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Summary. Sample path properties of super-Brownian motion including a 
one-sided modulus of continuity and exact Hausdorff measure function of 
the range and closed support are obtained. Analytic estimates for the proba- 
bility of hitting balls lead to upper bounds on the Hausdorff measure of 
the set of k-multiple points and a sufficient condition for a set to be "polar". 

1. Introduction and Statement of Results 

Let Me = Mr(IR a) denote the space of finite measures on (IR a, N(IRa)) furnished 
with the weak topology and (Q, ~ ,  ~ ,  P) be a filtered probability space. The 
super-Brownian motion (critical multiplicative measure-valued diffusion process) 
Xt starting at me MF(IR a) is a continuous MF(IRd)-valued adapted strong Markov 
process defined on (~, ~ ,  ~ ,  P) with Xo=m a.s. which is the solution of an 
appropriate martingale problem (cf. Perkins (1988a; Theorem1.1)). For 
m~MF(IR a) this martingale problem uniquely characterizes the law, Q", of X 
on C([0, oo), Mr). The process X can also be obtained as the limit of a system 
of branching Brownian motions (cf. Perkins (1988 a; Theorem 2.8)). 

If veMF let S(v) denote the closed support of v. In Perkins (1988a) it is 
shown that in dimensions d> 2 w.p.1, for all t>  0, X~ is uniformly distributed 
(up to constants) according to a deterministic measure function over a random 
Borel set. This result will be extended to the canonical closed supports S(X~) 
in Perkins (1989). In some sense this reduces the study of X to the study of 
the set-valued support process S(X~). The basic goal of this work is the derivation 
of path properties of S(Xt) analogous to well-known path properties of standard 
Brownian motion. These properties include a modulus of continuity, a study 
of "polar sets" and "multiple points", and the derivation of an exact Hausdorff 
measure function for the "range" of this support process. 
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Two basic methodologies are used in the study of X. 
The first, which is described in more detail in Sect. 2, is based on a detailed 

analysis of the system of branching Brownian motions. In this approach it 
is also helpful to use a nonstandard version of the super-Brownian motion 
involving a hyperfinite branching Brownian motion. Readers unfamiliar with 
nonstandard analysis may wish to consult Cutland (1983) where a self-contained 
introduction especially suited for probabilists is given. More comprehensive 
treatments may be found in HuM and Loeb (1985) or Albeverio et al. (1986). 
However we feel that our results will still be accessible to the reader who is 
unfamiliar with the elementary nonstandard techniques used here. 

If 0 < s < t < o% the weighted occupation time process or "man-hours process" 
is 

t 

Y~,t(A):= ~ X,(A)  du, Ae2(lRa).  
8 

We write Yt(A) for Yo,t(A). If m is a measure on IR~ and ~ is a real-valued 
function on N d, we write (qS, m) for ~(odm providing the latter exists. 

The second basic methodology is based on an analytic approach in which 
the Laplace transforms of (qS, X(t) )  and (~,  Yo,t) with qS, ~ECo(N d) (or Cz(Ne)), 
the space of continuous non-negative functions vanishing at oe (respectively 
with limits at oe), are computed explicitly from 

(1.1 a) E~(exp { - [(~b, X ( t) ) + ( ~p, Yo,t) ] })= e- I"(t' ~)"(~) 

where u is the unique solution of the initial value problem 

(1.1b) ~ ~ u _  1 (Au_u2)+ ~ 
at  2 

u (0, x) = ~ (x) 

(cf. Watanabe (1968), Dawson (1978), Iscoe (1986a; Theorem 3.1)). E~ or E"  
(if there is no ambiguity) denotes expectation with respect to Qm. In Sect. 3 
this approach is used to obtain estimates for the probabilities Q"(Xt(B(x; ~))> O) 
for fixed t>0 ,  Q"(Xt(B(x; ~))>0 for some t>6), Qm(Xs(B(O; ~))>0 for some s<t)  
and Q6~ R) c) > 0 for some s <  t), which give exact asymptotics for these 
quantities as e$0 (see Theorems 3.1-3.3). Here B(x; ~) denotes the open ball 
in Ra centered at x with radius e. 

Our first path property of the support process is a one-sided modulus of 
continuity for S(Xt). If A c I R  d and r>0 ,  let W.'={x: d(x, A)<<_r}. Let 

(1.2) h(t) = (t (log t -  1) V 1)) 1/2. 

Theorem 1.1. I f  m~Mr(NJ),  then for Qm-a.a. co and each c > 2  there is a ~(o~, c)>0 
such that i f  s, t >= 0 satisfy 0 < t -  s < fi (co, c) then 

(1.3) S (Xt) c S (Xs) c att - s). 
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The proof given in Sect. 4 uses the approximating system of branching Brow- 
nian motions. 

Clearly (1.3) may fail if t < s, for then one could choose t, s such that S(X~)= (o 
but S(X~)'t: 4). We can show that c = 2  is critical in the L6vy modulus for the 
approximating system of branching Brownian motions, used in the derivation 
of Theorem 1.1 (cf. Theorems 4.5, 4.6). This suggests that Theorem 1.1 is a.s. 
false if e < 2. 

If K1 and K2 are non-empty compact subsets of Nd let 

Pl (Kt, K2).'=min [sup d(x, K2), 13 and 
xeK1 

p (K 1, K2):= max (p 1 (K l, K2), P 1 (K2, K 1)) 

p(Ki,  qS)= 1. 

p is the Hausdorff  metric on IK(~e), the set of compact subsets of IRa (cf. Dugun- 
dji (1966, p. 205) and Cutler (1984)). The following consequence of Theorem 1.1 
is proved in Sect. 4. 

Theorem 1.2. {S(Xt): t>0}  is a right continuous process taking values in 
p). 

The above results show that S(Xt) propagates with finite speed. This will 
allow us to effectively control and estimate S(Xt) as opposed to the non-canoni- 
cal Borel supports studied in Dawson and Hochberg (1979), Zfihle (1984) and 
Perkins (1988 a). For  example it is easy to show that for d ____ 2, 

d i m S ( X , ) = 2  forall t > 0  a.s. 

(the lower bound is immediate from Perkins (1988 a)). In Theorem 7.1, an exact 
Hausdorff  measure function (r a log log(l/x)) is given for S(Xt) for t fixed 
and d>3 .  More specifically X~(A) is bounded above and below by constant 
multiples of ~b--m(A c~ S(Xt)) for all A a.s. Theorem 1.1 also plays a fundamental 
role in the extension of the latter result to all t > 0  a.s. in Perkins (1988c). 

Let 

g(s,t):=S(Y~.t) if O<s<_t<__o% 

/~+(0, t )= U s(Ys,,) if 0<t=<oo. 
s > 0  

It will be convenient to write /~(I) for R(s, t) when I is an interval with end 
points s and t. We call R = R + ( 0 ,  oo) the range of X. It is easy to use the 
continuity of X to show 

(1.4) _R(s,t)=cl( U S(X.)). 

If A ~IR a, X hits A if and only if A c~/~= qk The estimates on hitting balls 
from Sect. 3 will help decide which sets are hit with positive probability. For 
example in Sect. 3 we prove the following: 
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Theorem 1.3. I f  d <= 3, then 

Q"(X hits {x})= 1 - e x p { -  2 ( 4 -  d) ~]y-x[-2dm(y)} .  

Remarks. Let z(~}.'=inf{t>0: xe/~+(0, t)}. As a consequence of Theorem 1.3 it 
is easy to show that Q " ( z l ~ = 0 ) = 0  or 1 according as ~[x -y l -Zdm(y )  is finite 
or infinite. In the case d < 3 Iscoe (1988, Theorem 4) has established the existence 
of a local time process. In Sugitani (1987) this has been strengthened to show 
that Y(t, dx)= Y(t, x) dx  and Y(t, x) has a jointly continuous version. Further- 
more, Dynkin (1988) has established the existence of local times for classical 
superdiffusions if d_< 3. The existence of this continuous density implies that 
/~ has positive Lebesgue measure for d <  3. 

If d > 4  then Theorem 1.5 below shows that X does not hit points and /~ 
is Lebesgue null. To estimate the size o f /~  we introduce Hausdorff  measure. 
Let ~ o =  {~b~C([0, ~]): e>0 ,  ~b increasing, ~b(0)=0}. If ~ o  and A c R  a, the 
Hausdorff  ~b-measure of A is 

q~ -- m(A).-=lim inf q~ (d J0: J/is a ball of diameter d J/< 6, A ~ ~ Ji �9 
~ . 0  i i = 1  J 

This definition also makes sense if q5 belongs to 

oo)} 

o r  

woo = {r c([o, a>o, oo}. 

Let J r  u ~ z u ~ o ~ .  If q ~ f u  Jr then (9-m(A)=(b(O+) card(A) where 
oo .0=0 .  In particular note that A is empty if it has a-finite q%measure for 
some q~ e ~ .  Recall that the Hausdorff  dimension of A is given by 

dim A ,=inf(~: x ~ -  m(A) < oo }. 

Notation. log + u =max( log  u, 0), ~ko(X ) = x  4 log + (l/x), ~91 (x )=x  4 log + log + (l/x), 
~O4(x)=~9o(X) log + log+(1/x), ci.i, ci.z, ... will denote positive constants intro- 
duced in Sect. i which depend only on d unless otherwise indicated. Cl, c2, ... 
are used to denote positive constants used in the course of a proof whose values 
are unimportant. 

The following exact measure function for/~ is obtained in Sect. 5. 

Theorem 1.4. (a) Let d > 4. There are positive constants Cl. l(d) and c i,2 (d) such 
that for all mEMI~(]R d) and for Q~-a.a. co 

(1.5) cl.l ~ b l - m ( R ( r , s ) n A ) <  Y~,s(A)<=cl.z ~ l l - m ( R ( r , s ) n A )  

forall  A ~ ( ~ - d ) ,  0 < r _ < s <  oO, 

(1.6) cl.i $l--m(R+(O,s)c~A)< Y~(A)<=cl.2~x--m(R+(O,s)~A) 

forall  A ~ O R ~ ) ,  0 < s < o %  
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(b) Let d=4 .  There is a constant cL2(4) such that for all meMF(IR 4) and 
for Q"-a.s. o9 

Y~,~(A)<=Cl.zO4--m(R(r,s)c~A) forall AeN(~4) ,  O<r<_s<_oo, 

0o--m(/~(r, oo))< oo forall r>0 .  

It is clear that the lower bound on Y~,~ in (1.5) is false in general if r - 0 .  
If m has strictly positive density, then the continuity of Xt shows that iff(0, e)= ~d. 
(This is the reason that we omit t = 0 in the definition of the range of X). 

The above theorem should be compared with the corresponding result for 
Brownian motion. Recall (Ciesielski and Taylor (1962), Ray (1963), Taylor (1964)) 
that for a Brownian motion Bt if 4)a(x)=x z loglog(1/x) for d > 2  and q~2(X) 
= x 2 log( l /x) log log log(I/x), then 

(ad--m({B~:s<t})=cet forall t > 0  a.s. forsome Cde(O,o~). 

The proof in the critical case d = 2 is more delicate. For super-Brownian motion 
we have been unable to find an exact measure function in the corresponding 
critical case d = 4. We conjecture that x 4 log( i /x) log log log(l/x) is the required 
function. The basic approach in our proof  is that used for Brownian motion. 
To prove the upper bound in (1.5) we show for d > 4  

(1.7) l imsup Y"s(B(x;e))<c'l. 2 for Y~,s a.a. x 
~ o ~ ~ (~) 

forall 0<r<s_<_oo a.s. 

and then use a well-known density theorem of Rogers and Taylor (1961). This 
part of the argument also works for super-symmetric stable processes of index 
c~ if the power 4 in the definition of ~1, ~4 is replaced by 2e (see Theorem 5.12). 
The lower bound on Y is obtained by a direct covering argument as in Taylor 
(1964). Unfortunately our proofs are much more complicated than for Brownian 
motion, and should probably be omitted on a first reading. 

Definition. iqk=U /~(Ij): I~, ..., Ik disjoint compact subintervals of (0, oo . 
J 

We call/~k the set of k-multiple points of X. Clearly/~1 =/~. 

Definition. A c l R  d is polar if and only if Ar~iq=q~, Qm-a.s. for any m e M  e. A 
is polar for Rk if and only if Ar~Rk= ~ Qm-a.s. for any meMF. A is semipolar 
(respectively semipolar for/~k) if and only if A r~/~ (respectively A r~/~k) is count- 
able Qm-a.s. for any m~MF. 

In Sect. 6 the estimates of Sect. 3 are used to obtain a sufficient condition 
for A to be polar f o r / i  k (see Theorem 6.2). 

Theorem 1.5. Let A clRe and k e N .  

(a) Let d>4 .  I f  Xk(d-4)--m(A)=O, then A is polar for Rk. I f  A has 6-finite 
xk(e-4)--m, then A is semipolar for Rk. 
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( (b) Let d = 4. I f  log - m ( A ) =  O, then A is polar for Rk. I f  A has a-finite 

log - m ,  then A is semipolar for Rk. 

(c) Let d > 4. Then 

dimAc~gk < = d i m A - k ( d - 4  ), a.s., 

where a negative dimension means that the set is empty. 

In Perkins (1988 b) these results are shown to be close to best possible. More 
specifically, it is shown that zero x-ktd-4)-capacity if d>4 ,  and zero 

log -capacity if d=4 ,  is a necessary condition for A to be polar for / i  k. 

(See Taylor (1961) for a comparison of these necessary conditions with the above 
sufficient conditions.) 

d 
Taking A =]R e we see that/~k---~ q~ if k > ~ z  ~- and 

(1.8) dim/~k =< d - k (d - 4). 

The opposite inequality is proved in Perkins (1988b). These results leave 
d 

open the question as to whether or not /~k= q~ a.s. when k=-~Z  ~ eN.  By combin- 

ing Theorem 1.4 with the techniques used in the proof  of Theorem 1.5, we prove 
the following results in Sect. 6. 

Theorem i.6. (a) Let d > 4  and keN.  Then Rk has a-finite x d-k(d-4) loglog(1/x) 
d 

- m  a.s. In particular,/~k -= q~ a.s . /f  k_> d - 4 "  

(Tm (b) Let d = 4  and keN.  Then Rk has a-finite x 4 log 

Hence we see that X fails to have quintuple points if d = 5, triple points 
if d =  6 or double points if d =  8. The second statement in (a) is immediate 
from the first because of the log log factor in the measure function and our 
definition of q~-m for ~ b e ~ .  The log log factor comes from the exact measure 
function in Theorem 1.4. 

Again the sharpness of these results is proved in Perkins (1988b) (see also 
Dynkin (1988)). The measure functions in Theorem 1.6 will certainly not be 
the best possible (except if k = 1 and d__> 5, so that Theorem 1.4 applies), Using 
Le Gall's recent results for Brownian motion (Le Gall (1987)) as a guide, we 
conjecture that the "exact" measure functions for/~k a r e  

~b(X)=Xa-k(a-4)(loglogl) k for d > 4  

q S ( x ) = x 4 ( l o g l l o g l o g l o g l f  if d=4 .  
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More precisely the ~b-m of/~k should be positive but a-finite. Motivated by 
these results, Dynkin (1988) has constructed a self-intersection local time which 
is supported by/~k and should provide an effective means of proving the above 
conjectures (among other things). 

In defining/~ and/~k, it might be more natural to work with R(I) = ~ S(Xt) 
t e l  

in place of/~(I) (cf. (1.3)) and obtain corresponding (but smaller) sets R and 
R k. In fact in Perkins (1988b) it is shown that / ~ - R  is a.s. countable. Hence 
Theorems 1.4, 1.5(c) and 1.6 would be unaffected. Moreover Theorem 1.5(a), (b) 
are stronger results when stated in terms of/~k. Theorem 1.3 would also remain 
valid (see Perkins (1988b)). 

Let M~p.'={m: m~M(lRa), ~ e-~l~12dm(x)< oo for all e>0}. The following 
N_a 

result (see Perkins (1988a, d)) can be used to obtain analogous results in the 
case of infinite initial measures. 

Theorem 1.7. Let m 6 M,xp, An = {x: n -  1 < Ix[ < n}, m ~") (') = m (. c~ An) and {X(n): 
n6N} be a sequence of independent super-Brownian motions starting at {re(n): 
neN}, respectively, and defined on {f2, ~ ,  ~ ,  e}. Then 

Xn(t)= ~ XCk)(t)eMpOR a) 
k = l  

n 

is a super-Brownian motion on (f2, ~ ,  ~ ,  P} starting at m,,= ~ m(k)eMp(P,~ a) 

and k ~ 

X(t)= lim Xn(t)eMexp(lR a) 

is a super-Brownian motion on (~2, ~ ,  ~ ,  P) starting at m. Moreover for any 
OeCKOR a) or qS=e -~lxl2 for some e>0, and T>0,  

lim sup [(q~, Xn(t)) - (0 ,  X(t))] =0, a.s. and in L 1. 
n ~ t ~ T  

Theorem 1.8. Let m, X,  X ,  be as in Theorem 1.7. For P-a.a. co, for all R, T> 0 
3N(R,  T, co)~N such that 

X ( t ) (Ac~B(O;R) )=Xn( t ) (A~B(O;R) )  forall  t<__T, A ~ ( I R  a) 

and n > N(R,  T, co). 

This allows us to obtain localized versions of the above results. For example 
a localized (both in space and time) version of Theorem 1.1 holds for initial 
measures in Mexp(IR a) (cf. Theorem 4.10). 

Remark. It is possible to derive slightly weaker estimates than those obtained 
in Theorems 3.1-3.3, independently of the p.d.e, literature, using probabilistic 
arguments. More specifically a systematic use of the Feynman-Kac arguments, 
used for example in Lemma 3.2, leads to estimates strong enough for the proofs 
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of Theorems 1.4 and 1.5 (at least for d>4)  but this does not allow one to 
make such precise statements as Theorem 1.3. This approach works equally 
well for nice diffusions other than Brownian motion but one must proceed 
with care in general because the natural analogues of Theorems 3.1 and 3.2 
for super-symmetric stable processes of index ee(0, 2) are completely false (see 
Perkins (1988 b)). 

On the other hand one can also derive Theorem 1.1 using the "analytical" 
estimate in Theorem 3.3 (b), as opposed to the probabilistic arguments involving 
branching Brownian motions given in Sect. 4. 

We feel that it was the combined use of probabilistic and analytic tools 
that led to the resolution of the problems discussed above and have therefore 
made no attempt to emphasize one approach at the expense of the other. 

Some of the above results were announced in Dawson, Iscoe and Perkins 
(1988). 

To complete the introduction we provide a list of notation that has not 
yet been introduced and will be used below. 

Notation. 

N = natural numbers 
Z+ = {0, 1, ,2, 3 . . . .  } 
M(Na)= all measures on (IR a, ~0Ra)). 

If I c IR, C 1' 2 (I x N a) denotes the space of functions f( t ,  x) continuously differen- 
tiable in t and twice continuously differentiable in x (a subscript b denotes 
that the values of the function and corresponding derivatives are bounded). 
6 x = unit point mass at x 
B t denotes a d-dimensional Brownian motion which starts at x under the measure 
Po x defined on some (s ~o). E~ denotes expectation with respect to Po x. We 
write Po for Po ~ and P0m (A)= ~P0X(A) dm(x)ifmeMFOR a) (we assume Borel measur- 
ability in x of PoX(A)). 
{p (t, x): t > 0, x ~ N  a} denotes the transition probability density function of Brow- 
nian motion and J~tf(x),=~p(t, x - y ) f ( y ) d y  i f f  is a bounded measurable func- 
tion. {(gt: t>0} is the canonical filtration on C([0, 0o), IR a) i.e. cgt =o(ws: s<t). 
If M is a metric space D([0, oo), M) is the space of cadlag paths with the Skoro- 
hod -/1 topology and Ot denotes the canonical shift 
Ot co(.)=co(. +t)  for t > 0  on C([0, oe), M) or D([0, oe), M). 
If {Z s: s > 0} is a process on a complete probability space let 
~,~z= 0 o-(Zs: s<r)v  {P-null sets of ~,~}. 

r > t  

2. Branching Brownian Motions 

We construct a system of branching Brownian motions and a labelling system 

(borrowed from Walsh (1986)) for the various branches. Let I =  ~) Z+ x {0, 1}" 
r im0 



Super-Brownian Motion: Path Properties and Hitting Probabilities 143 

(Z+ x{0, 1}~ If fl=(flo, . . . ,  [lj) is a multi-index in I, we call J=lfl l  the 
length of fl and for i < j  we let [31i = (flo, .. . ,  [3~). Write 7 < fl and call fl a descendant 
ofy if 7=f i l i  for some i<1/31. 

Let {Be: f leI}  be a set of independent d-dimensional Brownian motions, 
each starting at zero, and let {e~: f leI}  be a collection of i.i.d, random variables 
which take on the values 0 and 2 each with probability 1/2. Assume that these 
collections are mutually independent and are defined on a common probability 
space (f22, ~r p2). If R d = R e w { A } ,  where A is added as a discrete point, let 
(~'~1 ~ l )=( ( /~d)Z+,  ~((/~d)Z+)) and (f2, sJ)=(f2 t x f22, sr 1 x sr If co=(e) 1, co 2) 
= ((x j), c02)ef2, we write Be(co) and ea(og) for Ba(co z) and ee(c02), respectively. 

