},  and this set will also be denoted 
by A. We shall be using A ~a,~(t,y) to denote ~A,z(t)(y ). The sites x so that 

A t ~a,~(, x ) = l  (=0) are then said to be "occupied" ("empty", resp.). For contact 
processes the usual expression is "infected" if ~a~(t, x ) = l  and "non-infected" 
otherwise, due to the origin of these models, and we use them. 

It is well known that there exists a finite and positive critical value 2d, 
defined by 

)~ = sup {2 > 0: ~o~ t P(~d,;~( ).qS, for all t>0)=0} .  (2) 

Zd 
Let Vd, x be the upper invariant measure, defined as the weak limit of ~d,z(t) 

a s  t--* + o0. 

We make extensive use of the selfduatity of the process, given by: 

P(~, ~(t) c~A 4= ~)) = P(~,  ~(0aB 4 = O) (3) 
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if A, Bc_7Z a with at least one of them being finite; this implies that 

va, x{B: B~A~d?} = P ( ~ ( t ) , q b ,  for all t) 

for A __% 7Z a, A finite. In particular 

Vd, z{B: 0~U} =P(~(d~ ~b, for all t)d~=fp(d, 2). 

Thus 

(4) 

(5) 

)~d =sup {)L>=0: p(d, 2) =0} 

=sup {2_>0: va,;~ =6~}. (6) 

In this work we are concerned with the survival of the process (propagation 
of "infection") when d ~  + ~ .  First let us recall that 

d~ a ~ 1 / 2  as d ~ + o o .  (7) 

This result has been proven (with different methods) in [4] and [7]. As pointed 
out in [8, p. 309] the result is quite intuitive: the reason being that as d grows 
to infinity the contact process starting with {0} should behave like a con- 
tinuous time branching process in which each individual after a random 
exponential time with mean (1 +22d)  -1 either dies, which happens with proba- 
bility (1 +22d)  -1, or survives and gives birth to another individual with proba- 
bility 22d(1 +22d)  -1. But, this branching process has a positive probability of 
survival if and only if 2d>1/2 ,  and this probability is 1 - ( 2 2 d ) - "  if the initial 
number of individuals was n ([1], p. 108, 109). 

Here we obtain limiting values for the probability of survival for this 
contact process, when d ~ + oo. The expression for the probability of survival 
for the "corresponding" branching process immediately suggests to take 2 of 
the form 2 = 7 d  -1 with 7 > 0  fixed. Recall that in this case the total rate with 
which an infected individual may infect its neighbors is 22d =27. 

Our result may be stated as follows: (For A__7Z. a, IA[ denotes the cardinality 
of A). 

Theorem. I f  `/> 1/2 

lira sup Iva,~a-l(B: B ~ A  =qS)--(1/2`/)lall 
d ~ + o e  Ac_TZa 

IAI finite 

=lima~o A_~edsup P(~ ,d  ~(t)=~4,f~ t ) -  1 - \ 2 ~ / !  / 
IAI finite 

As a consequence, one has the following: 

Corollary. For any `/> 0 

lim p(d, 7d -~) =(1 - 1/2,/) v0. (9) 
d~+oo 

In fact, if `/> 1/2 this follows from the Theorem. For ? < 1/2 it suffices the 
direct comparison with the branching process. 
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Therefore, besides the limiting behavior of p(d, ?d-1) as d ~ + 0% the Theo- 
rem tells us that the finite dimensional distributions of vd,~a-, become of 
product form when d tends to + o% if 7 > 1/2. 

For  the proof of (8) we first show that for each h e n  

( (• --0. (,o) lim sup A~a-~(t)=t=O, for all t ) -  1 - - \ 2 7 !  
d~+oo A ~  d 

I A l < n  

It will then be very easy to obtain (8). 
In the proof we shall be using several auxiliary processes. It may be good 

to give the general idea before we get into the proof itself. When d is large, and 
we look at ~,~(.)  with IAl_-<n then there is a "first period" during which the 
process evolves, with large probability, just as the branching process mentioned 
before. This is clear since, if the number of "infected" individuals is small 
compared to d, it is very improbable to happen any attempt to "infect" 
someone already "infected". Then one has two possibilities: either the "in- 
fection" has been "extinguished" before the end of this period or not. We must 
show that the probability of survival given that the process survives this first 
period goes to one. In order to get appropriate lower bounds for such proba- 
bilities we will show that when y > l / 2  it is possible to take / a N  so that for d 
sufficiently large the process can be compared with a supercritical /-dimension- 
al contact process. To show this, and for the comparison with the branching 
process we need to define some auxiliary processes. 

