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Summary. Let f ( . )  be a strictly posit ive density function defined on 
x 

(a,b)c_R 1 with a cont inuous  derivat ive f ' ( . )  and let F(x)=~f(t)dt ,  
a 

- o e  < a < x <  + oc be the corresponding dis tr ibut ion function. Define the 
quanti le  funct ion Q of F by Q(y)=F-~(y)=inf{x: F(x)>y}, 0 < y < l ,  the 
score function ( - 1 ) J  of the density function f by J(y)=f'(Q(y))/f(Q(y)), 

1 

and the Fisher in format ion  I ( f )  of f by I ( f ) =  S (j(y))2 dy, assumed to be 
0 

finite. Given  some regulari ty condit ions on F, we p ropose  a sequence of 
nearest  ne ighbour  (N.N.) type est imators  J,~ for J and prove  that  for all 
e~(0,1/5) there exists an es t imator  J,,~ of J such tha t  for all 
6 e(0, (5 e/18) A (e/12 + 1/40)) we have 

sup IJ~,~(y)-J(y)[ ad O(n-1/5+~(logn)l/2), 
n ~  6 

1 

and In(f) .... , I ( f ) ,  where I,(f)=~(J~(y))Zdy, with J~(Y)=L,~(y) 
n - ~ < y < l - n  -~ and zero otherwise. 0 

if 

1. Introduction 

Let f ( . )  be a strictly posit ive density function defined on (a,b)c_R 1 with a 
x 

cont inuous  derivat ive f ' ( . )  and  let F(x)=~f(t)dt ,  - o r  < a < x <  + o% be the 

cor responding  dis tr ibut ion function. Define the quantile function Q of F by 

Q(y)=F-l(y)=inf{x:F(x)>y},  0 < y < l ,  (1.1) 
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and the score function ( -1 )J  of the density function f by 

f '  (F- l (y)) d 
J(y)-  - - -  f(F-t(y)), O < y < l .  (1.2) 

f(F-l(y)) dy 

The latter function plays an important role in nonparametric and robust 
statistics (cf. e.g., H~jek and Sid~k, 1967; and Huber, 1981). Due to its impor- 
tance, and because of our lack of knowledge o f f  in most practical situations, it 
is desirable to estimate J, given a random sample X~ . . . . .  X,,  n__>l, on F. 
Estimators of the score function are particularly important in adaptive esti- 
mation (cf. Beran, 1974; Stone, 1975). Indeed, already H~jek and Sid~k (1967, 
p. 259) proposed a sequence of estimators J*(y) for J(y) with the following 
property 

Pti(J*(y)-J(y))2dy>et-~O as n ~ o o  (1.3) 

for every s>O, provided that the Fisher information I(f)  o f f  is finite, i.e., we 
have 

I ( f ) =  & f(x)dx=~(J(y))2dy<oo. (1.4) 
- 0 

Results in Beran (1974) for another sequence of estimators of the score 
function J imply rates of convergence for an in probability statement like (1.3) 
(cf. Remark 3.3). 

The aim of the present exposition is to introduce and study another, closely 
related (cf .  Remark 3.2) sequence of estimators J, for J, based on 
X ~ : , < X z : n <  . . . < X  . . . .  the order statistics of our random samples X~ . . . .  , Xn, 
n > 1, on F. Our proposed sequence of estimators J, is 

z ) , 

where k,=[-n ~] ( [ . ]  stands for integer part), 1/2<c~<1, a,=k,/n, and 2 is a 
density function (the window-density), satisfying the following conditions: 

(b.i) 2 is vanishing outside of ( - 1 ,  + 1), 
(b.ii) 2 ( - x ) = 2 ( x ) , - l < x < l ,  
(b.iii) 12"(x)[< C, - l _ < x < l ,  

with some C > 0. 
We are going to show (cf. (3.31)) that, under some regularity conditions on 

F, J,,~ is a strongly consistent sequence of estimators for J, namely for all 
e~(0, 1/5) there exists an estimator J,,~ of J with c~=(12-10e)/15 such that for 
all c~e(0, (5e/18)/x (s/12 + 1/40)) we have 

sup ]J~, ~(Y) -J(Y)I as. O(n- 1/5 + ~(log n)1/2). (1.6) 
n d < y < l - - n - 6  
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2. Preliminaries on N.N.-Estimation of Densities 

In a previous paper (cf. Cs6rg6 and R6v6sz, 1982) we studied the problem of 
estimating density functions by the nearest neighbour (N.N.) method. Our 
results herewith are based on those of the latter. Hence we describe their setup 
here. Let X1, X 2 . . . .  be a sequence of i.i.d.r.v, with density function f(x)=F'(x) 

d 
= d ~  P { X i < x }  ( i=1,2 ,  ...). In terms of order statistics {Xk:n; l<_k<n} of a 

random sample on F, for any 1 / 2 < ~ < / 3 <  1, define the sequences 

A,=X[n~]:n, Bn= Xn_[n~l:n. 