We fix a parameter p e n  and suppress dependency on/z if there is no ambigu- 
ity. Let T=  T(U)={j/p: j e Z + }  and use s,_t, u . . . .  to denote elements of T Let 
{t}={t}"=max{ter: t_<t} (t>O), and ; t=2" denote the measure on T which 
assigns mass # -  1 to each point in T. 

Given co = ((x j), co 2) we next construct a branching particle system as follows: 
a particle starts at each x j + A ;  subsequently particles die or split into two 
particles with equal probabilities at the deterministic times in T~{0}; in between 
these times, the particles follow independent Brownian paths. 

Each trajectory on [0, ( j+  1)/#) is labelled by a multi-index of length j. If 
f leI ,  t>=O, let 

= x~o + ~. ~ 1 (i/# <= s < t/x ((i + 1)/g)) dB~ li 
i=0 

= A, if Xeo = A. 

if X~o 4= A, 

Next use {e ~} to define death times z e =za'"((xj), co 2) by 

= 0  if Xr 

r e = min {(i + i)/#: e al~ = 0} if this set is nonempty and xpo 4= A 

= ([ fl[ + 1)/# if the above set is empty and xeo 4= A. 

The basic system of branching Brownian motions {Ne: fi e I} is defined by 

Na = Nte'" = { ~  f ifif 0 < t < r  a t > z  B . 

We write N ~ for NI~I/~ if there is no ambiguity. 

Notation.  If f l e I  and t>0 ,  write f i ~ t  (or just f i~ t )  if and only if Ifl[/l~<t 
+ 

f K M (R = 
i=0 

K = - 1, O, 1, 2, .. . ,  x i e lR  a} ~ MF(IR'~). 
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Definition. N = N(u): [0, ~ )  x f2 ~ M OR e) is defined by 

N~(@ = ~-~  y~ (a~ e (~) 1 (Iv, ~ (~) 4= J). 
f l~ t  

If(b: Ne--, [0, oo), we define (b(A)=0 so that ((b, Nt) = / / -1  ~ (b(NtZ). 
f l~ t  

If H ~ denotes the projection of l? onto/~i, define a filtration on ([2, d )  by 

sC~-= sC, u=-a(n*,B~,e~: Ifll/p< {t})v((") a(B~: IBl/t~= {t},s<u)), 
u>t  

doo = ~ .  

Finally, we introduce a family of probabilities on (f2, d ) .  If co*era t, let U ~ 

=3o,, x p2. If co* =(xj.)e(2* and m = g  -1 ~ ax, l(x;q=a), note that (m,/~) uniquely 
j=O 

determines po,, on o-(N~: t>0)  (addition is commutative) and hence we may 
write p,~.u for the restriction of po,, to a(N,: t>0). In fact we will usually abuse 
notation and write P"  for P~' itself, thus suppressing dependency on the underly- 
ing (x j). 

Let g =  a(e~: fleI), and if fleI, let 

Y( f l )=  a(Td, B elk, ePlk: O < k < [rio 

o% @ = ~(UrPe~/.* A). 

If S=I ,  let ~(S)=a(B  r e~: tieS). If ( b # S = I  and 7eI, we let o-(S; y) be the 
number of generations since 7 first split off from the family tree generated by 
S. More specifically, 

, [ '= [TI - in f{J<[~ l :  7]Jr tieS, Jill>J}} i f th isse t i snon-empty 
~r(S; 7Y( = _ 1 otherwise. 

Write o-(fi; Y) for o-({fi}; y). 
The following easy results are proved (in a slightly modified form) in Perkins 

(1988a, Lemmas 2.1 and 2.5, Proposition 2.2). p e n  is fixed. 

Lemma 2.1. (a) I f  fieI, N.~C([0 ,  c~), ~(d) and N. ~ is ~r 
(b) I f  f l d ,  t >=O, {t} <=]fll/I 2, (xj)ef21 and A ~ t ,  then on {Ntz #=A}, 

P(XJ)(Nf eAJ#)=Po~ao(BeA) a.s. 

(c) {Nt(r t_>0} is dr-adapted and, if meMO, 
D([0, ~) ,  M~) Pm-a.s. 

(d) If m e M  u and r ]Rd~ [0, ~ )  is measurable, then 

has sample paths in 

Em ((r  Nt>) = ~E~ (r (Bt)) din(x) = E'~((b (Bt)). 
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(e) Iffl, 7EI, a(fi; 7)=k>O,  f i n s  and 7..~t, then 

P"(([N'-Nfl-<__ a [~(7)  v g) 

= 1 (Nf 4= A, N: 4= A) Po Ng~,L - ~):.-NX (IBm_ (M- k)/.I < a) 

for a>_0. 
In (e) (and throughout this paper) the fact that Nf 4= A and NJ 4: A is implicitly 

understood whenever we write an inequality such as I N f -  N~I_- < a. 
The next result due to Watanabe (1968, Theorem 4.1) constructs the super- 

Brownian motion as a limit of the branching Brownian motions, N ("). 

Theorem 2.2. I f  m~Mr(IR a) and m~EM~OR d) converge weakly to m as # - ~ ,  
then 

W 

pm.,.(Nt.)E. ) )Qm(.) on D([O, oo),Mv(lRd)) as #-ooo. 

Although only the convergence of the finite dimensional distributions is 
proved in Watanabe (1968), tightness is easily established using martingale meth- 
ods (see e.g. Roelly-Coppoletta (1968) or Ethier-Kurtz (1986, p. 406)). 

We next fromulate a nonstandard version of Theorem 2.2. We work in an 
cot-saturated enlargement of a superstructure containing •. Our underlying 
internal measure space is (*f2, *d) ,  where (f2, d )  is as above. Fix t l E * N - N  
and let # = 27. Taking/~ of this form will be convenient although certainly not 
essential. As before we have an internal collection of branching *-Brownian 
motions, {N.P: fie*I} and an internal *M(Nd)-valued process Nt = Nt ("~. Consider 
P as a mapping from s to the set of probabilities on (O, d )  whose nonstandard 

K 
extension is of course *P. Hence if m , = #  -1 ~ 6x~E*M~ORd), *P"- (or more 

i=0 

precisely .p(x,)) is the internal probability on (*s * d )  constructed as before. 
With a slight abuse of notation we write 

(*0, ~ ,  pro.) = (*0, L(* d) ,  L(*Pm.)) 

to denote the Loeb space constructed from (*f2, * d ,  .pro,). For  details about  
this class of standard complete probability spaces see Cutland (1983), Loeb (1975, 
1979) or Albeverio et al. (1986). 

If M is a metric space and A c * M ,  ns(A) denotes the nearstandard points 
in A and stM: n s ( * M ) ~ M  is the standard part map. If M = N  d, we write st(x) 
or ~ for sta~(x). An internal function F: *[0, ~)--**M is S-continuous if and 
only if F(tl) and F(t2) are infinitesimally close in ns(*M) whenever t t and t2 
are infinitesimally close in ns(*[0, oo)). 

If M is a complete separable metric space and rE*Mr(M) (Mr(M) is the 
space of finite measures on the Borel sets of M), then (see e.g. Lemma 2 of 
Anderson-Rashid (1978)) 

(2.1) vEns(*Mv(M)) if and only if L(v)(ns(*M)C) = 0  
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and in the case 

StM~(M)(V) (A)=L(v) (st;t 1 (A)) for all AeN(M). 

Theorem 2.3. Let meMF(IR d) and choose mu~*M}(~ d) such that st~tF(m,)=m. 
Then N. is P'--a.s.  S-continuous from *[0, oo) to *MF. There is a unique (up 
to distinguishability) continuous MF-valued process, Xt, on (*f2, Y ,  pro,) such that 

(2.2) Xot(A)=L(Nt)(st-I(A)) forall tens(*[0, oo)), A e N ( ~  a) a.s. 

Moreover, 

(2.3) Pm"(xeC)=Q"(C) for all C e ~ ( C ( [ 0 ,  oo),MF)). 

Proof This would be immediate from Theorem 2.2 and (2.1) if m u = *v(p) where 
w 

v (n) , m, v (n) e Mr,.  

In general, for h e n  and m'eM"F, let 

Qm,,, (A) = Pm'(N(")e A), A e (D ( [0, oo), Me)). 

Let dl be a metric on Me  and d2 be a metric on the space of probabilities 
on D([0, oo), MF) (both inducing the topologies of weak convergence). Theo- 
rem 2.2 implies that 

(2.4) for every e > 0 ~ no (e) such that if n > no and m'e M} satisfies dl (m', m) < no 1, 
then d2 (Q""", Q") < e. 

Let m and m u be as in the theorem (the existence of mu is trivial) and fix 
ee(0, oo). Then kt > no(e) and *dl (m u, *m) < no(e)- 1. (2.4) and the Transfer Princi- 
ple imply that *dz(Q "~.'u, .Qm)<e. Letting e$0 we see that if st1 denotes the 
standard part map on the space of finite measures on D([0, oo), Mr), then 

(2.5) st 1 (Qm,, u)= Qm. 

If st 2 denotes the standard part map on ns(*D([0, oo), Me)), then (2.5) means 
(cf. (2.1)) 

(2.6) L(Q',,U)(st21(A))=Qm(A), forall A~N(D([0 ,  oo), Me)). 

A simple characterization of st2 may be found in Hoover-Perkins (1983, Theo- 
rem 2.6). This shows that the set of S-continuous paths in *D([0, oo), Me) is 
precisely st~ 1(C([0, oo), MF)). Take A =  C([0, oo), Me) in (2.6) to see that N) u) 
is a.s. S-continuous. (2.6) also shows that X = s t z ( N  ) satisfies (2.3). The S-conti- 
nuity of N and the aforementioned characterization of st2 implies that X(~ 
=StMF(N(t)) for all tens(*[0, ~))  Pm--a.s. (2.2) is now immediate from (2.1). []  

We will also need a nonstandard representation for Y~,,. 
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Notation. If 0 < s _< t _< oo let 

M~U~(A)=Ms, t (A)= ~ Nu(A)d2(u), A6*N(IR  a) 
Is, t] 

M~ ~) = M~ = Mo,~. 

By using (2.1) and the fact that L()~) (st-l(A)) is the Lebesgue measure of A 
for any Borel set A c l R  ~ (Albeverio et al. (1986, Prop. 3.2.5)) one may readily 
prove 

(2.7) Y~s, or(A) = L(Ms, t) (st- ~(A)) 

whenever O<s<<_t are in ns(*[0, o9)) and A~N(IR  a) a.s. 

3. Estimates of the Probability of Hitting Small Balls 

3.1 Introduction and Statement of Results 

The purpose of this section is to obtain estimates of the probability of hitting 
balls, both at fixed times and over finite and infinite time intervals. The proofs 
are based on the representation (1.1 a, b) for the Laplace transform of X(t)  and 
Y(t), certain scaling properties of (1.1b), and the Feynman-Kac formula. This 
section contains the statements of the main estimates. Section 3.2 contains a 
number of technical lemmas concerning solutions to Eq. 1.1 b and related equa- 
tions; the proofs of the main theorems are contained in Sect. 3.3. In addition, 
Theorems 1.3 and 1.8 are proved in Sect. 3.3. 

Notation. Let mx,~.'=mLB(x;~) and m~,~,=mlmx;~)c. 

Theorem 3.1. Let d> 3, XoelR a, and mSMF. 

(a) There is a constant c3.1 such that for all t >=e 2, 

Q" (x t  (B (Xo; e)) > O) < c3.1 e a- 2 t -  a/2 m (~a). 

(b) There is a constant c3. 2 such that 

lim 1 ~ 0 ~ Q"(Xt(B(x~ ; e)) > 0) = c3.2 ( ~ P (t, x - Xo) d m(x)), 
p.a 

and for any c5>0 and 0 < K < o o  the convergence is uniform for t>6,  Xo~IR a, 
m (IR d) < K. 

Theorem 3.2. Let d>4.  There exists a constant c3.3, a positive sequence {ek} 
converging to zero, a function e=ea: N x(0, oo)2-*(0, oo) (monotone decreasing 
in the first and third variables) and a function g=ga: N x(0, oo)-*(0, oo) such 
that the following hold. 
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(a) I f  d>4, 6>0, me me(Na), x eN a, k e n  and 0<e<ea(k, fi, m(Na)), then 

Qm(X,(B(x;e)>O forsome t>6) 
_-<(1 + ek) C3.3 ea-4(E"d(lB~-- X[2-a)+ 2-k). 

(b) I f  d=4, 6>0, meMFOR4), xelR 4, k e n  and O<~<~4(k, 6, m(~4)), then 

Qm(Xt(B(x;e))>O forsome t>6) 

<(1 +ek) 2 (log 1)-l(E"d([Bo--x[-2)+ 2-k). 

(C) I f  d>4, me MvORa), xegl a, keN, ~ ly-- xrZ-d dm(y) < 0% and 
0 < e < ga(k, ~ lY-  xl z-adm(y)), then 

Qm(Xt(B(x;e))>O forsome t>O) 
~_~(1 --'gk) C3.3 ea-~ l ( l y - x l  >ke)ly-x[2-adm(y). 

(d) I f  d=4, meMv(lR4), xeR 4, keN, ~]y-x[-2dm(y)< o% and 
O<e<g4(k, ~[y-xl-2dm(y)), then 

Qm (X~(B (x; e) > 0 for some t > O) 

>2(1-ek) (log 1)-1~ l (ke< [y-x[ <e -l/k) [y-x[ -2 dm(y). 

Remark. In using the upper bounds in (a), (b) the following easily verified facts 
are sometimes used: 

(3.1.1.) E~(IB~ -- x[ 2 -d) < 3(2 -d)/2 m(~a), 

1 
( 3 . 1 . 2 )  Er~(IB,~--xI2-a)<-~ ly_xla_ 2 dm(y). 

Theorem 3.3. For d > 1, t > 0 there are constants ca.4(d, t) and c3.~ (d) such that 
(a) Ifm~MF and supp(m)cB(0; R+2) ~, then 

Qm(XAB(O;R))>O forsome s<t) 

=<c3.4j([xl-(R+l)f - 2 1 / ~  exp { ( I x l - R -  1)2-}2t  din(x). 

(b) Qa~~ for some s<=t) 

provided that ~ t  > 2. 

<=c3.5aR-2\V~t j exp - 
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Corollary 3.4. I f  m~M~v, d>=l, then for all t>0,  R>0,  there is a constant 
c3.6(d, R, t) such that 

Qm~'~(Xs(B(O;R))>O forsome s<_t) 

=<ca.6(d, R, t) ~ exp( 
Ixl>N 

2 .~-2 lCt dm(x) ( + ) /  

for N > R + 2 .  

3.2. Some Analytic Lemmas 

ti will denote the partial derivative of u(t, x) with respect to t, and B=B(0; 1). 
Let T,.'=inf{t: IBtl <r}. 

We begin with an elementary comparison lemma, sufficient for our needs, 
which is a simple consequence of the parabolic weak maximum principle. A 
direct proof can be given following that of Theorem 3.1.1 of Stroock and Varad- 
han (1979). 

Lemma 3.0. Let 9 be an open subset of I I  d such that 9 c is bounded and let 
c (.,.) E C ( [0, 7"] x 9)  +. I f  u ~ C~' 2 ((0, T] x 9) c5 Cb ([0, T] x 9)  satisfies 

i~-lAu+c.u>=O in (0, T] x 9 

u(O,x)>O V x s ~  

u(t, x)>O V(t, x)e[0, T] x 0 9  

then u(t, x)>=O for all (t, x)e[0, T] x 9.  

We fix a q~eC(lRe)+ such that 0<qS(x)=< 1 for xeB  and q~(x)=0 for xCB. 

Lemma 3.1. Let ul--ul(t,  x; O) (0>0) be a unique non-negative solution of the 
equation 

(3.2.1) iq = �89 2) 

u1(0)=04 

Then the following estimate is valid for all t > O, [x I> 1, 0 > O: 

F 
(3.2.2) u l (t, x; 0) < 2 t - 1. rain [1, (6 e). 

Proof The upper bound 

exp(--[Ixl-- lJ ~ )  ] 
[1 --exp(-- [ Ix]-  1] g ~ ) ] 2 ] "  

20 
(3.2.3) ul(t, x; 0)< 2 +Ot < 2t-1 
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follows f rom L e m m a 3 . 0  with N=--Ne, u-=uh--Ul 
20 

Uh"=2 + U t is the solut ion  of the initial value p rob l em 

(3.2.3)h �9 1 2 uh = ~ (~1 uh - uh)  

Uh(O,x;O)=O forall x. 

Let  2 > 0 and  denote  by  u2 the soluton of: 

a2 =�89 u2 -,~u~ -u2 ~) 

/ , / 2 ( 0 ) = 0 4 )  

and set v = e �89 u2. Then  

and 

= I (A v -- e-�89 v 2) > �89 v -- v 2) 

v(0)=04) 
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C--�89 where 

- -  u~ (r) 
( d -  1) 

u;  (r) + 2 u3 (r) + ua 2 (r)_> 0, r > 1 

ua(r ) -~oe,  as r ~ l  + 

u3(0--+0, as r--+oo. 

F o r  example  one can  choose  u3 ( r )=  w(r-1) such tha t  w is posit ive and  

W't=•WAyW 2, r > 0  

w ' < 0 ,  r > 0  

w(r)~oe, as r ~ O  + 

w(r)-~O, as r--+oo. 

Mul t ip ly ing  the o.d.e, for w by  w' and taking indefinite integrals (demanding  
that  lira w'(r)= 0 as well) yields w ' =  - w  [2 + 2w]�89 which can be solved in closed 

r --+ co 

fo rm w(r)=62e-gXr/[1- e-V~r] 2. 

-Au3+Ru3+u~O, [ x l > l  

u3 (x)--+ oe, as Ixl---, 1 + 

u3(x)--+0, as Ixl-,oo 

or in radial  fo rm:  

�89 so tha t  ulNv=e "u2 by L e m m a  3.0 with ~ = N  d, u=_v-ul and c-l(v+ul). 
In  turn, by L e m m a  3.0 again,  with N - B ( 0 ;  1 + 6 )  c (6 being sufficiently small  
and  posi t ive but  o therwise  arbitrary),  u = u3 - u2 and  c -- �89 + u2 + u3], we ob ta in  
tha t  u2 < u3 on/~c, where  u3 is any  posi t ive solut ion of 
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In summary, we have shown that ul(t, x; O)<e~atw(lxl-1). Since this in- 
equality is valid for all t > O, Ix[ > 1, 0 > O, and 2 > O, we may set 2 = 2/t, whereu- 
pon we arrive at the inequality in (3.2.2). [] 

Lemma 3.2. Let ul(t, x; O) be as in Lemma 3.1. Then u~(t, x; O) increases to some 
u~o (t, x) as 0 ~ oo, and there is a constant c3.2. ~ such that for all t > 1 and all x, 

(3.2.4) uoo(t, X)~_~ C3.2.1 .p(t + 1, x). 

Proof. Noting that O~-~u(',.; O) is increasing (an easy consequence of Lemma 3.0) 
define 

(3.2.5) u oo (t, x ) : =  lim u 1 (t, x;  O) < 2 (see (3.2.3)). 
O~oo = t 

Also, by casting (3.2.1) into its mild form [cf. Pazy (1983, p. 106)] 

t 

(3.2.6) u~(t)=~_o(u~(gO)-�89 j ~_~(u21(s))ds, t>=6>O, 
6 

it follows from the bounded and monotone convergence of u( ' , - ;0)  to uoo, 
that uo~ also satisfies (3.2.6) and hence 

(3.2.7) �9 _ 1 2 uoo-z[Au~o-uoo] for t > 0  

by standard regularity theory (see Lady~enskaya et al. (1968)). Lemma 3.1 implies 
that for t > 0, uoo (t, .) is (Lebesgue) integrable. Also (3.2.2) implies that for r > 0 

(3.2.8) M(r)..= sup supu~o(t,x)<oo. 
[x]> 1 +r t>O 

The Feynman-Kac formula states that if, for example, k is continuous and 
bounded above, and ve Cb 1' 2 ((0, O0) X IR a) n Cb([O, o0) x IRa) is a solution of 

9/) 
~t �89 

then 

v(t, x)= E~ [cxp { i  k(t-- s, Bs) dst  v(O, Bt) ]. 

(cf. Stroock and Varadhan (1979, p. 114)). Therefore 

( }) (3.2.9) ul(t,x;O)=E~ u~(O, Bt;O)exp - !  lu~( t -s ,  Bs;O)ds 



152 D.A. Dawson et al. 

If 1 <r<[x[,  then 

Tr 

u~(t,x;O)=E~(exp{- ~o �89 

�9 OE~(r �89 Bs;O))Io~r~)) 

T. 
=E~ (exp {-o~ �89 

�9 OE~)(c~(Bt-rr~ - t-~rr�89 Bv~ dr} [~-rr))" 
o 

That is, by the strong Markov property for Bt, 

(3.2.10) Ul(t,x;O)=E ~ exp -- ~ �89 l(T~<t) 
o 

�9 u~ ( t -  T~, Brr; 0)). 

