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Summary. Let f(-) be a strictly positive density function defined on
(a,b))=R' with a continuous derivative f'(-) and let F(x)={f(t)d¢,

—w=Za<x<+ow be the corresponding distribution function. Define the

quantile function Q of F by Q(y)=F '(y)=inf{x: F(x)=y}, 0<y<]1, the

score function (—1)J of the density function f by J(y)=f"(QW)/f(Q()),
1

and the Fisher information I(f) of f by I(f)={(J(y)*dy, assumed to be
0

finite. Given some regularity conditions on F, we propose a sequence of
nearest neighbour (N.N.) type estimators J, for J and prove that for all
¢e(0,1/5) there exists an estimator J,, of J such that for all
0e(0, (5¢/18) A (e/12+ 1/40)) we have

sup |, () =T = 0= (logn)1?),

n"9sy<l-n-

1
and L(f)=5I(f), where I,(f)={(,)?dy, with J,(»)=J,,0) if
n°<y<1—n"°and zero otherwise. °

1. Introduction

Let f(-) be a strictly positive density function defined on (a, b)) R' with a
continuous derivative f'(+) and let F(x)=[f(1)dt, —oo<a<x< + o0, be the
corresponding distribution function. Define the quantile function Q of F by

Q) =F"'(p=inf{x: F(x)zy}, O<y<l (1.1)
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and the score function (—1)J of the density function f by

_SE)_d
IO =iy =gy SETO) 0<y<l (12)

The latter function plays an important role in nonparametric and robust
statistics (cf. e.g., Hajek and Sidak, 1967; and Huber, 1981). Due to its impor-
tance, and because of our lack of knowledge of f in most practical situations, it
is desirable to estimate J, given a random sample X,,...,X,, n>1, on F.
Estimators of the score function are particularly important in adaptive esti-
mation (cf. Beran, 1974; Stone, 1975). Indeed, already Hajek and Sidak (1967,
p. 259) proposed a sequence of estimators J¥(y) for J(y) with the following

property .
P{f(Jj(y)—J(y))zdy>8}—>0 as n— o (1.3)

0

for every £>0, provided that the Fisher information I(f) of f is finite, ie., we
have
1

) rdx=U0Pdy<e. (1.4

0

uﬂ=§68

Results in Beran (1974) for another sequence of estimators of the score
function J imply rates of convergence for an in probability statement like (1.3)
(cf. Remark 3.3).

The aim of the present exposition is to introduce and study another, closely
related (cf. Remark 3.2) sequence of estimators J, for J, based on

X a.<X,.,<..<X,., the order statistics of our random samples X, ..., X,
nz1, on F. Our proposed sequence of estimators J, is
k, i
S

1 , n .
LO=h = ¥ F () K X[, 09

a,

where k,=[n*] ([-] stands for integer part), 1/2<a<1, a,=k,/n, and 1 is a
density function (the window-density), satisfying the following conditions:

(b.i) A is vanishing outside of (—1, +1),
(bil) A(—x)=A(x), —1<x<1,
(bai) [A"(x)[=C, —1=x=1,

with some C>0.

We are going to show (cf. (3.31)) that, under some regularity conditions on
F, J, , is a strongly consistent sequence of estimators for J, namely for all
¢€(0, 1/5) there exists an estimator J, , of J with a«=(12—10¢)/15 such that for
all 6e(0, (5¢/18) A (/124 1/40)) we have

sup 1, () —JG)I= 0”7 (logn)'). (1.6)

n~ésysi-n
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2. Preliminaries on N.N.-Estimation of Densities

In a previous paper (cf. Cs6rgd and Révész, 1982) we studied the problem of

estimating density functions by the nearest neighbour (N.N.) method. Our

results herewith are based on those of the latter. Hence we describe their setup

here. Let X, X,, ... be a sequence of i.i.d. r.v. with density function f(x)=F'(x)
d

=i P{X,=x} (i=1,2,...). In terms of order statistics {X,.,; |Sk=<n} of a
X
random sample on F, for any 1/2<a< <1, define the sequences

An:X[nﬁ]:n’ Bn:Xnn[nﬁ]:n'

On the interval [A,, B,] let the (k,, A)-N.N. empirical density function of
the sample X, X,, ..., X, be