On the interval [A,, B,] let the (k,, 2)-N.N. empirical density function of 
the sample X 1, X 2 . . . . .  X n be 

1 " (x  - - X k ]  1 + oo X - - y  
fn(X)=nR,(x) k~'l \R,(x) ] -R,(x) _$ 2 (~,(x)) dFn(Y)' x~Rl' (2.1) 

fn0;)=!  ~ I(-oo,y](Xk) 
k=l 

is the empirical distribution function based on the sample X1,X 2 .... , X,, 
R,(x) 

R,(x) is the smallest possible number for which the interval x 2 , x 

+ ~ ]  contains k,=[n ~j elements of the sample X1, X 2, ...,X,, and ;~ is an 

arbitrary density function. 
In our above mentioned paper we studied the process 

0,(x) = k~(s -f(x))/f(x), x e [A,, B,J, (2.2) 

under some regularity conditions. These conditions form three groups: 
(a) regularity conditions of the underlying distribution function F(x); 
(b) regularity conditions of the window (i.e., those of the density function 2); 
(c) regularity conditions of the sequences {k,}, {A,}, {B,}, i.e., conditions 

on c~ and/3. We list these conditions as follows: 

(a.i) F(x) is twice differentiable on (a, b), where 

-oo<=a=sup{x:F(x)=O}, +oQ>b=inf{x:F(x)=l}, 

(a.ii) F' = f  > 0 on (a, b), 
(a.iii) for some 7 > 0 we have 

If'(x)l < 
s<uPbF(X)(1-F(x)) f ~ = ? ,  

(a.iv) A=lim f(x)< o% B=lim f(x)< oo, 
x,La x~b 

where 
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(a.v) one of the following conditions hold 
(a.v.c 0 min (A, B) > 0, 
(a.v.fi) if A = 0 (resp. B = 0) then f is nondecreasing (resp. nonincreas-  
ing) on an interval to the right of a (resp. to the left of b), 

(F(x)(1 - F(x))) 2 
(a.vi) sup __< C 

. . . .  b f (x )  

with some C > O, 

(a.vii) sup If"(x)l__<C 
a < x < b  

with some C > O, 

(b.i) and (b.ii) as before, 
(b.iii)* 12'(x)l < c ,  - 1 < x  < + 1, 

with some C > 0, 
(c) let c~=(4/5 - 2 2 / 3 ) < f i =  1 - 6  with ee(0, 1/5) and 

0 < 6 < (5 e/18)/x (~/12 + 1/40). 

Remark 2.1. We note that  f ,  of  (2.1) with 

1, if - 1/2 < x __< 1/2, 
2 (x )=  0, otherwise, 

(2.3) 

reduces to 
f ,  (x) = k j ( n R ,  (x)) = a,/R,  (x). (2.4) 

Remark 2.2. Let  xE[A, ,  B,] be such that  F,(x)=i/n ( ie[n ~, n-nP]). Then in 
definition (2.1) R,(x) may be replaced by 

where F,- 1 (y) = inf {x: Fn(x ) > y}, 0 < y < 1, the empirical quanti le function of 
X~, .. . ,  Xn, and we have also 

/~, (x) > R, (x)/2. (2.6) 

Remark 2.3. The condit ions (a.i)-(a.v) were used in CsSrg6 and R6v6sz (1978), 
where we also alluded to how wide a class of distributions satisfied them (cf. 
also Parzen,  1979). Condi t ion  (a.vi) also seems to be a weak one. On condi t ion 
(c) we note  that  about  ~ it says that  2 /3<c~<4/5.  

3. Consistency of our Proposed Sequence of Estimators for the Score Function 

First a few definitions. Let  

= - 1  '+~ y - u  j,2>(y) 
an y--an 

(3.1) 

(3.2) 
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j~3)(y)= _ ~ R,(F,71(u)) d,2 , (3.3) 
y--an 

where ye[n~/n, 1-n~/n]. 