Replace T, by v~[0, t) in the above argument to obtain 

(3.2.11) 
o 

ul(t,x;O)=E~(exp{--~o lUl(t--s, ns;O)dstul(t--v, Bv,O) ) 

for all t >O, xelR a. 
From (3.2.8) and (3.2.10) we have for Ix l>r>  1, 

ul(t, x; O)<=M(r-- 1) pox (T~ < t) 

and therefore 

uo~(t, x)<M(r- 1) PoX(T~ < t) 
<=M(r- 1) Po~ (sup IBA >(Ixl-r))  s<t 

< 2 M (r-1) Po~ ([ B l , > ~ t  r ) (modified reflection principle) 

Therefore, (take r = 2) there is a constant c2 (d, t) such that for Ix[ > 2, 

( 3 . 2 . 1 2 )  uo~(t,x)<c2(d,t)exp{-~t } 

by an easy computation. 
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Together with (3.2.5), (3.2.12) implies that  there is a constant %.2.1 (d) such 
that 

(3.2.13) Uoo(1, x)<c3.2.1 p(2, x) for all x. 

Combining (3.2.13) with (3.2.11), for t >  1, 

us (t, x; O) < E~(u 1 (1, B t_ 2; 0)) 

<= E~(uoo (1, B t_ t)) 

~-~ C3.2.1 E~ (p(2, B,_ 2)) 

=C3.2.1 ~ p t - l ( y - x ) p ( 2 ,  y) dy 
N.a 

= %.2.1 p(t + 1, x) by Chapman-Kolmogorov.  

Finally, this yields 

Uoo(t ,x)<c3.a. lp( t+l ,x  ) forall  xe lR  d and t > l .  [] 

Lemma 3.3. Let d >_>_ 3. Then 

lime-auo~(e- 2 t, e- 1X)-=Ca.2.2" p(t, X), 
e.L O 

the convergence being uniform on [6 ,00)x lR  d for any 6>0 .  The constant 
c3.2.2(d)>0 is given by 

c3.2.2=1im ~ u~( t , x )dx .  

Proof. By Lemma 3.1 uoo(6, ")~D(~a)+ for fixed 6>0 .  Set 

w,( t, x )=e-d  Uoo ((e- 2 t) + 6, e- l x). (3.2.14) 

Then (by (3.2.7)) 

e~=�89 e - 2  2 Wa --/3 W~ ) 

w~(O,x)=~-~u~(6,~-lx). 

Then we may apply Proposit ion 3.1 of Gmira  and Veron (1984) to w~ to conclude 
that  

lime-euo~(e - 2 t+  6, e- 1 x )  = c3.2. 2 p(t, x) 
e $ O  

(3.2.15) c3.2.2(d)= ~ uoo(6, x ) d x - � 8 9  ; I u ~ ( t , x ) d x d t  
Ra 6 Na 

= l i m  f uoo(t,x)dx. 

where 
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More precisely, as /3+Ow~(t,x) converges uniformly on compact subsets of 
(0, ~ )  • IR a. Together with Lemma 3.2 this yields the uniform convergence on 
[a, ~ ) •  for any a > 0 .  Moreover, under this uniform convergence if limt~ 

0 
= to > 0, then lira w,(t~, x) = c3.2.2 "P (to, x). Choosing t~ = to -/32 ~ and relabelting 

e$0 

x as x - X o  yields that 

lim e-a u(e -2 to,/3-1 Ix-x0-])=c3.2.  2 p(to, X -  Xo) 
ej, O 

and convergence is uniform on [a, o r )x iR  a for a>0 .  The fact that c3.2.2(d)>0 
for d > 3  is established in Dawson (1977, Theorem 3.1). []  

Lemma 3.4. (Iscoe (1988)). The singular elliptic boundary value problem 

A u(x)= u(x) 2, xeB(0;/3--~c 

u ( x ) ~ + ~ ,  as Ixl  -+/3 + 

u(x)-,O, as Ix[--*+~ 

has a unique non-negative solution u=-u(.; /3). It  is strictly positive and radial. 
Moreover 

(3.2.16) 

(3.2.17) 

(3.2.18) 

U(X; 13) = g -  2U(/3- 1 X'~ 1), 

u(x;e)<6(lx[-8) -z for Ixl>/3, 
u(x;1) ~fa(Ixl)=f(Ixl) as [x[-'~, 

where 

2 ( 4 - d ) r  z 1-<d-<3 

f ( r ) = 1 2 r - 2 ( l o g r ) - I  d = 4  

[c3.3.r 2-a d> 5. 

Moreover when d> 5, u(x; 1)>f(lx[). 

Lemma 3.5. Let R > I ,  and (oR(x)=49(R-1x) where (a is as in Lemma 3.1. Let 
u~ x) (0>0)  be the unique non-negative solution of 

Ou ~  1 (AuO_(uO)2)+O(jR ' uO(O,.)=_O" 
~t 2 

Then u ~ ( t, x) increases to some u ~ ( t, x) ~ [-0, m]  as 0 T ~ .  I f  [x[ > r > R, then 

u~ (t, x) <_ 6(r-- R ) -  Z PoX(T~< t). 

Proof By Iscoe (1986a, Theorem 3.1) we have 

(3.2.19)  m(oxp{ 
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Let rn=6x in (3.2.19) and use the monotonicity of the left-hand side to see 
that u~ x) is non-decreasing in 0 for each (t, x). Hence we may define 

(3.2.20) u ~176 (t, x)-'= lim u~ x)e [0, ~ ] .  
0-'* oo 

Fix t > 0  and let g~ x)=u~ x), s<-t. Define 

(3.2.21) ~s go (s, x) J~f(s, x)=�89 x)+ f(s, x ) -  2 f(s, x). 

More precisely, A is the generator of 

s 

{I 
,B~) if ~O~ and S<t 

s o 
8 

if ~g~ or s>t  
0 

where e is an independent exponential random variable with mean 1. The domain 
of A contains f e  C 1' 2 ( [ 0 ,  t) X ~ d )  such that f and A f  both vanish at oo. Then 

o ~ o Y,a~ x)=�89 u ( t -s ,  x ) - ~  u ( t -s ,  x) u ~  x) 2 
= -04)R(x). 

Hence if {/~z: 2 > 0} is the resolvent of X, 

(3.2.22) 

t 

u~ x) = 0~ x)-=- OR o ~pg(O, X) = OE (~ x) ~ OR(s ds; 
0 

t 

u~176 

Since u~ x)Tu~ x) as tToo and u~ x)t u(x; R) as 0]'0% where u(x; R) 
is as in Lemma 3.4 (see Iscoe (1988)), then (3.2.17) yields 

(3.2.23) sup u~(t,x) <66-a. 
t>O 

[ x [ > R + 6  

If ]x I> r > R, then use (3.2.22) and the strong Markov property at T~ to obtain 

r r  

/,; �9 E~ ~)R(B~)oOT'exp -- ~u~ ds[o~r 
\ 0 k 0 ) 
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that is, 

(3.2.24) 

Therefore 
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u~176 Bv)d @ 

"Eg (Tr(~ I r --Iu~ Bv)dv d 
0 k 0 

=< E~ (I(T~ < t) u~ - T,, B (T,))) by (3.2.22) 

<= 6 (r - R) - 2 po ~ (T~ < t) by (3.2.23). 

u~176 [] 

Remark. Equation (3.2.22) can also be proved by using the representation (3.2.11) 
of the Feynman-Kac semigroup and the usual convolution integral solution 
of the inhomogeneous equation (cf. Pazy (1983, 4.2)). 

Lemma 3.6. Let u(. ;R) be the unique positive solution to the boundary value 
problem 

(3.2.25) A U(X) = U2(X) for xeB(0;  R) 

u(x)~o~ as ]xITR. 

Then 

(3.2.26) u(x; R)= R- 2u(x/R; l) 

and 
u(x; 1) 

(3.2.27) lim - 1. 
I~l~ 1 [6/(1 - Ix l )  2] 

Proof The first half of the lemma (as well as the existence and uniqueness 
of u) was proved in Proposition (3.15) of Iscoe (1988). To obtain (3.2.27) we 
adapt the technique used in Sawyer and Fleischman (1979) wherein the asymp- 
totics at infinity of positive, bounded, radial solutions of A u = u 2 was determined. 

We write simply u for u(.;  1). Rewriting the differential equation of (3.2.25) 
in radial form, 

[r a- 1 u' (r)]' = r d- 1 u(r)2 (where the prime denotes d/dr) 

and integrating twice yields: 

(3.2.28) 
r s 

u(r)=tp(r)+fsl-efu2(t)td-ldtds, p<=r<l 
P P 
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where p denotes some fixed point in (0, 1) and 

r 

r (r) = u (p) + pd- 1 u' (p) S s 1 -" , /s ,  
p 

which is a bounded, positive function of re[p, 1). Let w(r)=6(1-r) -2 and set 
v = u/w. From (3.2.28), we see that v is a solution of the integral equation: 

(3.2.29) v(r) = r (r). [ w ( r ) ] - '  
g s 

+ l-w (r)] - 1. ~ s 1 -d ~ v(t)2 w(t)2 re- 1 d t ds, 
P p 

p < r < l .  

i s With g(r):=[w(r)] -1. sl-d~w(t)2ta-ldtds,  it follows from L'H6pital 's rule 

that lira g (r) = 1. P P 
r t l  

We must first establish that lim sup v(r)~ 0 and that lira infv(r)~= ~ .  Concern- 
r ] ' l  r t l  

ing the former, it can be shown, as in Iscoe (1988) (see (3.11), (3.13) therein), 
that since u (r) 2 = u" (r) + [-(d- 1)/r] u' (r) >__ u" (r) for 0 < r < 1, then 

[(2/3)(v3-1)]-~dv~ u~) ' (1-r) .  
[u(r)/u(O)l 

Changing variables in the integral by v = ( 1 -  r)-2y leads to 

I(r).'= ~ {(2/3)[y2_(1-r)6]}-~-dy_-< u ~ ,  
t (r) 

l (r).'= (1 - r): u (r)/u (0). 

If lim l(r)= 0, then by Fatou's lemma, 
r t l  

Go 

+ o o =  ~ V~y-3/Zdy<=liminfI (r)<=u~) ,  
0 r ~ l  

which is absurd. Therefore l imsupv(r)>0.  Also if l imv(r)= + o% then with r o 
r - -* l  r ~ l  

chosen such that V(ro)=N>2, and v(r)>v(ro), g( r )> l /2  for r>ro ,  it follows 
from (3.2.29) that N = v(ro) > N2/2 > N which is absurd. Therefore lira infv(r) < 

r ---~ 1 
+oo. 

If eventually (i.e. for all r sufficiently near 1) v(r)_-<c< 1, then from (3.2.29) 
it follows that v(r)<=o(1)+c 2 [-1 +o(1)] ;  so that lim supv(r)<_<_c 2. Therefore if we 

r i " l  

assume that co:=limsupv(r)<l, then with c = c o [ l + ~ ] ,  where 0 < e < c o ~ - - 1 ,  
r t l  
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we obtain absurdity: Co <cz< Co. Similarly the assumption that l < l i m  infv(r) 
rT1 

leads to a contradiction. Thus we have established that 

lim sup u(r) _> 1 and lira inf u(r) <_ 1. 
~t l w(r) -  rt l w(r) - 

We now change the notation and set, for c>0 ,  v = u - c w = w [ u / w - c ] .  Note 
d - 1  

that w"(r)+ w'(r)=f(r) w(r) z where f ( r ) =  1 + [ ( d -  1) (1-r) /(3r)] ;  so that 
r 

l imf(r)  = 1. Therefore 
r$1  

d - 1  
(3.2.30) v"(r) + /, 

u(r) 2 
v' (r) = u(rZ) -  c f (r) w(r)2 = w(r)2 . ( [~ (~]  - e f (r)). 

With c > l  we have that v is negative infinitely often since l iminf u(r)<1 If 
rt l w ( r ) -  " 

v(r) were also positive infinitely often as rT1, then v would possess a sequence 
of positive local maxima, attained at ( r , ) ,~  where lira r, = 1. At such points, 

the left hand side of (3.2.30) is nonpositive while for sufficiently large n, the 
[ u ( r . ) ] =  ~ ,  , 

right hand side is positive since [ w ~ ) J  -cy tr")>c2-c f (r") - -*c2-c>O as 

n - , + o o .  Therefore v is eventually (and permanently) nonpositive, i.e. 
u(r) u(r) 

lira s u p - - <  c. Since c > 1 but otherwise arbitrary, lira s u p - - _  1. Similarly, 
r t  l w ( r )  - u ( r l  r~ l w(r)s  ~ 

arguing with c < 1, we deduce that lira inf ~ - >  1. Therefore lim ~ = 1. [] 
~tt w t r ) -  ~t~ wtr) 

3.3. Proofs of the Theorems 

Proof of Theorem 3.1. Let e~(0, 1], q~ be as in Lemma 3.1, 
~b( [ x -  X o]/e). Then (see (1.1 a)) 

and G(x):= 

E" e x p ( - 0 e  -2 (~b~, Xt ) )=  exp(-~u( t ,  x; 0, e) m(dx)) 

where fi ..=�89 (A u - u2), u(0) = e- 2 0 q~e. If we define 

U 1 (t ,  X ; 0 ) : =  ~2 U (~2 t, x o + e x ;  0, e) 

then u 1 satisfies (3.2.1); and so ul is independent of e. Therefore 

Q'(Xt(B(xo; e))>0)= 1 - lim E" exp(-- OXt(B(xo; e))) 
0-*o0 
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where u~(t, x)=  lim Ul(t , X; 0), as in Lemma 3.2, the passage to the limit under 
0 ~  

the integral being justified by the monotone convergence of u t ( ' , ' ;  0) to uoo 
as 0Too. By Lemma 3.2 there is a constant c3.2.1 such that for all t >  1, 

u~o(t, x) < c3.2.1 p(t + 1, x). 

From this it follows that for t > e 2, 

( o) Qm(Xt(B(xo;~))>O)Ne-2~u~ o e-2t, m(dx) 

<-_~- 2 c3.2.1Sp (g- 2 t + l, X ~ X~ m(dx) 

1 - ( x -  
<=e- 2 ca.t ~ (e- 2 t_t_ l)a/2 exp ( " 2~+ ~22~2) m(dx) 

1 
<c~.~ d -~m(~  ~) ( t-{- g2) d/2 

=<C3.1 gd- 2t-d/2 m(]R d) 

thus yielding (a). 
Further, from Lemma 3.3 (relabelling c3.2. z as c3.2), 

lime-duoo(g- 2t, g - l  x )=C3.e 'p( t  , X), 
e$O 

uniformly on [6, oo) x R e for any 6 > 0, where 

ca.2 = lira ~ u~ (t, x) dx. 
t~oO Ra 

This yields 

lime-a~uoo (e-2 t, e- 1 [ x - x o ]  ) m(dx)= c3.2~p(t, x-xo) m(dx) 
~J,O 

uniformly for t >  6, and m(lRa)< K, and consequently the uniform convergence 
of 

lim 1 ~+o e~z~_2 [ 1 - e x p ( -  ~ ~ 2u~(e-at ,  e - l [X- -Xo])m(dx) ) ]  
Na 

=ca.2"[ ~ p(t,x-xo)m(dx)] 
N.a 

which completes the proof of (b). []  



160 D.A. Dawson et al. 

Proof of Theorem 3.2. Let u(x; e) be as in Lemma 3.4. It will be convenient 
to set u(x; e)--- + oe if IxI-<e. Argue as in the proof of Theorem 2 in Iscoe (1988) 
but with rn~Mr(N d) in place of fix to see that 

(3.3.1)Q" (Xt (B (x; e)) = 0 for all t > 0) 

=Q"x(X~(B(O; e)) = 0 for all t>0)  (mx(A)--m(A+x)) 

=exp{--Su(y;  e) dmx(y) } 
=exp{-e-2Su(e-l(y-x); 1)din(y)} by(3.2.16). 

Let f ( ' )  be as in (3.2.18), and denote 

,fu(x; 1) k} (l+  l't,=sup rxl---> --,1 as 

(1--e(k2)):=mf{~)-:[x[>=k}~l as k ~ o g .  

Note that by Lemma 3.4, when d >  4, e(k 1) > 0 and e(~2)= 0. In the case d = 4 neither 
e~ 1) nor ~z) are assumed to be positive. 

(a) Assume d > 4 and k e N. If d (supp (m), x) > e k, then (3.3.1) yields 

(3.3.2) Q'(X~(B(x; ~)) > 0 for some t > 0) 

~_~,~- 2 I bl(g- l (y-- x); 1) din(y) 

=<(1 + ~(1)) c3.3 ea-4~ly-x[2-adm(y). 

Now use the Markov property at t = fi to get that for e 2 < 6, 

Qm (X,(B (x; e) > 0 for some t >__ fi) 

< O " (Xo (S (x; k e)) > 0) 

+E'~(I(Xo(B(x; ke)) =0) Qx~(X,(B(x; e))> 0 for some t>=0)) 

"~ C3.1 (~-d/2m(]Rd) (k ~)d-2 +(1 +e~ 1)) C3. 3 ed-4E"(~ly--x[ 2 -'~dXo(y)) 

by Theorem 3.1.a and (3.3.2) 

< ( i  +e~ 1)) ed-4 c3.a (E'g(IB~-- xlZ-d) + (C3.1/C3.3) 6-d/Z kd- 2mOR d) e2). 

The last term within the parentheses is less than 2 -~ if e is taken smaller than 
a certain quantity depending only on (k, 6, m0Rd)). This completes the proof 
of (a). 

(b) Assume d=4 ,  keN,  0 < e <  1 and d(supp(m), x)>(ke) v e ilk. We will first 
show that 

(3.3.3) Q"(Xt(B(x;e))>Oforsomet>=O)<=(l+e(k~))2 log ~[y-x[-Zdm(y). 
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To verify (3.3.3) note that if yesupp(m), then 

Therefore (3.3.1) implies that 

Q~(Xt(B(x; e)) > 0 for some t > 0) 

<l--exp{--2(l+dkl))e-2e2SIx--yl-E(loglX--eY)-ldm(y)} 

<2(l+e(kl))(1--1/k) -1 log Slx-yl-Edm(y) by(3.3.4). 

This proves (3.3.3). Now applying the Markov property at t = 6, 

Qm(Xt(B(x; e))> 0 for some t > 6) 

~_~ Qm (X~ (B (x; k e v e i/k)) > O) 

+ E"(1 (X~(B(x; kev el/k)) = O) QX, (Xt(B(x; e)) > 0 for some t > 0)) 

C3. ~ 6-2mOR 4) (ke V el/k)2 +(1 +dk l)) 

�9 ( 1 - 1 ) - 1 2 ( l o g  l/e) - 1 E " q l y - x 1 - 2  dXo(y)) 

by Theorem 3.1.a and (3.3.3) 

- 11 + 

+ (c3.l/2) 6 - 2 m ( ~  4) (kg v el/k) 2 log l/e). 

The proof is completed as for (a). 

(c) Let d > 4 and keN.  Then (3.3.1) implies that 

Qm (X,(B (x ; e)) > 0 for some t > 0) 

= 1 - e x p  {-- ;u(y;  e)dm~,(y)} 

= > l - e x p { - e - Z ~ l ( l y - x l - > _ k ) g  u ( J ~ - ' l ) d ,  m(y)t 

> 1 - e x p  {-c3.3 ed-'.II(Ly-xl 

Therefore we can choose gd depending only on k and Sly-xl2-adm(y) such 
that if e < gd, then 

(3.3.4) Q'~ (X, (B (x; e)) > 0 for some t > 0) 

~(1 --/]k) C3.3 ea-4 ~ l (ly-xl > ke) ly- xl 2-a dm(y) 

where ek--'O as k--* oo. This completes the proof of (c). 
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(d) Let d = 4  and keN.  Note that i f 0 < ~ < l  and Ix-yl<~ -~/k, then 

- 1  

O,(y- x),=l (k~ < ly- xl ~ ~- 1/k). 

Let 

2e z 
ly-xl z log l y - x [  

Then by (3.3.5) 

(3.3.6) ~ u ( ~ -  ;1)dm(y)>(1-e~z))~(y-x) din(y) 

Q"(Xt(B(x; e) > 0 for some t > 0) 

= 1 - e x p {  - -e-2~u(e-  1 (y--x); 1) din(y)}, 

and by (3.2.18) ify+x. 

(3.3.11) limz-2u(e-l(y-x); 1)= 2 ( 4 - d ) [ y - x 1 - 2 .  
5-*0 

By (3.3.1) 

(3.3.10) 

=2e2( 1 -- e~2)) (log 1)-~(k/(k+l))SOs(Y-X)[Y-X[ -2 dm(y). 

Then (3.3.1) and (3.3.6) imply that 

(3.3.7) Qm(Xt(B(x;e))>O for some t>0)  

By (3.3.7) we can choose g4 and depending only on k and S[y-x[-2dm(y) such 
that if 0 < e < g4, then 

(3.3.8) Qm (X~(B (x ; e)) > 0 for some t > 0) 

>2(1-~k)  log IO~(y-x)ly-xl-2dm(y) 

where ~k--* 0 as k ~ oe. This completes the proof of (d). [] 

Proof of Theorem 1.3. If xr then the continuity of X t implies that 

(3.3.9) Q"(Xhits{x})=Q"(foralle>O3t>OsuchthatXt(B(x;e))>O), 

this follows from xCsupp(m) and Theorem 1.1, whose proof will be independent 
of this result. 
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Therefore if d < 3 and d(x, supp(m)) > 0, then by (3.2.17), and bounded conver- 
gence, 

Q'~(X hits {x})= 1 - e x p  { - 2 ( 4 - d ) ~ l y - x l - 2 d m ( y ) } .  