1 Loo(x—x\ 1 2 (x—y
= 2 )~ L k) 4o reR' @

where

1 n
Fn(y)zv— 2 I(-oo,y](Xk)

n =

is the empirical distribution function based on the sample X, X,,..., X,

R, (x)
2 >

R,(x) is the smallest possible number for which the interval [x~

n2(x)] contains k,=[n"] elements of the sample X,, X,, ..., X,, and 4 is an

arbitrary density function.
In our above mentioned paper we studied the process

0,)=ki (f,()=f(N/f(x), xe[A,, B,], (2.2)

under some regularity conditions. These conditions form three groups:
(a) regularity conditions of the underlying distribution function F(x);
(b) regularity conditions of the window (i.e., those of the density function 4);
(c) regularity conditions of the sequences {k,}, {4,}, {B,}, i.c., conditions
on o and . We list these conditions as follows:

(ad) F(x) is twice differentiable on (g, b), where
—w=Za=sup{x: F(x)=0}, +oozb=mf{x:F(x)=1},

(ail) F'=f>0on (a b),
(a.iil) for some y>0 we have

sup F(1L~Fx) Ly 1<

(a.iv) A=lim f(x)<oc, B=lim f(x) < o0,
x1h

xla
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(a.v) one of the following conditions hold
(a.v.0) min(4, B)>0,
(a.v.p) if A=0 (resp. B=0) then f is nondecreasing (resp. nonincreas-
ing) on an interval to the right of a (resp. to the left of b),

i) sup PO <

with some C>0,
(avil) sup |f"(x)=C

a<x<bh
with some C>0,

(b.i) and (b.11) as before,
(biii)* |A"(X)&C, —1<x<+1,

with some C=0,
(¢) let a=(4/5—2¢/3)y< f=1—3¢ with ¢e(0, 1/5) and

0<d<(56/18) A(e/12+1/40).
Remark 2.1. We note that f, of (2.1) with

L if —1/22x<1/2,
%)= {0, otherwise, (2.3)
reduces to
Jux)=k,/(nR,(x))=a,/R,(x). (2.4)

Remark 2.2. Let xe[A,, B,] be such that F,(x)=i/n (ie[n’, n—n”]). Then in

definition (2.1) R,(x) may be replaced by

()
n

R,(x)=F, n

(i—[:,m), 5

where F'(y)=inf{x: F,(x)=y}, 0<y<]1, the empirical quantile function of
X, ..., X,, and we have also

R,(0) 2R, (x)/2. (2.6)

Remark 2.3. The conditions (a.i}~(a.v) were used in Csorgd and Révész (1978),
where we also alluded to how wide a class of distributions satisfied them (cf.
also Parzen, 1979). Condition (a.vi) also seems to be a weak one. On condition
(c) we note that about « it says that 2/3 <a<4/5.

3. Consistency of our Proposed Sequence of Estimators for the Score Function

First a few definitions. Let

Iom==" =T )df(F‘l(u)), (3.0)
100 =—2"1" fE ) d L0 (3.2)

n Y—dan n
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y+an

YN 1 y—u
0=~ | s ) .

y—an

where ye[n®/n, | —n’/n].

Lemma 3.1. Assume conditions (b.1)—(b.1i1). Then

sup [T =LV O

nfin<ys<1-nfn

C  sup sup |[J(y+s)—J(y)I=Cy, ),
nBin<y<1—nbBin 0 Ss<n%n
=:Ca, sup W)= C3,(J") (34)
nBfn—ansys<1—nb/n+a,
Cay sup 7" = C3,(J"),

n8in—an <y S 1 —nbintay

where C is a positive constant depending only on A(*).

Remark 3.1. Depending on the continuity and/or the indicated differentiabilities
of the score function J over (0, 1), the above inequalities are meant to be used
accordingly appropriately.

Proof of Lemma 3.1. Assuming that J is twice differentiable on (0, 1), we prove
here the third inequality of (3.4). The other two indicated inequalities are
proved similarly. We have
y+an —u
JB(y)= | Ju)/»( )du
an v an a,

= } J{a,t+y)y ) dt
-1

1 1 1 242
= [ J0) A0 dt+ ] a,0'0) 0 drt | “!
1

1

j 2 77(x) Ae)dt,  (cf. (biii),

J"(x) () dt

where x=x(y, t, n) and |x —y|<a,lt|<a,. Hence the third inequality of (3.4).