Lemma 3.1. Assume conditions (b.i)-(b.iii). Then 

sup IJ(y) _ j(X)(y)[ 
n~/n<y< 1-n~/n  

[C <sup sup  IJ(y+s)-J(y)[= CI,(J), 
I nl~/n=y<l-nl~/n O=s=n~/n 

< lCa,  sup IJ'(Y)I = Ce,(J'), (3.4) 
n # / n _ a n < y < l _ n ~ / n + a n  

2 j , t  C Jr '  |Ca. sup I (y)l= 3~  
I nt~/n an<y<l- -nB/n+an 

where C is a positive constant depending only on 2('). 

Remark 3.1. Depending on the continuity and/or the indicated differentiabilities 
of the score function J over (0, 1), the above inequalities are meant to be used 
accordingly appropriately. 

Proof of Lemma 3.1. Assuming that J is twice differentiable on (0, 1), we prove 
here the third inequality of (3.4). The other two indicated inequalities are 
proved similarly. We have 

y-k-an y - -  U 

" , _ o o  

1 

= ~ J (a /+y)X( t )d t  
- 1  

= J(y)2(t)dt+ a, tJ'(y)2(t)dt+ ~ ~ J " ( x ) Z ( t ) d t  
- 1  - 1  - 1  

2 

= J ( Y ) + ~  i taJ'(x)2(t) dr, (cf. (b.ii)), 
- 1  

where x=x(y,  t, n) and Ix-Y] <a, Itl <a,. Hence the third inequality of (3.4). 
Let u,(y)=n~(E21(y)-y), 0<y__<l, where E n is the empirical distribution 

function of n independent uniform -(0 ,1)  r.v., and E21 is the empirical 
quantile function of the latter random sample. 

Lemma A (Csgrg6-R6v~sz, 1978; Theorem 2; or Cs6rg6-R~v6sz, 1981; Theo- 
rem 4.5.5). With c~,=25n -1 loglogn we have 

lim sup (y(1-y)loglogn)-~[u~(y)l<4 a.s. (3.5) 

Lemma B (Cs6rg6-R6v6sz, 1978; Lemma 1, or Cs6rg6-R6v6sz, 1981; Lemma 
4.5.2). Under the conditions (a.i)-(a.iii) we have 
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f(F-'(y,)) <_ yy~ v y~ 1-(y~ ,, y &  
f ( F - I ( Y 2 ) ) - ( Y l  "~ AY2 1-(ya vy2) j 

for every pair Ya, Y2~( O, 1) and ? as in (a.iii). 

Lemma 3.2. Under the conditions (a.i)-(a.iii) we have 

( _ _ n ~ ) ~ -  sup f(F-~(Y)) 1 <C 
lim loglogn ,B/,<=y<=l-.~/n f(F~-l(y)) n ~ c o  

where C = C(7) is a positive constant. 

Proof By Lemma B we have 

f ( F - 1  ( y ) )  

f (F .  -~ (y)) 

Consider 

sup 
n~/n<y < 1 --nt~/n 

(3.6) 

a.s. (3.7) 

__ f ( F -  1 (y)) < ~y_vF(F2-1(y)) I_(yAF(FA-I(y))) '~ 
(3.8) 

f(F-I(F(F.-~(Y)))) (YAF(F~-a(y)) 1-(yvF(F~-~(y)))J  " 

~--- m a x  
n~ <_i <_n--n~ 

m a x  
n~ <i <_n--nP 

( (%)  . ~(Y)) 1 = max (F(X~:,)-  
: < i < n - ~  i - 1  

i F(X,:.) - 

i n 1 

i 

~1  (~ loglog n f  + 

By Lemma A 

lim sup ( n~ ]+(F(Fyl(Y)) 1 ) < C  a.s. 
. . . .  ~/, <=y ~= 1 -,a/, \loglog n / 

for some positive constant C. Hence 

sup __(F~-I(Y)) '<  - 1+. ~y~ 
n#/n<y< 1 -n# /n  \ y ] - -  

27 C,(co)(loglog n)~] 
< 1+ ~ ] ,  

(3.9) 

provided n is large enough, where with C as in (3.9) 

lim C,~(co)< C a.s., 
n 

and the latter combined with (3.9) now gives 

lim sup . .  <-_27C 
. . . .  ~/,<=y<=l-,p/, \ loglogn/  \ \  y 

a.s. (3.10) 
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Replacing F(Fs by any of 

y/F(F,- ~ (y)), (1 - y)/(1 -F(Fs ~ (y))), (1 -F(F~- 1 (y)))/(1 -y) ,  

(3.10) remains true, and hence (3.7) is now proved. 