On the other hand if x~supp(m), and m({x})=0 then 

Qm (X hits {x}) > lira Qm~.o (X hits {x}) = 1 - exp { - 2 ( 4 -  d) ~ ] y -  x[- 2 d m (y)}. 
el.o 

If ~ly-xl-2dm(y)=+oe, then Qm(X hits {x})=l  and we are finished. If 
~ly-xJ-2dm(y)< + oe and 6>0 ,  then for any e > 0  

Qm(x~R([6, ~ ) ) ) < l - e x p { - 2 ( 4 - d )  ~ ly-x[-2dm(y)} 
B(x; ~)e 

+ O. . . . .  (x~(~")> o) 

since , , _  ,-x.~ 0-"~ ~ Q - Q . (cf. (1.1 a)). 
The result foffows since by (1.1 a) and (3.2.3)h (letting 0 T oo): 

{ - - 2 m ( ~ ( x ;  ~))}< 2m(B~x; ~)) ~0 as ~$0. Q . . . .  (Xa(IRa) > 0) = 1 - e x p  = - 

Finally if m({x}) > 0 note that 

pm(x hits {x}) > e'(PX~ hits {x})) 

= 1 - E m  (exp { - 2(4-- d) ~ lY- xl-  2 Xa(dy)}) 

(since E "~ X~({x}) = 0 we may apply the previous 
case with m = Xa a.s.). 

~ 1  as 5+0, 

the last by an elementary argument using weak continuity at t = 0. []  

Proof of Theorem 3.3. 

(a) Let 49R, uO(t, "), U~176 ") be as in Lemma 3.5. Then 

Em (exp [ - 0  i <q~R,X~>dsD=exp(-~u~ 

Letting 0 T oo, yields 

(3.3.12) Qm(X~(B(O; R)) > 0 for some s < t) 

= 1 - exp (-- ~ u ~ (t, x) d m (x)) < ~ u ~o (t, x) d m (x). 
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But by Lemma 3.5, if Ixl > r = e +  1, 

(3.3.13) u~176 <t)<12Po~ l> lx l - (R  + l)) 

= 12 Po ~ (]B1 l> Ix l -  (R + 1)~ 
1A )" 

For 6 > 0 there exists a c o n s t a n t  c3.6(d , 6) such that for r > 6 

(3.3.14) Po~ (IB11 > r) <= C z.6 (d, ~) ra- 2 e-~/2. 

Therefore if Ixl > R + 2 ,  and t>0 ,  there is a constant c3 .4 (d  , t) such that 

. [ , x l - - ( R + -  - ~ t +  1))2) (3.3.15) uOO(t,x)~=c3.4~( ~ 1)) a 2exp(  ( I x l  . 

If supp(m) = B(0; R + 2) c, then (a) follows from (3.3.12) and (3.3.15). 
(b) Let ~o_ ~o (t, x; R) (0 > 0) denote the solution to 

0~ ~ 1 
~ t  = (Aa~176 a(0)-0 

where 

o, Ixl~e 
0(x)--Ixl/e-1,  e__<lxl~2e. 

(1, 2R~[xl 

~~ x) is increasing in 0, t (of. Iscoe (1986a, Theorem 3.3) and (1988, Proposi- 
tion 3.15)) for each x; and by a maximum-principle argument similar to Lem- 
ma (3.0) (working on a domain: [0, T] • B(0; R -  6)) 

(3.3.16) ~~ x; R)<u(x; R) 

where u is the function of Lemma 3.6. Similarly to the proof of Lemma 3.5 
one can derive, for any 0 < RI < R: 

(3.3.17) ~~ O) < E ~ [1 (7~, < t) ~~ T~, B(T~,)) ] 

<u(el;  R) Po~ < t) (by 3.3.16) 

where T~,..=inf{t: ]B~] >R1}. 
As in part (a), and in analogy with (3.3.12) and (3.3.13) 

(3.3.18) q = Qa6o(Xs(B(O;e) c) > 0 for some s < t) 
< lim aft ~ (t, 0; R) 

0-*00 

< a. u(Ri; R) Po~ < t) (by 3.3.17)) 

<= 2a. u(R, ; R) Po~ (IBl l> R1/~t). 
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Assume l~t t>2 and R1/R> 1/2. Then R1/l~t>l and (3.3.14), (3.3.18), (3.2.26) 
v -  

and (3.2.27) yield (for some constant cl (d)), 

q<=clag-2(1-~)-2{g1~a-Zexp{-~alt} 

(R d-2 R2 

where 

g(c0= cd-2(1--e)  -2 exp {K(1--c~2)}, �89 1, K=-R2/(2t)>2 
~ 2[f l -  leiVP] 2 , fl---1--~ (1--o~2=(1 + ~) fi_<2fi). 

The quantity in square brackets is minimized by fl* = 1/K; so if R1/R = 1 -fi* > �89 
then g(R1/R)<(e2/2) (R/~/t)4; and we can choose %.5 so that 

q<=c3saR- \ f }  e x p  - . [ ]  

Proof of Corollary 3.4. Fix N > R + 2. Let {X,} be as in Theorem 1.7 but with 
m~, n in place of m. Then 

Q"~," (X~ (B (0; R)) > 0 for some s < t) 

= lim Q,4. ~ (X, (s) (B (0; R)) > 0 for some s < t) (Theorem 1.7) 
/,1 ---r O0  

=< lim c3.4 ~ ([x[--(R+l)) d-2 exp { ( Ix[ -  R -  1)2} din(x) 
n--'m n>lxl>N ]//tt 2t 

ex ( - I x l Z )  dm'x" <c3.6(d,R,t) ~ p ~ ( ~ f  (). [] 
Ixl > N 

Proof of Theorem 1.8. By Corollary 3.4 

P (X (t) (A c~ B (0; R)) = X,  (t) (A c~ B (0; R)) for all t < T and A e N (Rd)) 

=Qmg."(X(t)(B(O;R))=Oforallt<T)--+l as n--+ c~. 

Since the events on the left side above are increasing in n, the result follows. []  

4. A L ~ v y  M o d u l u s  for  B r o w n i a n  T r e e s  

K 

Fix # e N ,  m = # - 1  ~ 6x, sM}(IR a) and work with the system of branching Brow- 
i=0 

nian motions defined on (f2, d ,  pro) in Sect. 2. 
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In order to derive a one-sided modulus of continuity for the support of 
a super-Brownian motion, X~, we first derive a uniform modulus of continuity 
for {Nr fl~I} which is independent of kt. This latter result when used in 
conjunction with Theorem 2.3 will prove to be a powerful tool in the study 
of path properties of X. 

Notation. If 0 < e _ t, let 

I(t, e)= { ~ I :  7"~t-e,  ~fl..~ t such that 7 <fl and ~ A}, 

and let Z(t, e) denote the cardinality of I(t, e). 
Under Pu-1~~ j ~ # (1, Nj~ )) is a critical Galton-Watson process starting with 

one individual and with each individual giving birth to 0 or 2 offspring with 
equal probability. Classical results on branching processes (see Harris (1963, 
pp. 21-22) or (5.2), (5.3) below) therefore imply that for any t>0,  

(4.1) p(#,t)-PU-'~~ N,(U)) >O)<c4.,({t} # v  l) - '  
(4.2) lim #p(#, t )=2t -1  

~t---~ oo 

(4.3) lira P"-'~~ Nt~U))>x[(1, N,(U))>O)=e -2~/' for all x>0.  
/Z ---~ ~ )  

It is important to note that (as throughout this work) the constant c4.1 
do not depend on #. It is for this reason that we will sometimes explicitly 
denote the #-dependence of certain random variables. 

Lemma 4.1. I f  O<e<t,  then conditional on ~ _ ~ ,  Z(t, e) has a binomial (n, p) 
distribution, where n = # (1, Nt- ~) and p = p (#, {t}" {t - e}) (p (#, t) as in (4.1))). 

Proof 

where 

Z(t,~)= ~ I (NtL~:A) f (7  ), 

f (7)= l(3fl..~t, 7 < fl, NttJ ~ A). 

The independence of the {e ~} shows that conditional on ~_~,  {f(7): 7 ~ t - e ,  
NtL~ 4= A} are i.i.d, and are equal to one with probability p(#, { t}-  {t-e}). Note 
that #(1, Nt-~)= ~, I(N,L~=A), whence the result. [] 

?~t - -g  

Lemma 4.2. There is a c4.2 such that if 0 <= ~1 < ~2 <- t and c > O, then 

n"(sup {INtP_~,--NtP_~21: fl..~t, Nt~OeA} >ch(e2-el))  

_~ c4.2 m (JR a) c a - : ((log 1/(~2 - el)) v l) (a/:) - 1 (e2 - el) c2/2 (~1-1/x #). 

Proof The above probability equals 

( 4 . 4 )  Em(p~(sup{[N,L~I- NtL~:I: 7~I(t, el)} <=ch(~2-el)t#)) 

<Em(Z(t, el)) Po (IB11 > c((log l/e2 --e~) v 1)~/2). 
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H e r e  we  h a v e  u sed  the  E - m e a s u r a b i l i t y  of  Z( t ,  el) a n d  L e m m a  2.1 (b). L e m m a  4.1 
a n d  (4.1) s h o w  t h a t  

Em(Z(t,  el) ) < c4. l((({t} --  { t - -  ~1}) #) v 1) - l ~ E m ( ( 1 ,  N~_~,)) 
< Cl(Z~ -1 A #) m(~d) .  

P lug  this  in to  (4.4) a n d  use  the  s t a n d a r d  e s t i m a t e  

Po(lB11 > R) < c d d )  Ra-  2 e - R~/2 

to  c o m p l e t e  the  p roof .  [ ]  

Notation.  I f  0~(0,  1), u~(O, 1], t>O, c > 0  a n d  k ~ Z +  satisfies O k - l u < t ,  let 

Ak=Ak(lz ,  t,u,O,c)={CO: P,u P,. . sup  { IN~-0k , -N~-0~- iu l .  f l ~ t ,  Nf '~:# A} 

> c h ((O k-1 _ O k) u)} 

Bn = Bn (#, t, u, O, c) = U A k (#, t, u, 0, c). 
k > n , O  k -  l u < t  

L e m m a  4.3. Let  O, u, and t be as above and let c > 1/~. 

(a) There is a c4.3(u, 0) such that 

pm (B, (#, t, u, O, c)) < %. 3 (U, O) < m (JR d) c d - 2 n(d/2) - 1 O" (c2/2 - 1) 

(b) For each e > 0 there is an no (~, u, O) such that if  n > n o, t > 0 n u and 
og(~B,(#, t, u, O, c) then for  any t i n t  such that N f  =~ A, 

(4.4) INt a -  Nf_ 0n,[ < c(1 + e)(1 - 0)�89 - 0~) -1  h(uOn). 

Proof. T h e  p r e v i o u s  l e m m a  s h o w s  t h a t  

Pm(Ak) < c4.2 m ( ~  d) c ~ - 2 ( log(O-kU- 1 (0 - 1 _ 1) - l) V 1) a/2 - 1 

�9 o k ~ / 2 ( ( O  - 1 _ 1) u)~/20-ku- 1 

S u m  o v e r  k > n to  de r ive  (a). 
Le t  og~B,(#, t, u, O, c), f l ~ t ,  N~ + A a n d  a s s u m e  t > Onu. T h e n  

k = n + l  

<= c ~ ul/2 o(k- 1)/2 (1 - -  0) 1/2 (log(O 1 -k(1 - -  0 ) -  1 U-  1) V 1) 1/2 
k = n + l  

< c h(Onu)(1-0)1/2 %(u, 0), 
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where for n > nl (u, 0), 

. .(u, 0) 

= ~ 0 (k-1 -n)/2[((k-- 1)(log 1/0) +log((1 --O)u)-~)/(n log 1/0 + log  1/u)J ~/z 
k = n + l  

= L Oj/2 E((] + n )  log 1/0 + log ((1 - 0) u)- 1)/(n log 1/0 + log l/u)] 1/2. 
j = O  

By dominated convergence we have 

lim %(u, 0)=(1 --01/21--1. 

For any given e > 0  choose no(e, u, O)>nl(u, O) such that 
, ,(u, 0)<(1 +e)(1-0)~) -a if n>no. This gives (b). [] 

We can now use the above estimate and a well-known method of L6vy 
to obtain a modulus of continuity for the system of branching Brownian motions 
{NP}. 

Proposition 4.4. There are constants c4.4, Ca.5, c4.6 > 0, no ~ N and for each M ~ 7l + , 
a ;g+-valued random variable K(co, M, #) such that 

(4.5) 
(4.6) 

pm(K(M,#)>=n)<=c4.4Mm(IRd)2-" .... if n>no, and 

ifO<t--s<2-K(M'U),s, teEO, MJ, f l~t and N~a'U+A 

then 

Proof Let 

[Nt ~'u - N~'U[ _-< c4. 6 h ( t -  s). 

oo M 2  k 

C,(M, #)= U U Bk(#, i2-k, 1, 1/2, 3) 
k = n  i = 1  

K(M, #)=rain  {n" cnd~C,(M, #)} v no(l, 1, 1/2/, 

where min ~b = oe and no is as in Lemma 4.3. Lemma 4.3(a) implies that for 
n>no=no(1, 1, 1/2), 

pm( K ( M, #) > n) ~ Pro(C,- 11 

<= L M2kc4.3( 1, 1/2)m(]Rd) 3d-2k(a/2)-12-kT/2 
k = n - - 1  

<= cl MmOR a) n (a/21 - 1 2 - n 5 / 2  

< c4. 4 Mm(IR d) 2- ,c4.5. 
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Turning to (4.6), let O < t - s ~ 2  -K(M'u), s, t~[0, M] and f i~t  satisfy N~e~=A. 
Choose n > K (M, #) > n o such that 

(4.7) 2 - " - t  < t - s < 2 - " .  

Let i. ,j .6~+ ,j .-i .~{O, 1} and {i,,j, : / > n }  ~ {0, 1} satisfy 

and define 

l = n +  l t = n +  l 

k 

s.=i. 2-", t .=j. 2-", Sk=S.+ ~, it2 -l, 
/ = n + l  

k 

tk=t.+ ~ jZ2 -~ (k>n). 
/ = n + l  

If k >_ n > K (M, #), then 

M2 k 

o~e ~ Bk(t~ , i2 -k, 1, 1/2, 3) r 
i = 1  

and so Lemma 4.3 (b) implies 

Therefore 

sup IINY NY I. 7~i2-k, 2-k tJ i2-~-- ~i-l~2-~J. _~i2-k<=M, Ni~ k'i=A} 

_-< 6 ( V 2 -  1)- 1 h(2-k)_=c2 h(2-k). 

k = n + l  

<(J,-in)c2h(2-")+c2 ~ ikh(2-k)+jkh(2 -k) 
k = n + l  

<ca h(2-") 

<-]/~c 3 h(t-s)  (by(4.7)). 

This proves (4.6). [] 

The important part of the above theorem is that the upper bound in (4.5) 
does not depend on /z. This will allow us to let # ~ oo and obtain a L6vy 
modulus for S(Xt). First we refine the above result by finding the best possible 
value of c4.6 in (4.6). In addition, the fact that (1, Nt) hits zero in finite time 
allows us to remove the dependence on M in the above result. Here then is 
the main result of this section. 



(4.8) 

(4.9) 
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Theorem 4.5. I f  c > 2 there are constants c~.7 (c), c4.s (c) and c4.9(c ) and a random 
variable 6(o9, c, #) such that if # ~ N  and m~Mf~(lRa), then 

P"(3(c,#)<=p)<=C,.Tm(gU)p ~4.~ for 0=<p=<c4. 9. 

I f O < t - s < 6 ( o g ,  c,#), s, te[0,0e) ,  [ l~t  and NtP'U*A, 

INfl'"- Nf'~l < c h ( t -  s). 

In particular, if m,~ M}(#~]N-) satisfy sup {mu(~d): #~N}  < ~ ,  then 

(4.10) lim lim sup Pin-(sup {I~P,"-Nf'"l h(t-s)-l: 
p,~O /z ---> oo 

0 <  t--s<_p, s, t >=O, fl,~t, Nta:~ A} > c) = 0. 

Proof. Fix c>2 ,  # ~ N  and m~M~.. Let c1~(2, c), choose ~, Oe(O, 1) small enough 
so that 

c1(1 +e)(1-0)1/2(1 - - 0 � 8 9  - 1  ( C ,  

and then choose M1 ~ N  large enough so that 

e l M  1 < O, (4.11) 

and 

(4.12) 2 %6 (OM1)- 1/2 (log M1/log 0-1)1/2 + cl (1 + e)(1 - 0) 1/2 (1 - 0 ' ) -  1 < c. 

Note  that e, 0, ct and M 1 depend only on c. If M~TZ+, let 

M1 - 1 M1 

D.=D.(M,c ,#)= U U ~ U Bk(#,(i+p/MOOk, q/Ml,0,  ct), 
k=nO<-i<_O-kM p = O  q=l  

no(c)=max{no(e, q/M1, 0): q= 1, ..., M1} (no(e, u, 0) as in Lemma 4.3), 

J(o9, M,c,#)=min{n:o96D,(M,c,#)}Vno(c) (min tp = ~).  

If n > no (c), Lemma 4.3 (a) implies 

(4.13) P'~(J(M,c,#)>n)<Pm(D,_O 

< ~ ( I + 0 - k M )  M~ sup{c4 .3 (q /Mi ,0 ) :q= l , . . . ,  M1} m(Nfl) 
k=n--1 

. Ca1- 2 k(a/2)- 1 0k(c2/2 -- 1) ~ C2 (C) M m(Nfl) n (a/2 - 1)0,~c~/2 - 2) 

If K(M, #) is as in Proposition 4.4, let 

61 (09, M, c, #) = 0 J(~ ^ 2-K~'~ 
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(4.5) and (4.13) imply there are constants  c3(c), c4(c) and c5 (c) such that 

(4.14) P"( f l (m ,c ,# )<p)<c3(c )mrn(Na)p  c4(~) if O<p<c5(c). 

Suppose  coe(2, s, t e [0 ,  M ]  satisfy O<t-s<61(co ,  M, c, t~) and fl~--t is such 
that  NtP 4= A. Choose  n > J ( M ,  c, l~) such that 

(4.15) 0,+ 1 < t-s<= 0", 

O<_i<_O-"M and pE{0, . . . ,  Mz - 1} such that  

to=(i +(p/M1)) O"< t <(i +(p+ 1)/M1) 0", 

and finally qe{1,  ... ,  M1} so that  

(i + ((p - q - 1)/m t)) O" < s < (i + ( (p -  q)/M1)) O" = So < to. 

The existence of such a q follows from (4.11) and (4.15). Since 
( t -  to) v (So - s) < t - s < 2 -  K~t. v), 

(4.6) implies 

(4.16) INtP--N~I+[N~-Nf[ 

<= C4.6 (h (t - to) + h (So - s)) 

_-< 2c,.6 h(O"/MO 

-<__ 2c4.6 h(O ~+ 1)(M10)-f(log Ms O-"/log 0 -~ -  1)1/2 (use (4.11)) 

_-<2c4.6(M 10)- 1/2(log Ms~logO- ~)l/2h(t-s) (by (4.11), (4.15)). 

N o w  n>_J (M, c, #) implies co$D, and hence o96B,(#, to, q/M1, O, cl). L e m m a  4.3 
therefore implies (note that  n > J(M, c, #)> n o (~, q /Mt ,  0)) 

(4.17) I Ntao - N~[ _-< cl (1 + ~)(1 -- 0) 1/2 (1 - 01/2)- 1 h(to_ So). 

(4.16) and (4.17) give us 

IN, p - N f  [ <= [Nt ~ - Nfol + [Nf o -- N~] + [ N ~ -  Nf  ] 
< (2 C4. 6 (MI 0)-  1/2 (log Mr / log  0 -  1)1/2 

+ c~ (1 + e)(l - 0) 1/2 (1 - 0~) - 1) h ( t -  s) 

< c h ( t - s )  (by (4.12)). 

W e  have proved 

(4.18) If s, t e [ O , M ] , O < t - - s < b l ( o ) , M , c , # ) , f l ~ t  and N~P4:A, 

then I N a - N f l  < c h ( t - s ) .  

It remains to remove the dependency of  31 on M. Let 

To =inf{i :  (1,  N/v)  =0}  

Mo = [To/#] + 1 ~ N  ([x] is the integer par t  of x), 



/72 D.A. Dawson et al. 

and 

(~ ((.O, e, #)~~ ~1 ((D, M o  ((.o), c,/tA), 

where 61 (co, 0% c,/z) = 0. If s, t > O, 0 < t -  s < 5 (co, c, p), fl ~ t and Nf  + A, then 
t<To(co)/#<Mo(co), and therefore (4.18) shows that I N t a - N f l < c h ( t - s ) .  This 
proves (4.9). 

Assume 0 < p < c5 (c), and 

(4.19) [ c4(c)/2 < 1/4, 

and let Mz=[p-C4(c)/2]. An  examination of the definition of ~l(co, M, c, #), 
shows it is monotone non-increasing in M. Therefore 

Pm(6(c, #) <_ p) < P"(Mo > M2) + P"  (61 (co, M2, c,/z) < p) 

< P"  (T o >/~ (M 2 - 1 )) + c 3 (c) M2 m OR a) pC4 (c) (by (4.14)) 

<= c4.1 (#m(IRa))(#(M2 - 1))-1 + c3 (c) m(lR a) p~4(c)/2 (by (4.1)) 

__4 (2c4.1 + c3 (e)) re(N J) pC4(~)/2 (by (4.19)). 

This establishes (4.8) with c4.s = c4(c)/2 and c4.~ = 2c4.1+ c3 (c). (4.10) is immedi- 
ate from (4.8) and (4.9). [] 

The next result shows Theorem, 4.5 and in particular (4.10) is false if c<2 .  

