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R~sum~. On s'int6resse ici aux possibles vitesses d'estimation d'une densit~ 
A support compact dans IR m sous des hypotheses de r6gularit6, lorsque la 
perte est mesur6e par le carr6 de la distance de Hellinger (on regardera 
aussi le cas connu des normes IL q pour 1 <q  <2) et le risque est le risque 
minimax sur la famille. On donne une m6thode g~n~rale permettant de 
traiter les probl~mes dans le cadre de la th6orie de l 'approximation sous 
des conditions concernant l'entropie m6trique et 1' ~-capacit6 des familles 
estimer. Les rapports entre r6gularit6 et entropie m6trique 6tant bien con- 
nus, nous pourrons aussi traiter les cas classiques et d'autres qui le sont 
moins. Sous des conditions de bornes inf~rieures les vitesses sont celles 
observ~es pour la norme IL 1 mais elles different dans le cas g6n6ral. On 
montre aussi que les restrictions sur la compacit6 du support ou la r6gu- 
larit6 sont indispensables et que leur absence m~ne ~ l'impossibilit6 
d'obtenir une estimation raisonnable en ce sens que n'importe quelle suite 
d'estimateurs sera arbitrairement mauvaise en un point au moins. Un 
r6sultat analogue est vrai sous des conditions de r6gularit~. 

I. Introduction 

In recent years, numerous papers have been devoted to studying the problem 
of global estimation of a density function on N m, especially if this density is 
known to belong to a family of functions with a given smoothness, the loss 
being measured by a power of the distance associated to the lLq norm for 
1 < q <  + co. Pioneering work was done by Bretagnolle and Huber [5] and a 
very extensive study may be found in Ibragimov and Khas'minskii [~8] and [9]. 
The best obtainable rates of convergence are now well known for the classical 
smooth families. Some connected results appeared in slightly different direc- 
tions: in [-51, some results are given in particular cases using the Hellinger 
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distance as a loss function. In [18] and [19] the classical results are extended 
to the estimation of derivatives of a density. In his recent paper [7] Devroye 
proved that estimation is impossible unless there exist uniform bounds for both 
the smoothness of the functions in the family and the compactness of their 
support. Actually a similar result was already known from Ibragimov and 
Khas'minskii (see [8] and [9]) but Devroye's theorem is stronger. Relat- 
ed facts are also found in [4]. The study of more general rates of convergence 
than the usual polynomial ones is carried out in [2] or [3] where it is proved 
that all "reasonable" rates may occur. Those special facts concerning the limits 
of the possibility of estimating a function without enough "a priori" re- 
strictions, the fact that the speeds which are found when one measures the loss 
using Hellinger distance are different from those one finds when one works 
with IL 1 or IL 2 norms and the lack of unification in the theory suggested the 
following study with those three purposes: 

i) Try to get a general way of finding the best rates of convergence, even 
for more general families than the usual ones, by putting the problem in the 
framework which is given in [2] or [3] and links the rates to the dimensional 
properties of the family. This allows us to express the assumptions in terms of 
approximation theory and then use all the well-known results from this theory 
to apply it to any particular case of density estimation. With these tools we 
shall be able to treat families with special moduli of continuity which are not 
found in the literature. 

ii) Simultaneously give an extensive treatment for the case of Hellinger 
distance h. 

iii) Indicate useful and general tools for finding lower bounds and use them 
in order to strengthen some known results in this direction and especially 
complement the results of Devroye [7]. 

We shall also recover a number of classical results from this theory, mainly 
in Sect. 3. Most of this section consists in a summary of previous results and is 
included here for sake of completeness as an illustration of the relations 
between the rates of convergence and the metric structure of the parameter 
space. 