Lemma 3.3. Assume conditions (a.i)-(a.iv), also (b.i) and (b.iii), and that 
2/3 <c~<fl< 1. Then 

sup i j~l)(y)- j~2)(y)] _<n (l~176 n)~ (3.11) 
n#/n < y <  1 - -n~ /n  - -  n f i /2  n Gt 

where C~(co) is a sequence of  positive r.v. such that 

< ( loglog n) ~ 
c.(o~)= ~ c~ 

lim C,(oJ)<K a.s. (3.12) 
n --+ ao 

with some positive constant K. 

Proof. By (3.1) and integration by parts 

where 

j~l)(y) = _  1 r+~ (j~_u) 
f ( F -  l(u)) d, 2 

a n  y - - a n  

_ ~ (C,(co, u)+l)f(Fs y - u  , 
a n  y - - a  n 

i f (  F I ( U ) )  

C,,(m, u)= - 1  / 
\ f ( F  d- 1 ( U ) )  ] " 

Hence, by definition of j~2) we get 

sup IJ~l)(y) - J.~2)(y)f 
n.e/n < y < 1 -- na/n 

= sup i i C . (c~  
n # / n < y  < 1 - - n B / n  a n _ 1 

1 1 
< sup - -  ~ IC,,(cv, y+a,v)l . l f (F~-l(y+a,v)l .L2'(v) jdv,  

n # / n < y < l - - n # / n  a,, 1 

and by Lemma 3.2 

( n~ 
lim ~ @ ]  sup I C,(co, u)[ < C, 
n ~ o o  n .a /n<y < 1 - -n# / n  

with C =  C(7)>0. This also completes the proof of Lemma 3.3, upon observing 
also that f(F~-1) and ) / a r e  bounded by our assumptions. 

Lemma 3.4. Assume conditions (a.i)-(a.vii), (bi)-(b.iii) and (c). Then 

sup ]J(~Z)(y)-J O)(v~l<(l~ C,(o), 
n k. r j l  Z n 3 a / 2 _  1 

n .a /n<y  < 1 - n f l / n  
(3.13) 
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where Cn(oJ ) is a sequence of positive r.v. such that 

lim Cn(oJ)<K a.s. (3.14) 
n - - +  o ~  

with some positive constant K. 

f(F~- 1 (u)) d~ 2 
an y--an 

= y (~,(co, u)+l)fn(F~_l(u)))d, 2 y - u  , (3.15) 
an y--an 

where C,(co, u ) -  f(F~- 1 (u)) _ 1. Applying now Consequence in Sect. 5 of [-4] in 
f~ (V.- l(u)) 

terms of f ,  defined in (2.4), we get 

( nan ]~ sup f . (F . -~(y) ) -1  
~irn \ logn/  nB/,<=r<=l-.B/, f ~ ~  "~'(2(1-c0)L (3.16) 

and hence also 

t n G ~  .... sup I C,(co, u)L = (2(1 -~))~. (3.17) 
n - - +  o o  

Proof. We have 

j y ) ( y )  = 

Letting 

na, ]~ sup C,(co, u)= C,(co), 
logn! nl3/n <=u<= l--n~/n 

we have 
lira IC,(co)I<K, a.s., 
n ~ c ~  

for some constant K > O. 
Since f is bounded, (3.16) also implies 

(3.18) 

(3.19) 

lim sup If,(F,( 1 (u))t < C, a.s., 
n~o~ n~/n<u< l -n# /n  

with some positive constant C. 
Thus on recalling again the definition offn in (2.4), 

sup ]j(2~(y) _j(3)(y)l . 

nB/n<y< 1 --nB/n 

1 ) 2'(v) dv = sup - -  Cn(co, y+anv)fn(F,l(y+anv))  
nl~/n<=y<- l--n#/n an 1 

1 / logn~fL L( l~  ~ 
=a, \ na, ] - n 3~/2-1' a.s., 

(3.20) 

(3.21) 

and (3.13) is now proved. 
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L e m m a  3.5. Assume conditions (a.i)-(a.vii), (b.i)-(b.iii) and (c). Then 

sup [j~3~(y) _ j,(y)[ < C,(co)/n(3~-2), 
n~ln<y < 1 --n~/n 

where C,(co) is a sequence of positive r.v. such that 

(3.22) 

lim C. (co) < K, 
n ~ o o  

with some positive constant K. 