Definitions. (a) Let Aa ={ Aa N Z" : I { x~Zd :A (x )#O}[<+oo} ;  if A~Aa, [A[ 
- - y  + 

x 

(b) ({~( t ) :  t=O) is the Markovian (Feller) process with states in Ad such 
that AeAd is the initial state and the transition rates, when at state {eA~, are 
given by: 

at x ~ Z  a 

a - , a - 1  

a ~ a + l  

(c) If ( is defined by (b) we let 

with rate 
a 

;. Y. 
yeN(x) 

6, x). 
x 

Thus X A d,~(') is the branching process previously defined, starting with [A]. 
(In particular, its law depends on A, d and 2 only through IAI and 2d. 

(d) Given l~{1 . . . .  , d} we let f = i n t e g e r  part of d1-1 and define ~z:/U~/g t 
as the map which takes x =(xl ,  . . . ,  Xd) into ~(x)=(~l(x)  . . . . .  ~zz(x) ), where 

if 
7~i(X) = 2 X j ,  i = 1,. . . ,  1. 

j = ( i - - 1 ) f +  1 
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Now, we let for As{0, 1}Z~Aa (i.e. A finite subset of Za): 

and 

for t_>0, x s Z  I. 
Also, for AsAe: 

and 

for t>0 ,  x e Z  z. 

,TJ, At, ~) = Z 
y: ~(y)= x 

~a A, 2(t, x)=~/A 2(t, x)/x 1 

rla, ~a, ~(t, y) 
y: ~(y)= x 

~ , ~ ( t ,  x)  - - A  t -r/a ' ~(, x)/x 1 

Let us also define the extinction times: 

zea z = i n f { t > 0 :  a ~, ~(t) = ~}, 
~,~ =inf{t  >0:  ~A ~, At) = ~}. 

R e m a r k s  

R 1. - A  . (t/e, ~(t). t >  0) is Markovian, with rates 

at x e Z  ~ with rate 

a ~ a - 1  a 
a--,a+l 2f ~, fl(y)+22a(d-fl) 

yeN(x )  

when g/sA z is the state of the process, and here N(x)={ysi~z: ly-xl =1} i.e. we 
omit the dimension in our notation N(x). 

R2. The process ({dAd(t): t>0)  is not Markovian, but it dominates the/-dimen- 
sional contact process with rate 57=2f The initial state of {aA,(") is C 
={xsZ~:A~c-I(x)4=4} and the meaning of "domination" is that we can 
construct a coupling of {A e,,( ') and an /-dimensional contact process with rate 
2', starting at C, call it {c z,~, so that ~a,(t)_~A,~(t) for all t. Indeed, if ~Aa(t, X) 
=1 then a transition 1 ~ 0  has rate at most one and if ~aA,,(t, X)----0 the possible 
rates of transition 0 ~ 1  (which do not depend only on ~aAz(t)) are always at 
least 2' ~ ~a,a(t,y). This is the generalization of the case l = l  introduced in 

yeN(x) 

[6] (see also [2, 8]). 

R3. Given 7>1/2, let us take l s N  so that 12~<7, which is possible by (7). Now 

) /=)~ f>-2(1 - l ) -Ydd l>)~  - provided d>=do=do(l, 7 ). In this case ~A 
- -  1 d ,  ~ d  - t 

~ g 

dominates a supercritical/-dimensional contact process. 
On the other side, from Lemma 9.14 of [5] it follows that if 2'>2~ 

sup P('c~,z < o e ) ~  0. 
B~7/[ 
iBl=m 
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Thus  if cd,, ={B_caU: ]{xeZZ: re- l (x)nB: t= qS}] =m}, one has: 

sup supP(~A,~a- ,<oe)--*0 as m--+oo (11) 
d>do Ac- TM 

A E ~  

for 7 > 1/2, 1 and d o =do(l,  y) chosen as above. 

R4.  It will be convenient  for our  p roof  to construct  coupled versions of ~A d. ~(') 
and ~-~( ' ) ,  when Ae{0,  1}zdc~Aa. For  this we construct  a branching process 

A with the same law as Xa,~(" ) but  distinguishing the individuals. - Now, one 
constructs  ~-aa,~(") by locating these individuals on 7Z?, and ~-aa ~(t, X) will be the 
number  of individuals at x e Z  a, at time t. The  al locat ion is done according to 
the rules: 

(a) at t = 0  the individuals are located in A (one in each site of A); 
(b) when an individual in the branching process creates a new one, we look 

at the posi t ion x of the corresponding individual in 2U, and the new one will 
be randomly  al located among the 2d nearest  neighbors of x. 

(c) when an individual dies in the branching process the corresponding one 
in 71 a also dies. 

To  construct  ~a,z(') we may follow rules (a) and (c) modifying (b) so that  
one site cannot  be ocupied by more  than one individual. Thus the modif icat ion 
is the following: if the chosen site is already ocupied nothing happens i.e. we 
disregard completely this "new"  individual. 