Theorem 4.6. I f  c < 2, and m, ~ M~" (n ~N) satisfy inf{m,(~a): r/~N} = K > 0, then 

lim lim infPm,'2"(sup {[Nfi-2", - N~'_2~)2-,1 h(2-")-  1: 
n-+oO ?/--~ cX) 

1 <j<2",  f l ~ j 2 - " ,  N f2 - ,+A}  > e ) =  1. 

Proof Fix c < 2, # = 2" and 1 < n < t/(n, t/eN), the above probability is decreased 
if m, is replaced by [K#J # - l  6o. To simplify the notation we may assume K = 1 
and hence m, = 6o. Let 

I (t)= I (t, 0)= {fl..~ t: NPt :~ A }, Z( t )= Z(t, 0) = card I (t). 

Let A1 . . . .  , A M be the partition of I2 obtained by specifying the finite number 
of possible values of (I(j2-"): j =  1, 2, ..., 2"). Our underlying measure is P(~') 
where x~=0 if 0=<i<p and x i = A  otherwise, so outside of a null set A, there 
are only a finite number of possible values for the above vector of sets. To 
obtain a partition of all of (2 we may simply include A in A1, say. Clearly 
Ai ~ 8. Fix 

A~ = {co: I ( j 2 - ' ) =  {fl~'~: k<=N~ ~ =Z( j2-" )}  for 1 =<j< 2"} (Nj~ 

let 

{7 "~ (J - 1) 2 - ": 7 < fl~'" for some k < Nj~ = {y~'": k < Nj},}, 

and define S(7~'")~ {1, ..., Nj~ by 

{ill'": l~ S (7~'")} = {fli'": Y~'" < ill'"}. 
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Let 

(4.20) 

B = B (n, ~) 

= {co: sup { I N f 2 _ . - ~ _  ~)z--I h(2-") -~: 1 __<j < 2", f l~j2-",  Nfz-.+-A} <c}. 

On Ai, NOk"(t)=l~ak"(t) for t<j2-"  and the latter processes are independent 
of g. Therefore on A~, 

p~o (Big) = p*o (sup {[/~r (j 2-") - ~a~'" ((j _ 1) 2-")1: k ____ Nj~ 1 < j  < 2-"} 

~ch(2-"))  

= P~~ { Wd'": 1 _< k < ~ . ,  1 < j < 2  "} <ch(2 -")), 

where 
Wk ~'" - sup {INrai'" (j 2 -") _ Nai'" ( ( j_  1) 2-")1:/e S (7~'")}. 

The sets 

I~'"= {fll'"li: leS(7#"), ( j -1 )  2-"<=i/# <j2-"}, 1<j<2" ,  l <<_k <_N~,,, 

are mutually disjoint. Therefore the a-fields 

ff~'" = a(B~:/~eI~'"), 1 _<j < 2", 1 __< k =< Nj1. 

are mutually independent, l/Vk J'" is ff~'" measurable, so (4.20) implies that on 
Ai, 

2 n N l ,  n 

Pa~ I ]  1-[ Pn~ �9 
j = l k = l  

Each {bT~:s < ([fll + 1)/#} is a P~~ motion. Therefore on Ai, 
2 ~ 

P~~ <c(n log 2)1/2)j~1 ~'" 
2 ~ 

__ (1 - c ~ d -  2 (n l o g  2) ( .2~-  1 2 - " ~ / 2 ) ~  ~?.. 

On Ai, Nil, = Z ( j 2 - " ,  2-"), so we have proven 

(4.21) 

(4.22) 

Let 

and 

2 n 

e, = c 1 ca- 2 (n log 2) el2-12-" c212. 

q(/~, n)= #p(#, 2-") 

A,(j) = q(#, n)(1 - e-  2"-)(2e,)- 1 (1, N J- ,Iz--) ,J  ~N. 

Take expected values in (4.21) and use H61der's inequality to see 
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(4.23) P~176 ~~ exp --2e,  ~ Z ( j 2 - " , 2 - " ) - A . ( j )  
j = l  

�9 E 6~ exp --2e,, Z A,,(j)~) . 
j = l  

F o r j e N ,  Lemma 4.1 shows that 

E~o(exp { - 2 e ,  Z ( j2 - " ,  2-")}[ d u _  2)2-.) 
=(1 - p ( g ,  2-")(1 -e-2~")) € 

=<exp { -  (1 - e  -2~-) q(#, n)(1, N(j_ 1)2_,)} 

=exp{-2e. A.U)}. 

The first factor in (4.23) is therefore bounded by 1. (4.2) shows that 
lim q(#, n)=21+~. Therefore we may let q--* oo in (4.23) and use Theorem 2.2 

/t--~ oO 

to get 

(4.24) lim sup pOo. 2, (B (n, 27)) 
~ /~0  

<E~  ~ exp - 2 " + 1 ( 1 - e  -z'") 2 (1, X(j-1)2- . )~)  �9 
j = l  

The continuity of X, shows 

2 n 1 

lim 2-"  ~ (1, X(j_~)2-.>= ~ (1, X~>ds>O 
n ~ o o  j = l  0 

Q~o-a.s. 

By (4.22) and the choice of c we have 

lira 22"+ l (1 - e -Z ' - )  = +oo.  
n ~ o o  

The right side of (4.24) therefore approaches zero as n ~ oo and the result fol- 
lows. []  

In order to use Theorem 4.5 to obtain a L6vy modulus for S(X,) we first 
interpret it in terms of the nonstandard model used to construct X in Theo- 
rem 2.3. For  the rest of this section we work in the setting of that result and 
assume the hypotheses of Theorem2.3. Therefore #=27  where q ~ * N - N ,  
m e M~ (lRa), and m r ~ *Mf~ 0R d) satisfies s tM (mr) = m. To simplify notation we write 
P and *P for pm,, and *P"", respectively. 

Theorem 4.7. (a) For P-a.a. co and each c > 2, 

(4.25) There is a fi(a~, c)e(0, oo) such that 

/ f 0 <  t - s <  6, s, te*[0,  oo]), t i n t  and N f  # A, then [Nfl--Nf[ <=ch(t--s). 
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(b) For P-a.a. o9 and each c < 2, (4.25) is false. 

Proof (a) is immediate from Theorem 4.5 and the Transfer Principle. 
(b) The probability in question is unaltered if m, is replaced with mu(*~, d) 6o. 

The result now follows easily from Theorem4.6  by taking m~=K6 o in that 
theorem where 0 < K < m~(*iR~), K a dyadic rational. [ ]  

This is an exact modulus of continuity on the internal nonstandard process 
N (~) whose standard part is a super-Brownian motion, X. The result uses the 
notion of ancestry which exists in the richer setting of N (~) but  disappears when 
the pass to X. As a result it is not clear how to transfer the full power of 
Theorem 4.7 into a theorem concerning only X although Theorem 1.1 comes 
close. Nonetheless we shall see that Theorem 4.7 used in conjunction with Theo- 
rem 2.3, will help in the derivation of several path properties of X. 

We now will use Theorem 4.7(a) to prove Theorem 1.1. To do this we must 
relate S(Xot) to S(N,). 

Lemma 4.8. For each nearstandard te*[0,  oo) such that ~ 

S(Xot)= st(S(Nt))P-a.s. 

Proof s t(S(Nt)) is closed by Albeverio et al. (1986, Prop. 2.1.8) and since it clearly 
supports X(~ L(N(t))(s t - l ( - ) ) ,  we see that 

(4.26) S(XoOcst(S(Nt))VtEns(*[O, oo)) a.s. 

Conversely fix t E n s (* [0, m)) and for 7 "~ s < t let 

~(~)=u -1 Z aNe. 
#~t,#>~ 

Then for each 2; ~ t - 2 -"  and 2-"  < t, 

Therefore 

o.  p (Nt (7) (.iRd) <= 8 -" [ y ~ I (t, 2 -  ")) 

= o*pao/u ((1, N2 -.> <= 8 -"l (1,  N2 -.> > O) 

= l - e  - 2(~-") (by (4.3)). 

P ( N  (7) (*IRa) < 8 -" 37  a I (t, 2 - ")) 

< o~ *P(N(7)(*IRa)<8-"Iy~I(t, 2-" ) )*P(yeI ( t ,  2-")) 
~ t - - 2 - n  

_-< 2(4-") ~ 2-")) (by the above) 

= 2 2 - .  m ( R d ) ,  

where we have used Lemma 4.1 and (4.2) in the last. The Borel-Cantelli lemma 
implies 

(4.27) For  a.a. o9, for large enough n e N ,  Nt(7)(*IRa) > 8-"  for all ?eI(t, 2-"). 
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Fix co outside a null set such that the conclusions of (4.27) and Theorem 4.7(a) 
hold. Choose N(co)~N such that (4.27) holds for n>N(co) and 6(co, 3)<2 -N 
(~(co, c) as in Theorem 4.7(a)). Let t i n t  satisfy Ntr and let 7~I(t, 2-") satisfy 
7<ft. If n>N(co), 

Nt(*B(NP; 6h(2-")))>Nt(v)(*B(NtLz-,; 3h(2-"))) (because 6(co, 3)<2-") 

=Nt(v)(*R a) (same reason) 

> 8-" (by (4.27)). 

Therefore Xot(B(~ 7h(2-")))>8-" for n>N(co) and this implies ~ 0 
and hence st(S(Nt))=S(Xo~). [] 

Notation. If r > 0 and B ~ ( ] R  ~) let 

Tr(B) = inf{t > r: X,(B) = 0}. 

Lemma 4.9. For P-a.a. co, if s, t~ns(*[O, 0o)) and 7 " t  satisfy 

0 < ~ 1 7 6  and Nt~+A, then ~ 

Proof Fix r > 0  and B=B(y; ~). We claim that 

(4.28) w.p. 136(co)>0 suchthat Xt(B(y; ~/2))=0 u T~(B)+6]. 

By conditioning with respect to ~ ( B )  and using the strong Markov property 
it suffices to show that if 

U=inf{t  > 0: X~(B(y; ~/2)) > 0} 

and m(B(y; e))=0 then P " ( U > 0 ) = I .  Take rnUe*Mv(~ a) such that mU(*B(y; 
5))=0 and m= L(m")(st- l( )). Then Pro(U>0)--1 follows immediately from 
Theorem 4.7(a) and the claim is proved. 

Fix co outside a P-null set such that 
(i) (4.28) holds for all r e ~  ~~ e~Q>o and y e Q  d. 

(ii) S(X~)=st(S(N~)) for all t ~  >~ (Lemma 4.8). 
(iii) The conclusion of Theorem 4.7(a) holds. 

Assume s, t and ~ satisfy the hypotheses of the lemma but ~162 Choose 
y~Qa and e ~  >~ such that [~ and if B=B(y; e) then X~(B)=0. 
By (iii) 36(co)e(0, s ̂  (t--s)) such that 

~ Vue*[s-6, s+6], 

and therefore (ii) implies 

( 4 . 2 9 )  X,(B(y;e/2))>O Vue(s-f,s+f)c~ff~. 

Let r ~ ( s -  6, s) c~ Q. Then T~ (B) ~ It, s] because X~ (B) = 0. (i) implies 

(4.30) 36'(co)>0 suchthat X,(B(y;e/2))=O 
Vu~[T~(B), ~(B) +,~'3 ~(s- ,~ ,  s +,~). 
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(4.29) and (4.30) lead to a contradiction. [] 

Proof of Theorem 1.1. Fix co outside a P-null set such that (4.26) holds, and 
the conclusions of Lemma 4.9 and Theorem 4.7(a) hold. Let c>2 ,  and assume 
s, t > 0  satisfy O<t-s<6(o), e) where 6 is as in (4.25). If xeS(X,) then by (4.26) 
qT~ t  such that x = ~  The choice of co implies ~ and [~176 
<ch(t-s). Hence x=~ To handle s = 0  we may, and shall, 
assume m ~ is chosen so that S(Xo)=st(S(No)). The argument now proceeds 
as above except instead of using Lemma 4.9, note that ~ by the choice 
of mC 

We have proven the required result on (*0, ~ ,  P). In order to transfer 
the result onto path space we must show that 

(4.31) 9 { r176 
m = l  n 1 

_-< l_~n S (o~,) ~ S (o~) ~ + ~- ') h~ - , }  

is Borel measurable. Tedious routine arguments in fact show the set in parenthe- 
sis in (4.31) is a G~. We leave the details to the interested reader. [] 

Proof of Theorem 1.2. Let m, and X,  (neN) be as in Theorem 1.8 but with 
meMF. Let _~,=X--X, and r h , = m - m , ,  so that 37, has law Q'~". By (3.2.3) 
and (3.2.3)h (letting 0 T oo), 

P ()~. (t) (~a) > 0) =< 2 m (B (0, n) c) t -  1 ~ 0 as n -~ ~ .  

It follows that for a.a. co and any t>03N(co,  t )~N such that 2~,(s)=0 for all 
s >  t and n >N.  Therefore S(X(s))= S(XN(s)) for all s >  t and the latter is a com- 
pact set for all s by Theorem 1.1 and the compactness of S(XN(O)). It follows 
that for a.a. co, S(X,) is compact for all t>0 .  

If co is fixed so that X,(co) is weakly continuous and x~S(Xt), then lim d(x, 
S--~t 

S(X~)) = 0 by the weak continuity. A compactness argument proves that 

(4.32) lim Pl (S(Xt),  S(Xs))  = O. 
$--+t 

Theorem 1.1 implies that if c > 2  and O<s-t<6(co, c), then px(S(Xs), S(Xt)) 
<ch(t-s). Therefore lim p(S(Xs), S(X~))=0 for all t > 0  a.s. [] 

sJ.t  

By using Theorems 1.7 and 1.8 it is easy to prove a localized version of 
Theorem 1.1 for infinite initial measures in M~,pflU). 

Theorem 4.10. Let m~M~xo(rlld). For Qm-a.a. co and all R, 7">0, c > 2  there is 
a 6(09, c, R, T ) > 0  such that if s, t~[0, T] and O<t-s<6, then 

S(Xt) c~ B(0; R) ~ S(Xs) cht~-s). 
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Proof Let (O, i f ,  P), X and X,  be as in Theorem 1.7. By Theorems 1.1, 1.7 
and 1.8 we may, and shall, fix co outside a P-null set such that 

(4.33) for any h e n  and c > 2 there is a 6,(co, c) > 0 such that 

if 0 < t -  s < 3, (co, c) then S (X, (t)) = S (X, (s)) oh('- s), 

and 

(4.34) for any R, T> 0 there is an N(R, T, co)eN such that 

X (t) (B (0; R)) = X,  (t)(B (0; R)) for t__< Tand n > N(R, T, co). 

Let 6(co, c, R, T)=6U(R,T,~)(co, C), and suppose s, te l0 ,  7"] satisfy O<t--s< 
6(co, c, R, T) and xeS(Xt)nB(O; R). (4.34) implies xeS(XmR, T)(t)) and hence 
(4.33) implies 

X e S ( X  N(R ,  T) (S)) c h (t - s) C S ( X  ( s ) )  c h (t - s). 

Finally the measurability result needed to transfer the result to path space 
is again left for the reader. []  

Remark. With a bit more work one can easily extend the nonstandard construc- 
tion of X described in Sect. 1 to the case where Xo=meMexp(Na). It is then 
not hard to prove a localized version of Theorem 4.7(a), analogous to the pre- 
vious result. We leave the details to the interested reader because in practice 
sample path properties for X with an infinite initial measure in Mexp(N a) may 
be readily derived from the corresponding property for a finite initial measure 
by using Theorems 1.7 and 1.8 as in the above argument. 

5. The Exact Hausdorff Measure of the Range of X 

Consider first the derivation of the upper bound of the Hausdorff  measure 
of/~(r,  s) in Theorem 1.4. Our basic approach is reminiscent of that used by 
Taylor (1964) to establish the upper bound of the Hausdorff  measure of planar 
Brownian motion. The infinite-dimensional setting of our problem, however, 
leads to considerable complications. 

d > 4  is fixed throughout this section and ~bl(x)=x41og+log+(1/x), as in 
Sect. 1. 

- 2 - " / 2  i = 2  "+1 , b = 2 - J - .  Notation. a n - -  , an 

A, is the set of closed d-dimensional cubes of side length 2 -"/2, centred 
at a point in {xl, ..., Xd)ERd: xi=(ni+ei)2 -"/2, ni~Z, el---0 or 1/2}. 

Let c5.1 = po ([B2 [ < 1/2)/24. 

Definition. C~Aj, is #-bad (or bad, if there is no ambiguity) at t~ [5a2 ,  c~) 
iff Nt(C) > 0 and 

NstU)(cvak)d2tU)(s)<:cs.1 ~lla(ak) for 2"_<k<2"+a-n .  
[ t -  5a~n,t] 

C~A~. is/z-good at t iffit is not #-bad at t and Nt(C)>0. 
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Dependence on # e N  and the initial measure meM} will be suppressed in 
this section wherever possible. In particular we write 5/, for N~ (") and P and 
E for P" and E". 

Notation. If 7eI, 7~t ,  a>0,  and k e n  satisfy k/#<4a2<tT[/#, let 

Yt"k(a)= # -2 ~ ~ l([N~--gfl<-a), 
a2 <I/lt< 2a 2 f l~{t}--k/ l t  + l/#=_s 

a ( f l ; r )=k  

V(a) = E Y?'k(a), 
2a2 < k / # < 4 a  2 

z~'k(a)=# -2 ~ Z I(Nt'+A, Nf+-A). 
aZ <l/ t t< 2a  e f l ~ t - k / # + I / t t = _ s  

,~(#;~,)=k 

2t~'k(a) = # -1 ~ I(NJ:~A,Nf*A). 
fl ~ t -- k/# + llta 2]/# =-- s 

a(#;~) =k 

In the following result recall the notation 6(co, c, #) from Theorem 4.5, and 
that h(t)=(t((log 1/t)v 1)) 3. 

Lemma5.1. Assume CeAi. is bad at te[5aZ, oo), 2b,<6(co, 3, #) and j e N  
satisfies te [j b,, (j + 1)b,). Then there is a y eI(jb,, b,) such that Nd_ 1 ) b n e C  3h(2bn)  

and 
Yd-1)b,(ak)<Cs.10t(ak) for 2"<-k_<2 " + l - n .  

Proof. Assume the above hypotheses. Choose t int  such that NteeC and let 
?=f l [ [# ( j -1 )b , ] .  Then 7eI(jb,, b,) and the condition on 6(co, 3, #) implies 
I t - ( j -  1) b,] < 6(c9, 3, #) and therefore 

[Nt}_l)b-NtP[<3h(2b,)<6ag whenever k < 2 " + l - n .  
Therefore 

B(N(~_t)b,;ak)cB(Nfl;7ak)CC 7"k for k<2"+~--n. 

The fact that C is bad at t implies 

N~(B(N(}-t)b,;ak))d2(s)<cs.1 01(ak) for 2"<<_k<<_2"+1-n 
Et- 5a~.,q 

The result follows on noting that the left side of the above exceeds ~ _  X)b. (ak) 
for k>2". [] 

The next lemma is a slight modification of Lemma 5.1 of Perkins (1988 a). 

Lemma 5.2. Assume 7~t, a>0,  keN,  k/#<4a2 <17[/#. Then on {tNt~-N(~}_k/u] 
<a/2} (e J~(y)), 

P(Ytr'k(a) > 12c5.~ zI'k(a)[~(y) V g)> 12C5.1. 

Proof. Choose ~, t, a, k as above, 

{fll:i<M~}c{fl~t-k/#+l/#:cr(fl;7)=k}, for aa<=I/#<_2a 2, 
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and let 

A =~co: Ndq=A, ]N,~--N(~}_k/~l<=a/2, {fl~: i<_Ml} 
a(fl; v)=k, Nt~_k/,+~,,#:A} for a2<I/p<2a2~ E~(V) v ~. { a ~  t -  k / .  + l/i, : 

On A we have 

E(Y,~'k(a) [ ~ (])) v e)  
M t  

=,-z  ~ y~ p(iN?_N{~l_k/~+,.l<al~(~)vo~ ) 
a2 <~I/t~<=2a 2 i =  1 

N ~ ~ y =/~-z ~ MtPd , ,-k,,  N,(IB,/,I<a) (Lemma2.i(e))  
a 2 < l/lt < 2 a  2 

> Z~t,k(a) Po~ < 1/2). 

7 In the last we have used the fact that IN{t~_k/~,-Nt J<a/2 on A. Let po=P~ 
< 1/2). Therefore on 

B = (INd - Nt~}_k/.[ < a/2} e~(7), 
we have 

E ( Yd 'k (a)[ ~ (V) v 6 ~) > Po Z~ 'k (a). 

If 
q = P(Yt~'k(a) > (po/2) Z~"~(a) l ~  (Y) v ~), 

this implies that on B, 

(1 -- q)(po/2) Z~t "k (a) + q Zr~ "k(a) >= po Z~'k (a)~ q > po/2. 

(If z~'a(a)=0 the left side is one.) Recalling that 12cs.l=po/2, we get the 
result. [ ]  

Notation. If ?~1 and i~{O . . . . .  t~'l}, let 

St'i= {fl~I: r 7)= i--> I~1-Ifll}. 

The fact that r 7) > b' l -  Ifll implies that 

(5.1) S:',~m{~]k:O<_k<_l~,]}=O for each 0<i<1~1. 