Proof We have 

a .s .  (3.23) 

Y+"" - 1  y - u  1 Y+~" 1 
Ja3)(Y)= S en(Fnl(u))du)~(~-n ) - - -  ~ in(rs 

y - - a n  --an y - - a n  

y--U 
(3.24) 

and (cf. (1.5) and (2.5)) 

Hence 

a. 
(3.25) 

sup IJ~(3>(y) - J,(y)[ 
nB/n<y< 1-nP/n 

=--  Y+~" 1 2' (~_)y-u du 1 sup R.  (F~- l(u)) 
an nl~/n<y<-- l--nl~/n y--an 

i 

sup z sup 

1 _ _  y~  <=-- sup 12,(01 1 "-["~ 1 
a, -,<_~<_1 na, i=[,~ n!~,(Fs ( i ) )  

=< ~ c Z ~ f . F ~  -~ 
nan ]~n i= [n~] 
n 2 1 -n~/n 

=k~ C ,~ f,(FZl(u))du=C,(co)/n 3=-2, (3.26) 

where, by (3.20), lim C,(co)< C a.s., and where f ,  is defined as in (2.4) and the 

last inequality of (3.26) is by formulas (2.3) through (2.6). The proof  of L e m m a  
3.5 is now complete. 



302 M. Cs6rg6 and P. R6v6sz 

A combination of Lemmas 3.3, 3.4 and 3.5 yields 

Lemma 3.6. Under the conditions (a.i)-(a.vii), (b.i)-(b.iii) and (c), we have 

_ _  n 3 ~ / 2 - 1  

lim (logn) ~ sup IJ~,X~(y)-J,(y)l<=C a.s., (3.27) 
n--*oo n a / n < y <  1 --nt~/n 

where C is a positive constant, and J, is as in (1.5). 
The latter Lemma and (3.4) combined result in the following strong con- 

sistency for our sequence of estimators J, of the score function J:  

Theorem 3.1. Given conditions (a.i)-(a.vii), (b.i)-(b.iii) and (c), we have 

0 (CI,(J) (t~ 

sup [j(yl_j,,(y)[ a.~. 0 \(C2"(J') v ~ ( l ~  n)~ ]!, (3.28) 
nl~/n < y < 1 -- n#/n 

where Cln(J), C2n(T ) and C3~(J" ) are defined in (3.4). 

In order to rationalize somewhat the meaning of Theorem 3.1, we introduce 
the following condition 

sup u(1 -u)IJ'(u)l < g  (3.29) 
0 < u < l  

with some positive constant K. 
It appears to be true that most frequently used distributions in statistics 

satisfy the latter condition. Indeed, when they do, the second statement of 
(3.28) reduces to the following 

Consequenee 3.1. Given conditions (a.i)-(a.vii), (b.i)-(b.iii), (c) and (3.29), we have 

sup [J, (y) - J (y) ]  a~" O ((log n)~/2/n 3~/2- ~), (3.30) 
nB/n<y<= 1 --nl~/n 

i.e., for all e~(0, 1/5) there exists an estimator J,,~ as in (1.5) for J with 7=4/5  
-2e /3  such that for all fie(O, (5e/18)A(e/12+ 1/40)) we have 

sup IJ,, ~(Y) -J(Y)[ ~2 O(n- ~/s + ~(log n)l/2). (3.31) 
n - 6 ~ y ~ l - - n  - 6  

Proof Since by condition (3.29), C2,(J')=O(n~-a), and by condition (c), /~ 
- ~ >  3~ /2 -1 ,  we have (3.30), and hence also (3.31). 

As a corollary to our Consequence 3.1, we now prove that 

1 

1,(f)  = ~ (fin(y)) 2 dy (3.32) 
0 
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is a strongly consistent estimator of the Fisher information I ( f )  of (1.4), where 

jn(y)=SJ,(y) if nP/n<y<=l-n~/n 
(3.33) 

otherwise. 