Consequently,  we will have: 

~e A ~(t)<~-A~(t) for all t > 0  (12) 

for any initial A finite subset of Z a. 

Proo f  o f  Theorem 1. We first prove  (10). For  this let us consider the coupling 
defined in (R4) and let l, d o =do(7 , l) be as in (R3). Let  us also define: 

0~ ~(m) = i n f  {t > 0:]~a A, ~(t)] =m}, 

O~,~(m)=inf{ t>O: ]~-~ ;,(t)] =m} 

for m e N .  
Due  to (12) Za,~aA l<g~,~a_ 1 for any A finite subset of Z d. Thus  

A = oo) -P(~ff, 7a-* = 0% "c~ 7e ~ < oo). P(%, 7a ~ = oo) =P(~-~ ~a-~ 

(IF', Since P(ga A, ~a-* = co) = 1 - \27 ] it remains to prove that  

sup P(gAycl-*=OO,'cA, e, ~a ' < oo)--+0. (13) 
IAI_-<, 

But, for any s <  +oo ,  m e N :  

P ( ~ , , _  = oo. v~ , ' a,,a-* < oo) <=P(O~,,a_~(m)<=s , O~,a_,(rn)>s ) 
+ p(~A, ,a ' = o0, 0~, ,a- '  (m) > s) 

+ P (  za, 7e-' < 0% 0~ ~a-,(m)<s). (14) 
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Using the Strong Markov property of ~a A ~,a 1(') at 0 A l(m): d, y d -  

P(~J,~_~ < oo, OJ,~d ~(m) <= s) 

= ~ P(O~, ,a-, (m)~du, cA,,a_ ~(U) =B) P(z~, ,a-' < oo) 
(0, s] x ~gm 

__< sup e(r[,  ~-1 < oo) 
B e a m  

and by (11): 

sup sup supP(zeA,~a l<oo, O2,~a_~(m)<s)~O as m~oo.  (t5) 
A = Z  a s>O d>do 

The second term on the r.h.s, of (t4) can be treated by elementary arguments 
of Markov chain theory; let 

Ci = [~d A ,a-~ > i, 0~ ,~-l(m) > i] for i = 1, 2 , . . . .  

The process ~aTA~a-,(') also dominates an /-dimensional contact process with 
infection rate 2' = 2 I f ] .  Thus for d>l, if 

c~ = e(l~}~ < m ) <  1 

one has P(Ci)<cz and P(Ck[ C l c ~ . . . ~ C k _ l ) < e  for any k>2 .  Thus for each m 
fixed 

sup supP(~a-~=oo,  O~,~a ,(m)>s)<supP(Crsl)<a[sl------~O. (16) 
A = ~ a  d>=t ' d>=l - -  s~oo  

From (15) and (16), it remains to prove that for fixed m and s the first term on 
the r.h.s, of (14) tends to zero as d ~ + oo. 

But 

p(~,.ea_,(m)<s, A ~A A t ~ s ) ,  0d, ~d-,(m) >s) <P(~a, ~a- 1(0+ ~d, 7d-~(t) for some 

and if N~ =number  of births in the branching process X A a,~e-l(') up to time s 
then: (recall at A~_2U and [Al<n) 

p(~?4 ,(t)+r ,(t) for some t<s)<P(N,+n>d 1/3) 
y d  - 3~d - ~ = 

+p(~2,,a_~(t)~ = A ~d,,~a_~(t) for some t<=s, N~+n<=dl/3). 

As d ~  + ~  P(N~+n>d~/3)--+O trivJaUy, and on the event [Ns+n<=dl/3], and 
during [0, s], each site has at most d ~/3 occupied neighboring sites; thus each 
newborn individual in ~a~-A,~a-~(') has probability at most dl/3/2d to be put on 
an occupied site, and it comes: 

dl/3 
P(~, ~e_,(t)~=~, ~a-~(t) for some t<s, N~+n<dl/3)<_d ~/3. 2~ 

which goes to zero as d---, o9. This proves (10). 
It is now easy to complete the proof; given e > 0  let us take n so that 

(1/2y)"<~ and then d~ =da(e, ?) so that 

Ix <_-n ' \ 
A _ ~  ~ a  
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for all d > d  1. N o w ,  if d > d  1 a n d  if Bc_7I/ w i t h  I B l = m > n ,  t h e n  by  the  add i -  

t iv i ty  of  the  c o n t a c t  p rocess :  

P(z~, ,a ~ = o o ) >  inf  P ( ~  ,a , = oo) > 1 - 2 8  
A ~  71d 

lAb=, 

a n d  s ince (1/2y)'~=<~ we h a v e  

sup Ie(zf. , a - ,  = oo) - ( 1  --(1/2y)]BI)l <28 
B _tag a 

B f i n i t e  

for all d>d~, c o n c l u d i n g  the  proof .  [ ]  
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