Let u,(y)=n*(E; '(y)—y), 0<y<1, where E, is the empirical distribution
function of n independent uniform —(0,1) r.v., and E;' is the empirical
quantile function of the latter random sample.

Lemma A (CsOrgb-Révész, 1978; Theorem 2; or CsOrgb-Révesz, 1981; Theo-
rem 4.5.5). With §,=25n"" loglogn we have

lim  sup (y(1—y)loglogn)~*|u,(y)|<4 as. (3.5)

B S Sy 1—0n

Lemma B (Csorg6-Révész, 1978; Lemma 1, or Csdrgd-Révész, 1981; Lemma
4.5.2). Under the conditions (a.i)~(a.iii) we have
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SE0y)
JEFE )

for every pair y,, y,€(0, 1) and y as in (a.iii).

IA

{)ﬂ vy, 1—(y, /\yz)}y
Viny, 1=y vy,)

Lemma 3.2. Under the conditions (a.i)—(a.iil) we have

JEO)
FETO)

_ o \:
lim ( ) —1{£C as.
noow NOlOgN/ nBimzy<1—nbin

where C= C(y) is a positive constant.

Proof. By Lemma B we have
SE)_ fET!

Consider
F(F~* -1
sup ((M—l): max L (F(X,.,) - )
aflr<y<1—nfin ¥y nf<i<n—nf i—1 n
. F(Xi:n) —i
= max (l ( n)+ ! )
wB<izn—nt \I—1 i/n i—1
i
F(X,,
— max i ! ( Xien) = ) loglogn) N 1
¥n/3§i§n—nﬁ i—1 i i (l-—l)

(i loglog n)
n
By Lemma A

B + (F(F-1
lim sup ( " ) ( (FO) —1>§C a.s.
n—o #finsy<1—nfin loglogn ¥y

for some positive constant C. Hence

sup (F(Ele(y)))V<(1 M)v

nBin<y<1-—nbln biz

< (1 2y C,(w)(loglog n)* ),

bz
provided n is large enough, where with C as in (3.9)

lim Clw=C as,

and the latter combined with (3.9) now gives

lim sup ( "’ )l((F(E';l(y)))y—l)ghc a.s.

loglogn

noo nBinLy<1—nfin

_ ) <{va(F‘1(y)) L—AFEON
JEG) SEHFEETONT WAFEO) 1=V FE )

(3.6)

(3.7)

(3.9)

(3.10)
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Replacing F(F'(y))/y by any of
VFEO),  A=0/A-FE),  (-FE @A -),

(3.10) remains true, and hence (3.7) is now proved.

Lemma 3.3. Assume conditions (ai)}(a.iv), also (ba) and (biii), and that
23<a<f<1. Then

(loglog n)* (loglog n)*

1) (2)
sup  IO() P En B C ()= s

nBinSy<1-—nfn

C,(w), (3.11)

where C (w) is a sequence of positive r.v. such that

lim C (w)<K as. (3.12)

with some positive constant K.
Proof. By (3.1) and integration by parts

1 y+an

I, (2

n Y—an n)

_1 y+an (

J(l)

{ (Chlw,w)+ 1) f(F7 () d, 2

n y—ap

W)
where
HE W) _y)

o=ty

Hence, by definition of J{* we get

sup |V 0) =2 ()]

nBin<y<1—nbin

L oyt a0) S 54,0 dA0)

n —1

= sup
ninSy<1—nbin|a

1
< sup - j|C w, y+a,v) | f(E (y+a,v) 1A () dv,

nBinsy=1-nfm A, 4

and by Lemma 3.2

B

hm( 2 )7 sup  |C (o, u)|l=C,
loglogn

n— o0 nfin<y<1-—nf/n

with C= C(y)>0. This also completes the proof of Lemma 3.3, upon observing
also that f(F,*) and A’ are bounded by our assumptions.

Lemma 3.4. Assume conditions (a.i)}~(a.vii), (bi}{b.iii) and (c). Then

logn)*
swp ) ~IP 0= S8 € (o), 6.1

nfinEy<1—nfn
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where C,(w) is a sequence of positive r.v. such that

lim C,(w)<K as. (3.14)

n—w
with some positive constant K.