Namely, we have 

Consequence 3.2. Given the conditions of Consequence 3.1 and (1.4), we get 

I . ( f )  .... , I( f) .  (3.34) 

Proof Consider 

- I ( f ) l  = i ((j,(y))Z _(j(y))2) [I,,(f) dy 

n~/n 1 --nl~/n 1 

ij:_j21+ j2. 
0 n#/n 1 --n#/n 

nt~/n 1 

By (1.4) I ( f ) < o %  hence S j2 and ~ j 2 ~ 0  as n ~ o e .  By Consequence 3.1 
we have 0 1-n~/n 

1 - n ~ - t  1--n/~-1 1 

S I J 2 - j 2 1 =  ~ [(Jn-J)2+2(Jn-J)Jla's'O((l~ 
nt~ - 1 n/~ - 1 0 

and (3.34) is proven, because of ~ IJ[ <(I(f))1/2< oo. 
Assuming a bit more than in (3.29), we have also 

Consequence 3.3. Given conditions (a.i)-(a.vii), (b.i)-(b.iii), (c) and, instead of 
(3.29), 

sup IJ'(u)l < K  (3.35) 
O < u < l  

with some positive constant K, we have 

1 
(Jn(U) - -  J ( u ) )  2 d u  a--z-s-" O ( n -  2/5 + 2e log n + n-  3a), ( 3 . 3 6 )  

o 

where e, c5>0 are as in (3.31) and 

[J. ,(u) 
L(u)=/J. 

[J,,~(1-n~/n) 

if nl~/n < u < 1 - n~/n 

if O<u<=nP/n 

if 1 - n e / n < u < l .  

(3.37) 

Proof By (3.30) and (3.31) 

1 - . e l .  1 l o g n  \ _ ~(Jn(U)-J(u))2dua'S'o~H3~7~_2)=O(n 2/5 + 2 e  l o g  n) ,  
nl~/n 

(3.38) 
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Next  consider 

sup IJ,(u)-J(u)l 
O<u<n,~/n 

-< sup IJ,(u)-],(n~/n)l+ sup IJ,(nP/n)-Y(n~/n)[ 
O<u<nB/n O<u<n,~/n 

+ sup [J(n~/n)-J(u)[ 
O<u<nP/n 

n I~ <=O((logn)l/Z/n3~/2-1)+ sup ] J ' ( u ) [ - -  a.s. 
O < u < l  H 

(3.39) 

The  lat ter  upper  bound  then implies 

n~/n ( [(logn)l/2] ~fl)2 
(J.(u)-J(u))Zdu< n~ 0 ~ ] + K  a.s. 

0 ~12 

= n-~(O(n- t/5 +~(log n) 1/2 + n-O)) 2, (3.40) 

and a similar  s ta tement  holds when integrat ing f rom 1 - n ~ / n  to 1. Combin ing  
now (3.38) with (3.40), we get (3.36). 

Remark 3.2. It  is equally na tura l  to use the sequence of es t imators  j(3) instead 
of J ,  for J. Clearly, our  results hold t rue also in te rms of j(3~ as well. The  latter 
fo rm of es t imators  makes  sense also if we assume condi t ion (b.iii)* only instead 
of (b.iii). However ,  when replacing (b.iii) by (b.iii)*, our  present  proofs  do not  
imply the validity of our  results any more.  In part icular ,  if 2 is the density of 
the uni form ( - 1 / 2 ,  1/2)-law, then we cannot  say anyth ing  abou t  the behaviour  
of .1 (3)_. . We note  also that  in the lat ter  case j(3~ is similar  to the es t imator  of J, 
invest igated by H~tjek and  gid~k (1967, p. 259), who proved  (1.3) for their 
sequence of est imators.  

1 

Remark 3.3. The referee has poin ted  out  to us that  under  SIJ'(u)Ldu<~ 
0 

formulae  (2.43) and (2.44) of Beran (1974) with M ~ =  N=n prove  

1 

- . d u  ~ O ,  (3.41) c l ~1/4 [ ( J . ( u ) -  J(u)) 2 P 
0 

for every sequence c , ~  ~ with the therin considered sequence of es t imators  J, 
of J. The  result of (3.36), by the op t imal  choices e =  13/90 and 6 =  1/27-~//3,  
reduces to 0(n-1/9+"), rl>O. While the lat ter  is an a lmost  sure rate, it is not  as 
good  as tha t  of  (3.41). We  should note  also that  the condi t ion (3.35) is also 

1 

s t ronger  than  requir ing ~ ]J'[ < ~ .  
0 
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