We recall some well-known limit theorems for branching processes from 
Harris (1963, p. 21-22). Let {Z~ : n=0 ,  1, 2 . . . .  } be a Galton-Watson branching 
process such that Z o =  1 and P(Zt = 0 ) = P ( Z ~  = 2 ) =  1/2. Then 

(5.2) lim nP(Z~>O)=2 
~ - + o 0  

(5.3) lim P(Z,/n>zlZ">O)=e-~,z>_O. 
t~ ---roo 
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Lemma 5.3. There are c5.2, c5, 3 and, if 0 < a < c 5 . 2 ,  there is a /~5.~(a)eN such 
that if # >  #~.~(a), then on {Nt~# A}, 

P(Y~'(a)>cs.x 0~(a)l~(V)) 

>cs.3 a-Z(log 1/a) -~ 
[202,4a 2) 

1 (I N~ r - N ~ _ ,  [ < a/2) d 2 (s), 

whenever V ~ t and 4 a 2 <  Ivl/~. 

Proof. Let # e N ,  V ~ t and assume 0 < a < e-e, 4 a 2 <  Iv I/u. Let 

ko (co) = rain {k > 2 # a2: 2['k(a) > 0}. 

On {N~#A}, one has 

(5.3) P(Y~'(a)>cs.t ~kl (a)[~(y)) 

> Y', P(ko=k,  Y~"k(a)> CSA IPl (a)l~'(7)) 
21~a2 <_k < 4tta 2 

> ~, I ( IN]-N~-u/uI<a/2)  
21ta2 < k  <41ta 2 

�9 E(1 (ko = k, zI'k(a) > ~ka (a)/12) 

�9 P(Y~"~(a) > 12c5.t Z~'k(a) lo~(V) v 6~ (V)) 

>12c5.1 ~ l ( IN'--N~-k/ul<a/2)  
2 #a2 < k < 4,ua 2 

�9 P (Z~'~(a) = 0 for all 2 # a 2 _.6< i < k, z~'k (a) > $~ (a)/12[~ (V)), 

where we have used Lemma 5.2 in the last. Z~'~(a) and Z~a(a) are both 
(~) v f# (S r'~)-measurable for 0 < i < 4 a 2 #. The sets {S r'~: 0 < i < IV I} are mutually 

disjoint and are disjoint from {?lk: 0 ~ k < l v l }  (by (5.1)). Therefore the a-fields 

~(s , , 0 ) ,  . . . ,  e(s , . t ,~) ,  ~- (v)  

are mutually independent�9 It follows that {Z~a(a): 0 ___ i < k} u {z~'k(a)} are mutu- 
ally conditionally independent given ~ (7) for k < 4p a 2 and that the conditional 
distribution of each of these random variables given o~ (V), equals their condition- 
al distribution given the smaller a-field ~I(V). Therefore on {Ntr#A}, (5.3) is 
bounded below by 

k--1 

(5.4) 12c5.1 ~, l([Nt'--N~-k/,l<----a/2) Iq P(2~'~(a)=OIN~ ~4:A) 
21~aZ<=k<41~a 2 i = [2/~a 2 ] 

. P(Z~'R(a)> r (a)/12 ]Nt~ 4: A). 

If k~ [2pa  2, 4 # a  2) is fixed then under P(-I N~ r 4= A) 

Z,= Z I (Nf  * A , N ' * A )  
f l ~ { t } + ( l - - k +  1)/#=_s 

a(p;~,)=k 

I=0 ,1  . . . .  
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is equal  in law to the Ga l ton -Wat son  process which satisfies (5.2) and (5.3). 
Therefore  

k - 1  

(5.5) ~[ P(2f '~(a)=OIN?#A)P(Z~'~(a)>4q(a) / lZIN?#A) 
i = [ P / ~ a  2]  

>P(Z[~a2~_l=o)k-[2ua2JP(~ -2 ~ Z~>~(a) /12)  
/ z a  2 -< l + 1 --< 2 , u a  2 

> P (Ztua2l- 1 ---- 0) ~- ~2 ua21 p ( rain (Zl/# a2) 
1 - ( , u a 2 )  - 1 < l ( , u a 2 )  - 1 --<2 - -  ( , u a 2 )  - 1 

=> (log log 1/a)/lO [Ztua~ 1_ I/P a2 >= (log log 1/a)/5) 

�9 P (Ztua~ ]-  a/kt a 2 => (log log 1/a)/5). 

In the last we require # a  2 sufficiently large so that  [#a2]/pa2 >= 5/6. By (5.2) 
and (5.3) there is a #1 e N  such that  if #a2____ #~, then (5.5) is greater  than  

(5.6) (1 -- 3/# a 2 )  k - [2 # a 2] exp { -- (log log 1/a)/2} (It a 2 )  - 1 

�9 P ( min Zt/# a 2 > (log log 1/a)/lO [ 
1 - -  ( /~a  2)  - 1 -< 1 (3t a 2 )  - 1 -< 2 - -  ( /~a  2 )  - 1 

"Z[t~a2]- a -- [k t a2 (log log 1/a)/5]). 

N o w  Feller showed that  Ztmr/N converges weakly as N ~  ~ (in D([0, c~), IR)) 
to the diffusion with genera tor  A f ( x ) = x f " ( x ) / 2  (see Ethier  and Kur t z  (1986, 
p. 388)). This, together  with well-known estimates for  this diffusion, al low one 
to easily est imate the condi t ional  probabi l i ty  in (5.6). The result we need is 
L e m m a  4.1(a) of  Perkins (1988a) and shows that  there are c5.2 and # s . l ( a ) e N  
such that  if kt > #5.1 (a), 0 < a < c s.~, and k e [2 # a z, 4#  a2), (5.6) is greater  than  

e -  8 (log 1/a)-~(#a 2)- 1 (1/2). 

Combine  this est imate with (5.3)>(5.4) and (5.5)>(5.6) and take c5. 2 < e  -~ and 
# 5 . i ( a ) > # l  to conclude that  i f 0 < a < c s .  2 and # > / t s . l ( a  ), then on {N~+ A}, 

P(Yt~(a)>cs.1 ~k~ (a) [~(y))  

> 12c5.1(e-8/2)(log 1/a)-~a -2 l ([Ntr-N~-~l<a/2)dA(s)  �9 [] 
[ 2 a 2 , 4 a  2 )  

Notation. B(u) = B(e u) e -~/2 

/3 is a s ta t ionary Orns te in-Uhlenbeck process under  Po ~ 

Remark. To avoid measurabi l i ty  problems we will use pm to also denote  the 
associated Cara th6odory  outer  measure  in L e m m a  5.4 and Propos i t ion  5.6 
below�9 

L e m m a  5.4. There are qs.1 : (1, oo) x N 2 -~ [0, oo), cs.4, and for each L >  1 an 
n s. 1 (L)e N and a c 5.5 (L) such that 

(i) lira ~15.1(L, n, #)=O for all L >  1, ne]N, 
/.t -'~ o0 
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(ii) pm(c bad at some t e [ L  -1, L], 2b,,<a(m, 3, #)) 
< m (p d) c5.s (L) 2-  2.(a- 4) 2,die E o (exp { - c s.4 2-"/2 

2nlog2/2 

l (IB, l < l /4) du} ) + (m(IRa) + l ) rls.l (L, n, #) 
0 

whenever C ~ Aj., n > ns. 1 (L), m ~ M~. 

Proof. Fix L > I .  Choose n large enough (n>ns.l(L)) so that a2.<c5.2 and 
12a2.<(2L) - t ,  let # e N  satisfy #>max{#5.1(ak): 2"<-k<2"+a--n}v(2L).  Let 

K 

m = #  - ~ ~, 6~,eM}. Lemma 5.1 implies that if C~Aj.  and C'=C ah(2b"), then 
f=0  

(5.7) P~ (C is bad at some t e [L- ~, L], 2 b, < 6 (m, 3, #)) 

<-- 2 Z E"(l(N~-l ,b .eC' ,  Yd-~)b.(ak) 
L-t<(j+l)bn<=L+bn ),~ (j-- 1)bn 

<-_c5,1 ~(ak)  for 2"_< k_< 2 "+ ~ - n )  

�9 P~ ( N ~ . ,  A for some/~ ~jb. ,  [~ > ~ld~- ~)). 

We have used the sgcmeasurability of Y](a). By making # larger, depending 
only on n (say #>#1(n)) we may use (5.2) and assume the last conditional 
probability on the right side of (5.7) is less than (3/b,#). If 

& =  U s',', ~ = ~ ( s o  
2<" 2 2ak=z/ll < 4ak 

2 2 then Y~i-1)b.(ak) is ~-(7)Vfqk-measurable. Note that 4ak =2ak-1.  Therefore 
$2 . . . . .  , $2.+,- , ,  {TIj: 0<j<17[} are disjoint (see (5.1)) and hence 

~ > ,  . . . ,  ~= . . . .  ,, g ( ~ )  

are mutually independent. It follows that { Y(~_ 1) b n (ak) : 2" < k < 2" + ~ -- n} are con- 
ditionally independent given ~,~(~). (5.7) is therefore bounded by 

(5.8) (3/b, #) ~ Em(l(N~j_ Db, e C  ' ) 
L- 1 < U +  1)bn <=L+b. ~ ( j -  1)bn 

l-[ (1--P(Y~'j-t)b.(ak)>Cs.~ ~Ot (ak)l ~(y)))). 
2n<k< 2n+ l--n 

The initial assumptions on n and # allow us to apply Lemma 5.3 and conclude 
that the product in (5.8) is less than or equal to 

f 2n+~-n t exp - c5.3 a[2(l~ l/ak) ~ S l(IN~-l)b.-Nb-l)b.>sl<=ad2)d'~(s) 
k= 2 n [2a~,4ak 2) 

2-"/2 < e x p {  - c s . 4  I s-*l( lN~-l)b.--N~-,)b,a- , l<s~/4)d2(s)}  �9 
[2az2~+ 1 -n,4a~n) 
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Therefore (5.8) is bounded by 

2 
L -  i < ( j +  1)b,~<L+bn 

K 

(3/b.#) ~ ~ E6~JU(l(Nb_~)beC ') 
i = 0  7 ~ ( j -  1)bn 

yO =~r 

�9 - -  ~ < �89 "exp{--c542-n/z I s-ll(IN~_l)b. N~(j_l)b.?_sl=S /4)d2(s)}) 
[21 + n - 2  n+ 1 2 2 - 2 n  ) 

K 

=<(3/b.) Z #-1 Z E~ 
L -  1 < ( j +  1)bn<L+bn i = 0  

�9 exp{--cs.4 2-"/2 ~ s-ll([Us+,/ul<s~/4)d2(s)}) 
[21 + n - 2  rt§ 1 , 2 2 -  2n ) 

(Lemma 2.1 (b) and time reversal). 

As # ~ 0 %  t h e  ith summand converges to 

2_n/2 2 2 - 2 n  

E ~ l(Bj_l)b~C'-xi)exp {-c5.4 
21 +n_2n+ i 

s- a 1 (IBM ~ s~/4) ds}). 

For each n, it is easy to see the convergence is uniform in xiEN, CeAj. and 
j + l e [ L - l b ,  -1, Lb~-l+l] .  Hence there is an ql(L, n, #) such that lim q~(L, 

/~ --+ aO 

n, #)= 0 and (5.7) is bounded by 

(5.9) 3/b, ~ S(E~ 
L -  1 < ( j +  1)bn<L+bn 

s}) )) �9 exp{--Cs.42 -n/2 ~ s-ll(lB~[<s~/4)d + r/l(L, n, # dm(x). 
2 1 + n ~ 2 n + l  

If ( j -1 )b ,  = r is fixed the expected value in (5.9) equals 

f ( -  2 n + 2 )  l~  
E ~ l(/](log r)E(C'-x) r -~) exp -c5 .42  -n/2 I 

( - - 2 n +  1 + n +  1) tog2 

--E ~ exp cs.4 I l(IBul<l/4) du 
( - -2n+  1 + n +  1) log2 

�9 Po~ (/](log r)e(C'--x) r-~[/3((-- 2" + 2) log 2))) 

<c2(L)(2-2"+6h(2b,))dE ~ exp -c5 .42  -"/2 S 
0 

l(lB.I _-< 1/4) du}) 

I(IB, I__< 1/4)d@). 

Here we have used the facts that the transition density, pt(x, y), of B is uniformly 
bounded on t > 1, and that 

log r +(2"--2) log 2>  --log(2L) +(2"-2)  log 2>  1 for n>nLl(L). 
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Use the above in (5.9) to bound (5.7) by 

3b2 2 LmOR a) (c3 (L) 2-  2"a2 "e/2 

2nlog2/2 

< m (N a) (c 5.5 (L) 2-  2n ( d  - -  4) 2" a/Z 

2- n/2 ~ E exp -c5 .4  j 
0 

1(I/],1-<_1/4) d@)+tl2(L, n, p)) 

where lim q2(L, n,/~)=0. Finally the original restriction on/~ may be incorpo- 
#-4oo 

rated into the definition oft/5.1(L , n, #). []  

To bound the expectation appearing on the right side of Lemma 5.4(ii) one 
may proceed in one of two ways. The unsophisticated route is to introduce 
the successive times the Ornstein-Uhlenbeck process exits from strip [ - 1 / 4 ,  
1/4], hits 0 and then re-exits from the strip and use Cram6r's classical large 
deviation estimates for the times between exits. Alternatively one can annihilate 
the problem with the Donsker-Varadhan theory of large deviations. Exercise 
8.28 of Stroock (1984, p. 178) contains more than enough for our humble needs. 
In any case we have 

Lemma5.5. E~176 forallO~[O, 1]and 
0 T>0 .  []  

Combining Lemmas 5.4 and 5.5, we obtain 

Proposition 5.6. There are constants c5.8 and {c5.9(L): L >  i} such that if L> 1, 

Pm(C bad at some te[L -1, L], 2b,  < 6(co, 3, #)) 

____ m OR a) c s. 9 (L) 2-  2- (a - 4) 2" a/2 exp { -- c 5.8 2"/2 } + (m (N a) + 1 ) ~/5.1 (L, n, #) 

whenever C E A i,, n >_>_ ns. 1 (L), m~ My. 

Notation. If C o N  d, let dC denote the diameter of C. 

Theorem 5.7. I f  d_~4 there is a constant cl. ~ such that VmeMF(NJ ) and for 
Qm-a.a. co 

(5.1o) 

(5.11) 

c1.1 ~bl-m(R(r,s)c~A)<=Y~,~(A)VAe2(IRa), O<r<_s<_oo 

c1.1 ~1--m(/~+ (0, s)c~A)<= Y~(A)VAE~(IRa), O<s=< oo. 
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Proof  Fix meMe(N~n). We work in the ogwsaturated enlargement described in 
Sect. 2. Fix # e ' N - N  and mue*M}(~ a) such that s tM~(m,)= m. We will work 
on the Loeb space (*f2, o~, p" , )  introduced in Theorem 2.3. Let L e N  > 1, and 

A,,L--= {CEA,:  C c  I - -L,  L]a}. 

Proposition 5.6 and the Transfer Principle of nonstandard analysis imply that 
if n > n5.1 (L), then 

(5.12) E" . ( l (2b .<6(co ,  3,/z)) ~ 4Jl(dC) 
C~Ajn,L 

1 (*C is y-bad at some _tr ~, L] c~ T)) 

<=(4L)a2d2"d22-2"+=tl log 2m(IR a) c5.9(L ) 2 - 2'~(d-4) 2 "a/2 

.e-~.~ 2"/~ (~ n,/Z) = 0 ) 

< c 1 (L) m (N a) 2 "d/2 n e - ~'." 2./~ 

-~.(L) ~. 

{e,(L): n e N }  is summable. Use the Borel-Cantelli lemma, (5.12) and (4.8) to 
see there is an NL(CO) < oo a.s. for all L e N  >1 such that 

(5.13) ~l/ l (dC) l (*C is /z-bad at some t-~*[L-1, L] c~ T) 
CEA.in.g 

<e,(L) for n>NL,  ~ e,(L)<oo. 
n = J  

Fix co outside a null set such that NL(co)<~ for all L e N  >1 and (2.7) holds. 
Let L -1 < r < s < L (r, s ~ ) .  Let 

Aj•, Lg, 1 __-- {C~Aj.,L: Nt (. C)_  > 0 for some _te T ~  *[r, s] and *C is/z-good at 

each _re Tn  *[L- i L] for which ~(*C) > 0} 

A~., L = { C ~ Aj,,L: * C is/z-bad at some _t e Tc~ * [L- 2, L] }. 

Let CeAy~IL and choose ke {2", 2" + 1, ..., 2" + a _ n} such that 

U.(*cTak) d'~(u)> cs., ~l (ak). 
I t -  5a~,,,sl 

C 7ak has side length 
- 2 n 2 +14ak<15ak<=ak,/2, 

where k '=  k - 1 0  or k - 1 1  (whichever is even) and so k'~ [2"-11,  2" + x_ n - 1 0 ] .  
Therefore C T " k c C  ' for some C'SAk, (by the definition of Ak,). Let g,2 Aj,,L be 
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the set of cubes obtained by choosing one such C' for each CuA~',IL . ,  If C' 
is as above, then 

(5.14) ~ N.(*C') d2(u)>csA ql(ak)>cs.1 2-2~ 
[r - 5 a~,*, s] 

>c2' ~,(dC')VC'eA~:2L �9 

By the proof of Lemma 1 of Taylor  (1964) there is a subclass A~,,L~ g,2 A j n ,  L such 
that 

(5.15) U c= U c =  U c, 
CEA~n, L q,2 g, 1 C~A.rn,L C~Ajn.L 

and 

(5.16) No point in IR a is covered by more than 2 e cubes in A~,,L. 

g ,  2 Note that k' was chosen to be even so that all cubes in Aj,,, L have sides of 
length 2 - ~  for some M s N  and the proof of Taylor's Lemma 1 goes through 
in ~ a .  

Let 

&,~=st{Ntf:fl~t_, Ntf+ A, t~*[r,  s] c~ T}. 

S,,~ is closed by Proposition 2.1.8 of Albeverio et al. (1986), and (2.7), and the 
definition of M~,~ show that S~,~ is a support of Y~,~. Therefore 

(5.17) S~,~ ~ S (Y~,3 =/~(r, s). 

Let A be a compact subset of [ - M ,  M] a. (5.15) implies that 

\CeA~n,L ] CeAYn,L,CnA *d  p 

If n > NL, then 

r  q(dC) 
C~A~n.L C~AgjmL,C n A :~ (a 

<e,(L)+c2 ~ ~ N,(C)d2(u) (by (5.13) and (5.14)) 
CeA~n.L, C c~ A ~ d p [r-  5aZn,s] 

<e,(L)+2ac2 ~ N,(AVda~"-~)d2(u) (by (5.16)) 
[r - S a~- , s ]  

(by (2.7)). 

As n ~ ~ this last expression converges to 2ac2 Y~,~(A) because A is closed. 
F rom (5.18) we may conclude 

(5.19) tp 1 -- m (A c~ St,2) < 2a c2 Yr,s (A) 

for all 0 < r < s < ~ ,  A compact, A ~ [ -- L, L] a. 
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C 2 does not depend on L. Therefore we may fix ~o outside a single null set 
so that (5.19) holds for all LeN.  The inner regularity of ~ka-m (Rogers (1970, 
Thm. 47, 48 and the ensuing Corollaries)) and (5.17) imply that if c a.a = ( 2d c2)-a, 
then 

cl.a ~kl -m(A~R(r ,  s))< Y~,s(A) V A e ~ ( ~  d) VO<r<_s< cx3. 

We may let r+0 to get (5.11) and s T ~  to get (5.10) with s = ~  (recall the 
process dies out at a finite time a.s.). Finally a routine measurability argument 
is needed to transfer the result over to the space of continuous MFfRn)-valued 
paths. []  

Theorem 5.7 may be improved if d =  4 by just using the estimates given 
in Theorem 3.2(b). Recall r  4 log + (l/x). 

Theorem 5.8. Assume d = 4. 
(a) ~bo-m(R(r, ~ ) ) <  ~ for all r > 0  O"-a.s. for each meMF(I~4). 
(b) I f  meMF(~ 4) has compact support and satisfies 

sup Sly-x1-  2 din(Y) < ~ ,  
x 

then Oo-m(/~+ (0, ~ ) ) <  ~ Qm-a.s. 

Proof. Let F,,L denote the partition of ( - L ,  L] 4 into "right semi-closed" cubes 
of side length 2-"(n, Le]N). Fix r > 0  and meMr(~4). Then for large enough 
n (depending on (r, m(~4)), we have 

Em( ~ Oo (dC) 1 (X,(C) > 0 for some t > r)) 
C e F n , L  

-< ~ ca 2-4"(log 2")(log 2")-a [sup E"~([Br-x[ -2) + 1] (Theorem 3.2(b)) 
CeFn, L xeR 4 

<_c a mOR4)(l +r-a)(2L)" by(3.1.1) 

<oo.  

Let n-~ ~ and use Fatou's Lemma to see that O o-m(R(r, ~)c~(-L,  L]4)< 
for all L e N  Qm-a.s. The compactness of S(X,) (Theorem 1.2), the continuity 
of S(Xr) (i.e. Theorem 1.1) and the fact that Xt dies out in finite time together 
imply/~(r, ~ )  is compact. This gives (a). 