Proof. We have

IOy = jnf F'(u)d, /1( )
== o @ (), (315)
An y—an a,

SE W)

JLE7 W)
terms of f, defined in (2.4), we get

where C (w, u)= —1. Applying now Consequence in Sect. 5 of [4] in

na, \* LHEO) e i
fim ( " ) Ll U) _les o _gyt, (3.16)
oo \OZgH/) nomy=1—nsm | (7 (1)
and hence also
na, \*
lim ( "> sup |C,(w, w)] = (2(1 — ). (3.17)
n—ow logn nBin<u<1—nbin
Letting
na, \* ~
( " ) sup € (o, 1)=C, (o), (3.18)
logn nBin<u<1—nbin
we have o
lim |C (w)| =K, as, (3.19)
for some constant K >0.
Since f is bounded, (3.16) also implies
lim  sup  |f(F 'W)EC, as, (3.20)

n—cw nfinSusl—nbin

with some positive constant C.
Thus on recalling again the definition of £, in (2.4),

sup  [JPW) =IO -

nBin<ys1—nbin

= sup j C o, y+a,v)f(F *(y+a,v) X (v)dv
nBin<ys1—-nbin Gy |21
i/ 1 *

<— (ﬂ) L= 0080 s, (3.21)
a, \na, n

and (3.13) is now proved.
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Lemma 3.5. Assume conditions (a.i)—(a.vii), (b.i}«(b.iii) and (c). Then
sup [P0 =0 = Culw)n®* 2, (3.22)

nfin<ys1-—nbin

where C (w) is a sequence of positive r.v. such that

lim C,(w)<K, as., (3.23)

n— oo
with some positive constant K.
Proof. We have
y+an

wo- {0 )

and (cf. (1.5) and (2.5))

w o) 4 029

5 ( ann) " (F_1 (1» (3.25)
Hence
sup [P0 = J,0)]

nbin<y<1—nbin
i vran | y—u
| — /1’( ) du
y—an Rn(Fn l(u)) a

= sup
oy

A, nfin<y<1—nbin
-
B G)

2 n

n

1 n— [nB]
— sup > ———————  sup

y—u . n

N )v,(—>”/h,( )
A, wBin<y<1—nbin ; _1nB i . . a a
n #PinZys1—nfin ; [n]an(F 1( )) i 1<u<i n n

IIA

1 ) n—[nf] 1
- sup 14" (v)] )

1
n —1SpE1 na, i=mn nR, (Fn—l (i))
n

no "

C - LET =
na® k, l%ﬁ]nf"(" (H))
2 1—nfin

= C jﬂ JoE7 M (w) du= C,(w)/n** 2, (3.26)

A

HA

k

where, by (3.20), lim C,(w)= C as., and where f, 1s defined as in (2.4) and the

last inequality of (3.26) is by formulas (2.3) through (2.6). The proof of Lemma
3.5 is now complete.
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A combination of Lemmas 3.3, 3.4 and 3.5 yields

Lemma 3.6. Under the conditions (a.i)—(a.vii), (b.)—(b.iii) and (c), we have

n3w2—1

m g su IR =TLWISC as, 3.27
n—o (logn)f "ﬁ/néyéIl)—nﬁ/J n (y) (y)|__ ( )

where C is a positive constant, and J, is as in (1.5).
The latter Lemma and (3.4) combined result in the following strong con-
sistency for our sequence of estimators J, of the score function J:

Theorem 3.1. Given conditions (a.1)—(a.vii), (b.)—(b.iii) and (c), we have

(tog m)*
()(CIAJ)Vﬁggij)a

a.s. 1 %
sup I =500 = 0 Cl)viTED), (.29

nfin<y=1—nbin
(logn)*
pie2=1)

o(cﬂuqv

where C,,(J), C,,(J") and C,,(J") are defined in (3.4).