For  (b), argue as above using Theorem 3.2(b) and (3.1.2), to get 

E~(~,o--m(R(r, oo)c~(--L,L]4))<=Cl sup ~ly-xl-Zdm(y)(2L) 4 
x 

for all r > 0. Let r ~ 0 to see that 

Em(~ko--m(R+ (0, oo) n ( - L ,  L]4))=<cl sup Sly-x[-2dm(y)(2L)4< o0. 
x 

Since m has compact support, Theorem 1.1 implies /~+(0, ~ )  is a.s. compact 
and the proof  is complete. []  
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We now turn to the lower bound on the Hausdorff measure of /~(r, s). 
Our approach is that used in Perkins (1988a). We will see that the denstiy 
theorem of Rogers and Taylor (1961, Lemma 3) reduces the problem to showing 

l imsup Y~,s(B(x,a))/O(a)<=c(d) for Y~,s-a.a. xa.s. 
aS0 

,, - ( u )  p ( u )  To estimate Y~,s(B(x, a)) for xeR(r ,  s)" we will estimate ~m,,s(B(x, a)) dm,,s(x). 
These estimates are more delicate than those in Perkins (1988a), but there is 
some simplification here because we are essentially concerned with one random 
measure Y~ and not an infinite family {Xt : t > 0}. 

We introduce some notations which will help us prune some Brownian trees. 

Notation. I j= {fl ~ I : flo =j}, j ~Z + ; f = Io w I 1. 

If L, peN,  let 

At (p, L)=  {(fl(1) . . . .  , fl(P))e/-P: Ifl(i)l-< L# and fl(j) 

is not a descendant of fl (i) for all 1 _< i 4=j-<_ p}, 

A2( p, L)=  {(fl(1) . . . . .  fl(P))eTe: Ifl(01 <L# for all i<__p, 
and fl(i)<fl{j), for some 1 <=i4=j<p}, 

A(p, L )=A t (p, L)wAz(p,  L). 

If fl =(fl(1), ..., fl(p))eI v andje7Z+ let 

A(fl, a)={~o:lN~(i)--NP(J)i<a, foralli, j<p}  (a>0), 

Ij (fl) = Ij c~ {/3 (i): i < p}, kj (/3) = card (Ij (fl)), 

lj(fl) =rain {l: fl(m)[14: fl(n)l l or l> Ifl(m)[ for some fl(m), ~(n)el j(fl)}, 

l(fl) = min{l: fl(m) ll + fl(n)ll or l > I/?(m)[ for some m, n < p}, 

F(p)=F(p,L)={f leAI(p,L):  l(fl)=0} (L, pelN). 

If a > 0 ,  L, # e N  let 

H(a, L)=H(a, L, #)= ~ P~ <__a) d2U(s) d2U(t), 
[0,L] 2 

and if p e N, define 

Vp(a,L)=Vp(a,L,#)= ~ N-2p+11(A(fl, a)) 
f l eA (p ,L )  

Wv(a,L)=Wp(a,L,#)= ~ #-2(P-1)l(A(fl, a)) 
~eF(p ,L)  

for p_>__2, 

and set Wl(a, L, #)= 1. We stress that whenever we write an inequality like 
IN p(i) -Na~/)[ < a, as in the definition of A (fl, a), we are implicitly assuming that 
N ~~ 4= A and N ~(J) # A. 
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If x i= 0 for i=  0, 1 and xi= A for i>  1, denote P(~') and E (~') by P2 and 
E2, respectively. If y o = 0  and y~=A for i > 0  denote P(r~) and E (y*) by Pa and 
E~, respectively. 

Lemma 5.9. I f  a>O, p e n  >>-z, L, #eN,  then 

E2 (Wp (a, L, ,u))=< (p-2) !  (12H(a, L, ,u)) p- 1 

Proof Fix a > 0 ,  L, # e N  and suppress dependence on these parameters if there 
is no ambiguity. Let p e n  ~2. If q~#S=~{1, ..., p} and lie{l, ..., L # + I } ,  ?JeIj, 
W I = l j - I  for j = 0 ,  1, let 

A(S,. lo, l~, ?o, 7~)= {fieF(p, L): Io (fi) = {fi(i): ieS}, lj(fi)=lj, 

fi(i)ll i -  1 =7 j, for all fi(i)eIj(fi), for j  = 0, 1}. 

These sets form a partition of F(p, L) as S, lj and yJ ( j=0,  1) vary. If fie 
A(S, lo, l,, S ~ 71) where card(S)=k then the fi(i)'s may be permuted to give 
a 

] ~ e A ( k ,  to, l l ,  ~ o  ~I)=A({1, ..., k}, lo, ll, ~o ~1). 

Y isisar corres ondon ea  t ere aro( )ways to  olo t   om o ents 
in Io(fi). It follows that 

(5.20) 

L#+I L/t+1 ) 
Z 2 Y, l(Wl=lj-lt Y .|(A(fi, a)). 

/o =1 l~=l ~o~IoTleIl fleA(k, lo, ll,?~ 1) 

Fix lie{l, 2, ..., L # + I }  and 7Jelj such that I?J l= l j -1 ,  j = 0 ,  1. We consider 
four cases to bound 

= ~ P2 (A (fl, a)). 
fl~A(k,lo,ll,)~~ ) 

In each case fi will denote a multi-index in A(k, lo, l,, ?o, 71) and 

2,~tm- ,.~:,?r ~p(o: s>_O, ink)  ~,1"1 - -  ~ '  ~,z ~ s  + l o / ~  - -  �9 q o / , U  - -  

~t~p(i) ~( i ) .  k<i<=p) o ~. V ~,t~,s+l,lu--~,l , lu �9 s > O ,  V 

Case I. 2<_k<_p-2. 

In this case both Io(fi) and I,(fi) contain at least two elements and so 

(5.21) f l= (7~176  for some ~~ and ~leF(p-k) .  
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Here v is interpreted componentwise. Therefore 

(5.22) Pa(A(fi, a))= Ez(I(I(N p~0- ~r~(o~ t~,rP(J) Nz~}uJ))l < a  for all i,j<= k) 
�9 "qoJ# ) - -  ~,�9 �9 - -  

�9 1 (I(N #(i) _ N# (1)] _ (NO (j) _ IV.# !J)'fi < ,7 for all k < i, j =< p) 

"x2(l~lo/# Z'~l l / l z~x '~l , z '~  - - Z ' ~ l l / #  - -  ZVlo/# 1~ 

The centre of the ball in this last conditional probability is ~(/?)-measurable, 
and N ~~ and N.~ are independent Brownian motions, stopped at lo/# and lt/#, 
respectively, and are jointly independent of g(~(fl). The conditional probability 
in (5.22) evaluated at co is therefore a.s. equal to 

PoO(B((lo+lO/#)eB((l~a(p) ~a(p) L~fl(1) ~'~.6 ( 1)$$ L.r,$ �9 ..~$ 
- -  ~ l ~ / #  - - t  ~ - -  ~'qo/tt ])tu"], u ) !  

< pO ([B ((Io + 11)/#)1 < a). 

Note  also that {Nf"): i n k }  and {Nf(~ k < i < p }  are independent since fl(i)o 
+ fi(J)o whenever i<k  <j. Use the above estimate, (5.22) and (5.21) to conclude 

(5.23) ~ <Po~ -'o-~' 

Boer(k) 

Vi, j < k l  1-[ e~~ 
0<i</o  

- - . t ' q t / #  - - \ � 9  - - . t '~ l~ / l  t __ 

. 6 ~ e F ( p - k )  

0_~i<ll 

Note that the PE,~--P2('I ]-I U/i D-distribution of y u ~ ' ~  _ u ~  e ~ :  "~ ~t'~lj/IZ + .  ~ ' l j [ #  

O < i < l j  

fi~/-) is equal to the P2-distribution of {B a, ea: fl~/-} ( j=0 ,  1). Therefore the 
P2.~-distribution of ~,rr~ ~ a _  r, rr~,, a. fl~/-) is equal to the P2-distribution of (Nf" X � 9  ZVl j /#  

fl~/-} ( j=0 ,  1), and (5.23) implies that 

(5.24) ~_<P~(IB((lo+ll)/#)<=a)2-'~ E2(VC~)E2(Wp_~)#z(P-'-2 

Case 2. k = l , p > 3 .  

In this case Io(fi)={1} and I1(fl)={2 . . . .  , p) contains at least two elements, 
and so 

(5.25) 

Therefore 

fl-=-('~0,71 V ~ )  for some ] ~ F ( p -  1). 

P(O P(O $(J) P . A  a E 1 N  N, 2( ( f l , ) ) =  2( (1( " - -  l , /~ ) - (NB(J) -N, /~) l=afora l l l<i , j<p) l (N~~ 

" ~ t2~x ,  - - x , l l / i t ~ x ; ~ . x ,  - - i ' l l / #  ,a11~,~ tt-,)j) 

--< Po ~ (I B ((lo -- 1 + 11)/#)1 < a) 2-Zo + 1 P2 (I N'* "~(1) _ ~,ry' ,, ~(0 x ~ l l / #  

-rN~l'~i)~ --l"h/,~'r~l"~~176 j < p - - l l =  1-[ e~'l~- 1) 2-1~ 
O < i < l l  
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where we have argued as in the previous case. Sum over f leA(l ,  lo, 11, 7 ~ 71), 
use (5.25) and the equivalence in law outlined in the previous case to see 
that 

(5.26) ~ <  Po~ ([B ((/o + ll -- 1)/#)[ < a) 2 -(t~ +zi- 1) E2 (Wp_ t) #2(p- 1)-2 

Case 3. k = p -  1, p >= 3. 
This is the mirror image of case 2 and (5.26) holds. 
Case 4. p = 2, k = 1. 
In this case A(I, to, 11, 7 ~ 71)= {(7 ~ 71)} and 

(5.27) ~ =  P2(IN~~ N~i[ <=aIN~~ + A, N~X #: A) 2 -(1~ 
=P~ 2)/#) < a) 2 -(t~ +t' -2). 

(5.24), (5.26) and (5.27) can be combined to conclude that 

(5.28) ~ <Po~ + l1-2)/#)1 <a)  2 -(t~ - 2)E2 (Wk) E2 (Wp-k) #2(p- 1)-2 
l<k<p--l ,p>=2. 

Substitute the above into (5.20) to obtain 
p - - 1  [ r ~  L / t + 1  L / t + l  

E2(Wp) < ~, e ~ ~ 2,o-12h-1PoO(tB((lo+ll_2)/#)l<a) 
k=llk),o=l ,~=1 
�9 2 -cl~247 2~E2 ( ~ )  E2(Wp_~) #-2 

and hence, 

(5.29) Ez(Wp)<-_ ~ E2(Wk) E2(Wp-k)H, 
k = l  

where H=H(a, L, #) is defined above. We now proceed by induction. (5.29) 
implies the result if p=2. Let pen >z. Assume the required result holds for 
E2(Wk) where k <p. Substitute these bounds into (5.29) to see that, if (-I)[--i, 
then 

e2(~)=  < F~ (k-2)! (p-k-2)!  (12~ ' -~H 
k = 2  

p - 2  

= ( p - 2 ) ! ( 1 2 H ) , - x 1 2  -1 p ( p - 1 )  2 ( k ( k - 1 ) ( p - k ) ( p - k - 1 ) )  -1 
k = 2  

+ 2 p ( p - 2 )  -~ ] 

p p - 2  

=(p-2)!02H),-112 -~ (p- l )  2 (p(p-2))- ' ( (k-1)- l -k-1 
k = 2  

- l - ( p - k - 1 ) -  l - ( p - k ) -  t + ( p - 1 ) -  l (k-  l + ( p -  l - k )  -1 
1 

+ ( k -  1)- ~ + (p-- k)- 1))+ 2 p ( p - 2 ) - ~ [  

(12H) "-112 -1 [(p- l)(p- 2) -I (2(I-(p-2)-1) < ( p -  2)~ 

- ) ]  +4(p-1) -1 2 k -~ +6 ____(p--2)!(12H) "-1. [] 
k = l  
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Lemma 5.10. If a>O, p e n  >-2, L, #eN, then 

E~ (Vp(a, L, #)) <L(p-  2)! (12H(a, L, #))p- 1 + # -  I(L + 1),(p!)Zet2(L+ ~)~ 

Proof Fix a > 0  and L, # e N  and suppress dependence on these parameters. 
Let p e n  ---2. Then 

where 

+ 

V,,i=- ~" #-2p+11(A(fl, a)) 
~A~(p,  L) 

i=1,2. 

Let fleAl(p,L)nlg. Then l(fl)=le{1, 2, ..., L#} and there is an ee  
{0} x {0, 1} 1-1 and a "fieF(p, L) such that f l = ~ v ~  (as before v is interpreted 
componentwise). Under Pt, N a = A unless fleIo, so the summation in the defini- 
tion of Vp, x may be taken over fleA~(p, L)c~Ig. The above shows that 

(5.30) E~(Vp, x)<E~ #-2p+a ~ ~ Z l(A(~v]~,a)) 
t= l  ~e{O}x{O, 1} 1-1 fl~F(p,L) 

= / ~ - 1  2 E # - 2 ( P -  1)P1 e~li= 1 
I=1 ae{O}x{O, 1} t-I  i 

P1 (IN~ ~(i)- NIT~" ~(i)-(N" ~ ~(J)- Nt/~' ~(J))I <=a 
[lsr(p, L) \ 

1 - 1  ) 
foralli, j<=p ~-I e~li=l �9 

i=0 

~ t - l \  
As in the proof of Lemma5.9, the PI[.  I ]e ' l i=l)-distr ibut ion of 

\ i O  / "~ 

{~r,,,a ""a" fie/p} is equal to the Pz-distribution of {N.P: fie/P}. Therefore �9 l/r +. - -  ]Vl/ta �9 
from (5.30) we may obtain 

Lg 
(5.31) E 1 ( ~ , 1 ) < # - 1 ~  ~ 2- '#  -2(p-1) ~ Pz(A([l,a)) 

l= 1 a~{O} • {0, 1}l- a p~r(p,L) 

<=(L/2)EE(Wp)<(L/2)(p-2)!(12/-/) p-1 (p>__2) (Lemma 5.9). 

Next we show 
p - 1  

(5.32) E,(Vp,2)< Z (P!)2((p--J)!)2(L+I)J#-JEx(Vp-j.1) for peN,  
j = l  

by induction on p. If p = l ,  V1,2=0 because A2(1, L)=q~ and (5.32) is trivial. 
If p > 2, we may divide Az(p, L) into the p(p-1)  (non-disjoint) sets 

B(p, i,j)= (fleA2(p, L): fl(/) < f(j) and there is no ke {1, ..., p} - {i,j} 
such that fl(i)<fl(k)<fl(j)), l <_i=gj<p. 
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By symmetry we have 

El(Vp,2)<p(p--1)El(l a-2p+l ~ l(A(fl, a))) 
#eB(p, v -  1, v) 

Lt~ 
<=P(P-1) EI(# -2~v-1) ~ I "t-1 ~,, Z 

#EA(p-- 1, L) / = 0  ~e{O, 1} z 

�9 1 (A (fl, a)) -Px ( Nacp- a) " ~' * A Ifr i<  p - 1 })) 

<p(p--a)(L +l~-l) #-X Et(V~_l) 

<=p(p-1) (L + I )It- I (EI (Vp- x, ~) + EI (V~- L z)). 

The obvious induction argument now gives (5.32). 
To complete the proof, substitute (5.31) into (5.32) (use E1 (V1.1) < L + 1) and 

add the resulting inequality to (5.31). A bit of algebra then gives 

p - 1  

Ex(Vp)<(L/2)(p--2)! (12H)P-a+ ~" (p!)2(p-j)!-~(L+ 1)J+~ #-J(12H) p-~-j 
j = l  

< L(p--2)!(12H) p-~ +/~- ~(L+ 1)P(p!)2 e a2n 

<L(p--2)!(12H) p-x +#-~(L+l )P (p ! )2e  ~2tL+~)~. []  

Recall ~k4(x)=x 4 log + 1/x log + log + 1/x. 

Theorem 5.11. If  d>4 there is a constant cl.2, such that VmeMe(~ a) and for 
Qm-a.a. CO 

(5.33 a) 

(5.33b) 

Yo~(A)<=c,.2 ~1 -re(A) V A ~ ( ~  a) (d>4)  

Y~(A)<cx.2 r  V A e ~ ( ~  a) (d=4). 

Proof Let d=>4 and set ~kn=~k 1 if d>4 .  Fix meMr(Rd). We work in the 
COx-saturated enlargement described in Sect. 2. More specifically, fix 
/ ~ * N - N ,  mue*Me~ a) such that stM~(rnu)=m and work on the Loeb space 
(*f2, ~ ,  pm~) ~ (*I2, ~ ,  P) of Theorem 2.3. Dependence on # will usually be sup- 
pressed, c will denote a positive constant to be chosen later. Let L~]q  > x and 
a > 0 satisfy 

(5.34) a < (2L)- t 

If fl~l define 

MP'I(a,L)=kt -2 
t~L- ' < M <t~L, ~,o =0o  

M I L 2 ( a , L ) = ~ - 2  ~_~ 

~ t ~ -  x < lel _-<uL, ~o * # o  

I(INr-NaI<a ) I (N  r, NP ae A) 

1 ( ]Nr-NP]  <a)  I (N  ~, NP+ A). 
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Then (2.7) implies that 

(5.35) e(51 (v~-, L(B(x; a))> cO~(a)) d r~_ ,,L(X)) 
< o. Em. (~ 1 (ML- ~, L (* B (x; a)) > c ~d (a)) d ML - ,, L (X)) 

(recall B(x; a) is a open ball) 

<~ ~ l(M~'l(a,L)+MB'2(a,L)>c~d(a))) 
I~L- I < IBI < I~L 

< O,Em~, (#- 2 ~ 1 (M a' 1 (a, L) > (c/2) ~d (a))) 
UL-x<--IBI<uL 

+~ ~ l(Ma'2(a,L)>(c/2)~d(a))) 
~L- ~_<l#l<gL 

- EI + EE. 

Let r/denote an infinite natural number to be specified later and define 

r  ~ xP/p! ~ e  x -  1 if ~ is finite (x~*R). 
p = l  

K 

If 0 > 0 and m. = # - t ~ 6x j, then 
j=O 

~ ( t) (5.36) El<= N((Oc/2)Od(a))-l*E m" #-2 ~ (OMP, l(a,L))P/p! 
It~l <uL p= 1 

<(exp{cOOd(a)/2}--l) -1 (OP/p!)# -2~'+1) 
= I  

"*era"( 2 ... Y~ 1(~(i)o--~(1)o 
I#(1)[<L/~ I#(p+ 1)I-<Lu 

and IN a(i)- Na~)] < a for 1 < i < p  + 1))) 

~ (O'/p = (exp {c 0 ~bd (a)/2 } -- 1)-1 t) #-1 

-~ *Era-(# -2p-1 ~ l(maxlB(i)l<g#,A(B, 2a)) 
j=  0 /~el~' + 1 

=(exp {cOOd(a)/2}-- l ) -1 ~ ~= I (OP/p ]) m.(*F-~d) EI (Vp+ I (2a, L, #)) ) 

~(exp{eO~a(a)/2}-- l)- l mORd)(~ l(O 12H(20, L, #))pp- I L) 

+ ~ (r/, #, L, 0)), 
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where 
q 

e(t/,/2, L, 0) =/2-1 ~ ((L + 1) O)P(L + 1) (p + 1)! (p + 1) e 12(L+ ,)2, 
p=l  

and we have used Lemma 5.10 in the last. Let O=~ L,/2))-1 and then 
choose ~ / e * N - N  such that for this choice of 0, ~ L, 0)=0.  (5.36) therefore 
implies 

(5.37) e I < (exp {c ~ka(a)/(48 ~ L, kt))} -- 1)- 1 m(~d) L. 

Since B1 has a bounded density we see that 

(5.38) ~ L,/2)= ~ Po~ 
[ 0 ,  L]  2 

2 L  u 

<cl(d ) ~ ~ (aa(u) -d/2)/x 1 dv dU<CE(d) ~~ 
0 0 

where 

a if d > 4, 
~'d ~ (a) = a4 log 1/a if d = 4 

~cl (d) (1/2 + ( 2 -  d/2)- 1) 
c2(d) =l.cx (d) 7/2 

if d>4 ,  
if d = 4 ,  

and we have used (5.34) if d=4 .  Let c=c(d)=96c2(d) and use (5:37) to see 
that 

(5.39) El<mORa)L(exp{21oglogl /a}- l )  -1 ( a < ( 2 L ) -  1). 

A simple first moment  argument gives a sufficient bound on E2 if d > 4  
but to handle the 4-dimensional case a second moment calculation is required. 

E2 <4C- 21~a(a)-2~ - 2 ~ MI~'2(a,L) 2) 
uL- x _< I#1 =<uL 

= 4 c- 2 ~ka(a)- 2 o,Emu(/2- 6 Z 1 (fl(i)o ~= fl (1)o and IN ar NatX)[ 
flEl 3 

~ a f o r  i=2 ,  3, #L -~ ~[fl(i)[ ~ # L  for i =  1, 2, 3)) 

< 4 c - 2  ~la( a)-2~ Z 1(# L-1 < [fl(i)[ </2L for i=  1, 2, 3, fl(i)o ~ fl(1)o 
fief 3 

for i = 2, 3, IN ~2) - NPt3)[ < 2 a) P(I N p~2)- Na('l _-< a I fg({fl (2), fl(3)}))). 

In the above N pr is independent of fr fl(3)}) because fl(1)o #: fl(/)o (i = 2, 3). 
The conditional probability in the above is therefore equal to (use Lemma 2.1 (b)) 

2-I~(1)1P~aO~o(BIB(DI/~ e/~(N#(2) (fo); a)) < 2-I#(DI c3 adLd/2 
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(recall fl(1)//~ ~ L-1). Substitute this into the above bound on E 2 to see that 

E2 < 4c-  2 On(a)- 2 c3 ad L all2 ~ E""(ML- 1, L (*gt.n)) 

( . o * E m  ~, /~-4 E Z l(maxlB(i) l<# L, INa(1)-Na(E)I<2a) 

+ # - 4  ~ l(fl(1)o + 3(2)o, maxl fl(i)[ _-< #L, IN~(2)--N~")[ <=a)l 
fl~I 2 / 

< 4 c - 2 c 3  L 1 +n/2m(Rd) anOd(a)- 2(mORd)~ (V2 (2a, L, U)) + P~ < a) 

�9 ~ L(*Rn)) 2) 

<= 4c-  2 c3 Ll +d/Zm(]R n) an~n(a)- E(m(Rn) L 12c2 (d) ~~ + c3 an Ld/2 + 2m(Rn) 2) 

(Lemma 5.10 and (5.38)) 

= c4 (L, m (ll.n), d) a n ~bn (a)- 2 (0o (a) + an). 

Therefore we get 

(5.40) Ez < ~c5 (L, m(~n.), d) an- 4(log + log + (l/a))- 2 
-=lc 5 (L, re(N"), d) (log + i/a)- 1 (log+ log + l/a) -z 

if d > 4  

if d=4 .  

Set a , = e - "  and note that the right sides of (5.40) and (5.39) are summable 
over n > 2. Hence the same is true of the left side of (5.35) and by Borel-Cantelli 
for P-a.a. co for every L e N  and for YL-,,L-a.a. X there is an N(m, x, L ) e N  such 
that 

YL-1,L(B(x; a,))<c(d) Od(a,) if n >__ N(e), x, L). 

Therefore there is a c6(d ) such that for P-a.a. e) and each L s N ,  

limsupYz-,L(B(x;a))/Od(a)<=c6(d) for YL- 1,z-a.a.x. 
a$O 

By Lemma 3 of Rogers and Taylor (1961) (or more precisely the trivial refine- 
ment stated as Theorem 1.4(a) in Perkins (1988 a)) we obtain 

YL-l c(A)<c6(d)Od--m(A) VAe~(~d)p-a . s .  

Let LT oe to obtain the required result on our Loeb space. It is then easy to 
transfer this result over to the canonical space of continuous measure-valued 
paths, for example, by noting that the above upper bound on (5.35) transfers 
immediately. []  

Theorem 1.4 is immediate from Theorems 5.7, 5.8 and 5.11. 
The above result and its proof extends without change to super-symmetric 

stable process of index e. These measure-valued processes, {Xt: t>_0} may be 
constructed as in Theorem 2.2, but  the original collection of d-dimensional Brow- 
nian motions {B~: fl~I} is replaced by a collection of d-dimensional symmetric 
stable processes of index e e(0, 2], { Y~: fle I} scaled so that 

E(ei<O,r~>)=e-tlol~O~Rd" 
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(This is an easy modification of Theorem 4.3 in Chapter 8 of Ether and Kurtz 
(1986)). Define Y, and Y~,s as before. 

Notation. 

) (X 2~ log + log + 1/x if d > 2 a  

I~d'~(x)='(xZa(log+ 1/x)log + log + 1/x if d = 2 a .  

Theorem 5.12, Let Q'~ denote the law on C([O, ~),  Me(IRa)) of the super symmetric 
stable process of index ~E(0, 2] and dimension d which starts at m~MFORd). 
Assume d> 2a. There are constants cs.lo(d, ~) and c5.11(d, a) such that for each 
m ~MF (R  a) and Qm-a.a. o2 

(5.41) Y~(A)<=Cs.lo ~hd,~--m(A) VA6N(IRd), 

(5.42) lim sup YL- ,, L (B(x, a))/Od, ~ (a) < c5., 1 
aS0 

for YL-1,L-a.a.x andall LEN.  

6. Upper Bounds for the Multiple Points of X 

In this section the results of Sects. 3 and 5 are used to obtain upper bounds 
on the Hausdorff measure of A c~/~k, where A c IRd, and/~k is the set of k-multiple 
points of X (see Sect. 1). We assume d > 4  throughout this section and work 
with respect to Qm(mEMe, m+-O is fixed) on the canonical space of continuous 
Me-valued paths, which we now denote by f2. To avoid measurability difficulties 
we will also use Q" to denote the associated outer measure, defined on all 
subsets of f2. 

Notation. 

_ ~ x  a-'* if d >  5 
~k2(x)- ((log+ l /x) -~ if d = 4  

T(2) = inf{t > O: X , ( ~  ~) > 2}. 

Recall the definitions of o~o and J f  from Sect. 1. 

Lemma 6.1. Let ~be~'~o, k e N  and assume O(X)=C~(X)O2(x)-ke~. Let Ii 
= [ri, sJ, i = 1, ..., k be disjoint, and suppose 0 < 6 <= rain {r i -  si_ 1 : 1 <_ i <_ k} ^ 1, 
where So=0. There is a constant c6.1(d ) such that for any A c I R  a and 2 > 0  

k 
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Proof Let {Ii}, 6, and A be as above. Let A c  ~) Bs, where Bs=B(xj ;  ds/2 ) and 
j = l  

maxds<e(1,  6, 6-~). (Here e is as in Theorem 3.2). Then 
J 

\ i = 1  / 

S k - -  r k -[- 6 ~ T(6-1))) (by the Markov property at t = r k -  ~) 

k - 1  

(Theorem 3.2 and (3.1.1)) 
k - 1  

Proceeding inductively, we obtain 

(6.1) Qm(Bjn  (iN= lR(Ii))+ ~), Sk < T(6-1))~C6.1(d)k rS-ek/21~2(dj)k. 

Choose a sequence of covers of A, {B~: j~N},  (n~N) as above such that 

Then 

q~ - re(A)  = lim ~ q~ (d~), (d~ is the diameter of By). 
n ~ o o  j =  1 

k m(A (i 
\ n ~ o o  j = l  i = 

<= 2 - 1%.1 (d)k 6 - rig~2 lim inf ~" r (d;) ~2 (d~) g 
n ~  j = l  

(by (6.1) and Fatou's  Lemma) 
=2-1ck.16-dk/20--m(A)" [] 

Theorem 6.2. Let (~ ~ Jr~ k ~ N and assume ~ (x) = (o (x) ~2 (x)- k ~ ~ .  Let A c •e. 

(a) I f  O--re(A)--O, then ~b-m(AC~Rk)=O Qm-a.s. 
(b) I f  A has a-finite c~ - m, then A r~ Rk has a-finite ~b - m Qm-a.s. 
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Proof (a) If q~- m(A)= 0 then Lemma 6.1 implies that ~k- m A n R(Ii) = 0 
i 

Qm-a.s. (here {Ii} are as in Lemma 6.1). /~k is a countable union of sets of the 
k 

form (~ /~(Ii). (a) follows from the countable sub-additivity of the outer measure 
i = 1  

~ t - - m .  

(b) Assume without loss of generality that q~-m(A)< ~ .  Lemma 6.1 implies 

that 0 - m  A n  /~(1~) <oe Qm-a.s. Here {It} are as in Lemma 6.1 and we 
i 

have used the fact that T(6-1)= oe for small enough 3 > 0  a.s. Since /~k is a 
k 

countable union of sets of the form ~/~(I~), we are done. [] 
i=1  

In the above theorem recall that for 0 e ~ i ,  ~0-m(A)=0 iff A=~b and A 
has ~-finite 0 - m  iff A is countable. Therefore setting q~=(02) k in the above, 
we obtain Theorem 1.5(a), (b). Theorem 1.5(c) is immediate from the above 
result. 

Taking A=I1. 4 and ~b(x)=x 4 in Theorem 6.2(b) we see that for d=4,/~k 

has ~-finite x ~ log --m, i.e., we get Theorem 1.6(b). To obtain the slightly 

more precise result for d > 4 in Theorem 1.6(a) and, in particular, to show/~k = ~, 
if k=d/(d-4) ,  we will use the results of Sect. 5 together with Lemma 6.1. A 
technical measurability lemma is required. 

Lemma 6.3. Let ~p~gff, k ~ N  and K be a compact subset of R d. Then 

H(v 1 . . . . .  Vk)=O--m K n S(vi) is a Borel measurable mapping on Mr(Nd) k. 
i 

Proof Let B•={B(x; r): x e Q  a, reQ>~ Let NF denote the (countable) set of 
finite subsets of BQ. Fix 2 > 0, and let A = {ve M~: I-I(v)< 2}. We claim that 

(6.2) A=RU = U' (Vl, ..., Vk): ~ min v,(B;)=0 
= 1 L = I  i = l  l < j < k  "j J '  

where U' indicates the union is over all {n~: i<N}  and {B'~: i<N')  in ~ e  such 
that (recall dB = diameter of B) 

(6 .3)  Kci~=,__ B i w  i~=,__ B , dB i<L- '  for all i<N,  

N 

and ~ r  -1 
i=1  

Assume first H(v~ . . . .  , Vk)<2. Choose R such that H(v~, ..., vk)<2--R -1 and 
for a given L~1N we choose {B~: i<  N} ~ e  such that 

(6.4) g n  S(v~ ~ U B~, dB~<L -1 and ~ O(dB~)<2--R -1 
i / i =1  i=1  
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Here we have used the compactness of the set being covered, the definition 
of ~ - m ,  and the continuity of ~ (the last, to obtain balls in B~). Note that 
if ~ e ~oo u oug I it may be necessary to take {Bi: i < N} = qS. (6.4) implies 

K '= - B n K c  U S(vi)C" 
i /=1  

Hence for each x in K', there is a B'~eB~ containing x and an i<k  such that 
vi(B'~) = 0. By compactness of K' there is a finite subcover of K', {B'i: i< N'} e ~ v  
such that 

N' 

min v j( B'i) = O. 
i= 1 j<k 

This and (6.4) prove (6.3) and therefore shows (v~, ..., Vk) belongs to the set 
on the right side of (6.2). 

It is easy to reverse the above argument and establish the opposite inclusion. 
This gives (6.2), and the result follows because the Borel measurability of the 
set on the right side of (6.2) is evident. [] 

Proof of Theorem 1.6(a). The second assertion of Theorem 1.6(a) is immediate 

from the first. Fix d>4 ,  k e N  and let ~(X)=xd-k (d -4 ) log  + log + --.1 Let Ii 
= [r~, s~], 1 <i_< k be disjoint compact intervals such that x 

0 < 3 = rain {r i -  sf_ 1 : i < k}/x 1 (So = 0). 

It suffices to prove that if K is compact (K = B(0, N) for large N will do), then 

(6.5) 

Let 

k 

k 

A~={(v~ . . . . .  Vk)~(Me)k: ~9--m(j~= S(v~)c~K)<oo}. 

Then A~ is a Borel subset of (MF) g by Lemma 6.3. Therefore 

k 

= {(co,  . . . ,  ~ • g o .  

Here { 4  ~ denotes the canonical filtration for X, completed in the usual way, 
and g o  = ~ o .  

The Markov property implies that if Ar -~ • ~-o then 

Q~({co': (co', 0~, co')eA} I ~  ~ (o9)= QX,l(~ (e), o)')~A}) a.s. 
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Apply this result with A = A2 to see that 

(6.6) 

= @ m ( { c o , :  (CO,, Os ' co,)eAz} i~__~o)(co) 

) }) n (~ ~ ( [ r j - s l ,  s j-st])(co'))nK <oo 
\ j = 2  

a . s .  

Theorem 5.7 shows that ~k;-m(/~(I1) (co))< oo Q"-a.s. Fix such an co and apply 
Lemma 6.1 with Xs,(co) in place of m, k - 1  in place of k, ~1 in place of ~b and 
/~(I~) (co) c~ K in place of A. That result shows that the probability on the right 
side of (6.6) is 1 (note that ffa(X)~2(x)-~k-1)=ff). This gives us (6.5) and com- 
pletes the proof. [] 

7. The Closed Support of  X t 

As was mentioned in the Introduction, it is known (Dawson-Hochberg (1979), 
Perkins (1988a)) that if d > 2  then w.p. 1 for all t>0 ,  Xt is supported on a 
random Borel set with finite ~bl-m, where 

q~l(x)=x 2 log + log + 1Ix. 

It is not difficult to use the Levy modulus from Sect. 4 and the methods of 
Sect. 5 to show that the closed support of Xr has finite ~b 1 - m  a.s. for each 
t>0 .  

Theorem 7.1. Let d>2.  There are O<CT.l(d)~CT.2(d)< a3 such that for any 
me M r ( ~  a) and t>0 .  

(7.1) c7.1 ~)l-m(Ac3S(Xt))'< Xt(A)<=CT.2 (~--m(AnS(X,) )  
forall A ~ ( ~  d) Qm-a.s. 

The upper bound on Xt follows immediately from Theorem A of Perkins 
(1988 a). In fact that result shows that the upper bound holds for all t > 0 simulta- 
neously w.p. 1. We will not give a proof of the lower bound on Xt here. Stronger 
results, including a proof of (7.1) for all t > 0  a.s., and a slightly less precise 
result if d = 2, are given in Perkins (1989). 

The estimate on Qm(Xt(B(x, e))>0) in Theorem 3.1 (d>3) leads to upper 

bounds on the Hausdorff measure of A c~ S(Xt, ) and sufficient conditions 
\ i  = 1 / 

for this set to be empty, just as for A c~/~k in the previous section. The proofs 
will be omitted. 
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Theorem 7.2. Let d>2 ,  k e n  and 0 < t l <  ... <tk. Assume ~ a e ~  o and 0(x)=  
qS(x) x -k(a-a )eH.  Let A c i R  a. I f  O - r e ( A ) = 0  (respectively, is finite), then 

[ [ \ 

t ) - m l A c ' , l O = l s ( x , ) ) ) = O  (respectively, is finite)Q"-a.s. 

Corollary 7.3. Let d>2 ,  keN,  0 < h <  ... <tk and A ~ I R  a. 

(a) I f  xk(a-a)--m(A)=O (respectively, is finite) then A n  S(Xt)  =~b (re- 
i spectively is finite) Q"-a.s. 

(b) dim n S(Xn) < d i m A - k ( d - 2 )  Q"-a.s., where a negative dimen- 
i 

sion implies the set is empty. 

Results in Perkins (1988b) show this Corollary is essentially sharp. Taking 
A = IR a in the above we see that 

k 
(7.2) dim ( ~ S ( X ~ i ) < d - k ( d - 2 )  a.s. d>2 ,  

i=1 

k 
and hence ~ S(X,)=q~ if k > d ( d - 2 )  -1. To handle the critical case k =  

i = l  

d ( d - 2 )  -1, argue exactly as in Sect. 6 but using Theorem 7.1 in place of the 
results in Sect. 5. 

k 
Theorem 7.4. Let d>2 ,  k e N  and 0 < t l < . . .  <tk. Then (-] S(X,,) has finite 

i=1 

x d -k(a - a) log log 1 _  m Qm-a.s. In particular this set is a.s. empty if  k >>_ d(d - 2) - 1 ; 

i.e., if k > 1 and d > 3, or k > 2 and d = 3. 

Acknowledgement .  We thank Robert Adler for suggesting the study of multiple points of super Brow- 
nian motion. 

References 

Albeverio, S., Fenstad, J.E., Hoegh-Krohn, R., Lindstrom, T.: Nonstandard methods in stochastic 
analysis and mathematical physics. New York:Academic Press 1986 

Anderson, R.M., Rashid, S.: A nonstandard characterization of weak convergence. Proc. Am. Math. 
Soc. 69, 327-332 (1978) 

Ciesielski, Z., Taylor, S.J.: First passage times and sojourn times for Brownian motion in space 
and the exact Hausdorff measure of the sample path. Trans. Am. Math. Soc. 103, 434-450 (1962) 

Cutland, N.: Nonstandard measure theory and its applications. Bull. London Math. Soc. 15, 529-589 
(1983) 

Cutler, C.: Some measure-theoretical and topological results for measure-valued and set-valued sto- 
chastic processes, Ph.D. thesis, Carleton University 1984 

Dawson, D.A.: The critical measure diffusion process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 
125-145 (1977) 



204 D.A. Dawson et al. 

Dawson, D.A.: Limit theorems for interaction free geostoehastic systems. Colloq. Math. Soc. Janos 
Bolyai 24, 27-47 (1978) 

Dawson, D.A., Hoehberg, K.J.: The carrying dimension of a stochastic measure diffusion. Ann. 
Probab. 7, 693-703 (1979) 

Dawson, D.A., Iscoe, I., Perkins, E.A.: Sample path properties of the support process of super- 
Brownian motion. C.R. Math. Rep. Acad. Sci. Canada 10, 83-88 (1988) 

Dugundji, J.: Topology. Boston: Allyn and Bacon 1966 
Dynkin, E.B.: Representation for functionals of superprocesses by multiple stochastic integrals, with 

applications to self-intersection local times. Astrrisque 157-158, 147-171 (1988) 
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. New York: Wiley 

(1986) 
Gmira, A., Veron, L.: Large time behavior of the solutions of a semilinear parabolic equation in 

F, u. J. Differ. Equations 53, 258-276 (1984) 
Harris, T.E.: The Theory of Branching Processes. Berlin Heidelberg New York: Springer 1963 
Hoover, D.N., Perkins, E.: Nonstandard construction of the stochastic integral and applications 

to stochastic differential equations. I. Trans. Am. Math. Soe. 275, 1-58 (1983) 
Hurd, A.E., Loeb, P.A.: An introduction to nonstandard real analysis. New York: Academic Press 

1985 
Iscoe, I.: A weighted occupation time for a class of measure-valued critical branching Brownian 

motion. Probab. Theory Rel. Fields 71, 85-116 (1986a) 
Iscoe, I.: Ergodic theory and a local occupation time for measure-valued branching processes. Stochas- 

tics 18, 197-243 (1986b) 
Iscoe, I.: On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 

16, 200-221 (1988) 
Lady~enskaya, O.A., Sollonnikov, V.A., Ural'ceva, N.N.: Linear and quasilinear equations of parabol- 

ic type. (Am. Math. Soc. Monogr. vol. 23) 1968 
Le Gall, J.-F.: Exact Hausdorff measure of Brownian multiple points. In: Cinlar, E., Chung, K.L., 

Getoor, R.K. (eds.). Seminar on Stochastic Processes, 1986. Boston: Birkh/iuser 1987 
Loeb, P.A.: Conversion from nonstandard to standard measure spaces and applications in probability 

theory. Trans. Am. Math. Soc. 211, 113-122 (1975) 
Loeb, P.A.: An introduction to nonstandard analysis and hyperfinite probability theory. In: Reid- 

Bharucha, A. (ed.). (Probabilistic analysis and related topics, vol. 2). New York: Academic Press 
1979 

Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Sprin- 
ger, Berlin Heidelberg New York: 1983 

Perkins, E.A.: A space-time property of a class of measure-valued branching diffusions. Trans. Am. 
Math. Soc. 305, 743-795 (1988a) 

Perkins, E.A.: Polar sets and multiple points for super Brownian motion. Lower Bounds 
(1988b) 

Perkins, E.A.: The Hausdorff measure of the dosed support of super-Brownian motion. Ann. Inst. 
H. Poincar6 25, 205-224 (1989 a) 

Perkins, E.A.: Unpublished lecture notes (1989b) 
Ray, D.: Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian 

motion. Trans. Am. Math. Soe. 106, 436-444 (1963) 
RoeUy-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure 

branching processes. Stochastics 17, 43-65 (1986) 
Rogers, C.A.: Hausdorff Measures. Cambridge: Cambridge University Press 1970 
Rogers, C.A., Taylor, S.J.: Functions continuous and singular with respect to a Hausdorff measure. 

Mathematika 8, 1-31 (1961) 
Sawyer, S., Fleischman, J.: Maximum geographic range of a mutant allele considered as a subtype 

of Brownian branching random field. Proc. Natl. Acad. Sci. USA 76, 872-875 (1979) 
Stroock, D.W.: An introduction to the theory of large deviations. Berlin Heidelberg New York 

Springer: 1984 
Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: 

Springer 1979 
Sugitani, S.: Some properties for the measure-valued branching diffusion processes. (preprint 1987) 



Super-Brownian Motion: Path Properties and Hitting Probabilities 205 

Taylor, S.J.: On the connection between generalized capacities and Hausdorff measures. Proc. Cam- 
bridge Philos. Soc. 57, 524-531 (1961) 

Taylor, S.J.: The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. 
Cambridge Philos. Soc. 60, 253-258 (1964) 

Taylor, S.J.: Multiple points for the sample paths of the symmetric stable process. Z. Wahrschein- 
lichkeitsth. Verw. Geb. 5, 247-264 (1966) 

Walsh, J.B.: An Introduction to stochastic partial differential equations. (Lect. Notes in Math., 
vol. 1180). Berlin Heidelberg New York: Springer t986 

Watanabe, S.: A limit theorem of branching processes and continuous state branching processes. 
J. Math. Kyoto Univ. 8, 141-167 (1968) 

Z/ihle, U.: The fractal character of localizable measure-valued processes. III. Fractal carrying sets 
of branching diffusions. Math. Nachr. 138, 293-311 (1988) 

Received May 10, 1988 