In order to rationalize somewhat the meaning of Theorem 3.1, we introduce
the following condition

sup u(l—u)|J (W) <K (3.29)
O<u<l1
with some positive constant K.
It appears to be true that most frequently used distributions in statistics
satisfy the latter condition. Indeed, when they do, the second statement of
(3.28) reduces to the following

Consequence 3.1. Given conditions (a.i))—(a.vii), (b.))~(b.iii), (c) and (3.29), we have

sup 1,0 =J )= O((logm)* 2 n>2~1), (3.30)
nBinSy<1—nbin
ie., for all (0, 1/5) there exists an estimator J, , as in (1.5) for J with a=4/5
—2¢&/3 such that for all 6€(0, (5¢/18) A (e/12 + 1/40)) we have

sup |, () =J ) E O™ 2+ (logn)' ). (3.31)
n=9<y<1-n-9
Proof. Since by condition (3.29), C,,(J)=0(n""#), and by condition (c),
—o>3e/2—1, we have (3.30), and hence also (3.31).
As a corollary to our Consequence 3.1, we now prove that

1

L(N=[,0)*dy (3.32)

0
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is a strongly consistent estimator of the Fisher information I(f) of (1.4), where

- J if ?#n<y<1—nPm
Ty)=0) fnsysl-—n (3.33)
0 otherwise.
Namely, we have
Consequence 3.2. Given the conditions of Consequence 3.1 and (1.4), we get
L(f)=> I(f)- (3.34)
Proof. Consider
L) =1(f)I= I((J W= )Hdy
nﬂ/n 1—nB/n
j JE+ =T+ j J2
uf/n 1—nf/n
nfin
By (1.4) I(f)< o0, hence j J? and j J*—0 as n— co. By Consequence 3.1
we have 1—nfln
1—nB-1 1—nf-1 1
| Wi=2= [ (,=d)P+2(J,=D)J|*2 0((logn)">n' —34%) [|J]
nf -1 nf -1 0

and (3.34) is proven, because of | |J|<(I(f))* < oo.
Assuming a bit more than in (3.29), we have also

Consequence 3.3. Given conditions (a.}-(a.vii), (bi)l«(b.ii), (c) and, instead of
(3.29),

sup |J'W)|£K (3.35)

O<u<l1

with some positive constant K, we have
1
[ () —J@)? du™= 0(n=25+2¢logn+n~2?%), (3.36)
0

where &, 6>0 are as in (3.31) and

J,. ) if ”’inSusl—nfin
L=, 0% m)  if O<ugn’/n (3.37)
Jo (L=nfin) if 1—nfinsu<l.

n

Proof. By (3.30) and (3.31)

1—-nfn
[ (w—Jw)3d “—50(1‘3’?"2) O(n=25+>logn). (3.38)

nBin
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Next consider

sup |J, () —J ()]

0<u<nB/n
< sup L@ —J,0Pm)l+ sup |J(n/n)—T(n/n)
O<u<nb/n O <u<nb/n
+ sup [J(nPn)—J(w)
O <u<nbin 5
<0((logn)"2/m>*2~ Y+ sup |J'(u)|% as. (3.39)
O<u<l

The latter upper bound then implies

nbn . nﬁ (logn 1/2 nﬂ 2
J U —s@)p dus"- (0 (7%) kY as

0

=n=2(0 (™ 5+ (logn)' 2 +n2)?, (3.40)

and a similar statement holds when integrating from 1 —#n*/n to 1. Combining
now (3.38) with (3.40), we get (3.36).

Remark 3.2. It is equally natural to use the sequence of estimators J{* instead
of J, for J. Clearly, our results hold true also in terms of J{* as well. The latter
form of estimators makes sense also if we assume condition (b.iii}* only instead
of (b.iii). However, when replacing (b.iii) by (b.iii)*, our present proofs do not
imply the validity of our results any more. In particular, if 1 is the density of
the uniform (—1/2, 1/2)-law, then we cannot say anything about the behaviour
of J©. We note also that in the latter case J{* is similar to the estimator of J,
investigated by Hajek and Sidak (1967, p.259), who proved (1.3) for their

sequence of estimators. .

Remark 3.3. The referee has pointed out to us that under j"IJ’(u)\du<oo
0

formulae (2.43) and (2.44) of Beran (1974) with M*=N =n prove
1
etV [ (J,u) =T ) du—">0, (3.41)
o]

for every sequence ¢,—co with the therin considered sequence of estimators J,

of J. The result of (3.36), by the optimal choices e=13/90 and 6=1/27 —y/3,

reduces to O(n~*°*"), n>0. While the latter is an almost sure rate, it is not as

good as that of (3.41). We should note also that the condition (3.35) is also
1

stronger than requiring | |J'| < co.
0
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