Actually, there is no fundamental difference in the treatment between IL 1 
and Hellinger; the fact that different rates may occur when one uses Hellinger 
distance is related to this very simple remark: when you compute h(f;f+g) 
where f is a density and g a small perturbation of order e for the sup norm, i f f  
is not small, this distance will be of order e just like the IL 1 distance, but i f f  is 

also of order e then h will be of order l/~, h and ILl being no longer 
comparable. This will lead us to distinguish in the sequel between two cases, c 0 
and /3): either e) our family O has a uniform lower bound and then h just 
behaves as the variation distance and so does n'ot deserve a special treatment 
(that was the assumption used in [2] and [3]). Or /~) there is no such lower 
bound, the densities in O may be arbitrarily small on some interval and we 
then get different estimates for the rates, such as the ones which were found in 
[5]. When dealing with the IL q norm, only case ~) will be relevant. 

In Sect. 2 we shall set up our assumptions using a dimensional point of 
view (see [3, 13] and [14]); they will allow us to give a simplified and unified 
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presentation of the results. Translating smoothness assumptions into those is 
straightforward most of the time and is based on known results in approxima- 
tion theory which we shall use freely. Section 3 will show how those assump- 
tions give us upper bounds for the risk and Sect. 4 will be devoted to the tools 
necessary to get the corresponding lower bounds. Also a result in the spirit of 
[7] Theorem 1, ii) will be given for the usual smooth families. This will be 
Corollary 4.5 and will lead naturally to the problem of Sect. 5. In [7], Devroye 
proved that if we consider all density functions on [0; 1] which are bounded 
by 2, for any sequence {c,} converging to 0 and any sequence {f~} of estimates 
there exists a density f such that 

lim sup c2 1 IE:[~ I f.(x) - f (x) l  dx] > 1. (1.3) 
n 

Notice the "limsup" here which suggests the two questions: is this result a 
truly "asymptotic" one or not; what is to be expected about the "lim inf"? The 
proof of the analogous Corollary 4.5 suggests that it might be really "asymp- 
totic" and, as L. Le Cam pointed out to me, in the finite dimensional case 
(ordinary parametric case), it is always possible to design a sequence of es- 
timates for which the "lira inf" is uniformly small at each point. It is not 
difficult to see that in non-parametric cases with compact parameter spaces 
having finite e-entropy for all positive e, the same will be true. On the contrary, 
in the case studied by Devroye, the parameter space is not compact and 
contains c-separated subsets of arbitrarily large cardinality. Using such subsets 
it is then possible to see that (1.3) also holds with "in]'" instead of "limsup" 

provided that the sequence {c,} has a suitable upper bound. We shall 
also prove the analogous result for Hellinger distance. See [4] for similar non- 
asymptotic results for Hellinger balls, 

Before proceeding, let us set up some notations and recall a few results. For 
two probability measures P and Q, with densities f and g with respect to #, we 
may consider the following distances 

h(P; ) = g  ~ ( ] / f - ] f g ) 2  d#; 

dq(P; Q)= Ilf-gHq = [5 If -gl q dill */q; 
D(P; Q)=�89 If-gl d~=�89 Q); 

which are respectively Hellinger distance, ILq-distance and total variation dis- 
tance. Some other quantities are also of interest which are the testing affinity, 
the Hellinger affinity and the Kullback information: 

7z(P; Q)=~(fAg)dl~; p(P; Q)= ~ ] / ~  d#; K(P; Q)= ~ log f-fdl*. 
g 

The following relations are well-known (see for example [6, 13] or [14]): 

~ z = l - D ;  h 2 = l - p ;  h2<D<h]/2; r~2 <p2 <=(2-~z), (1.1) 

P(P~, Q")=p"(P, (2); K(P ~, Q")=nK(P, Q). (1.2) 
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If O is our parameter space assumed to be a set of densities with respect to the 
measure #, the points in O will be called alternatively 0, fo (density) or P0 
(probability) and by convention for any distance d on O d(O; O')=d(fo;fo, ) 
=d(P0;P0, ). Given n i.i.d, observations following the unknown law P0, the 
minimax risk will be defined by 

R M (d q, n) = inf sup lE o [dq(P0; T,)] 
Tn 0~O 

where T, is any estimate (considered as a random probability) depending on n 
observations. Sometimes, when d=dq and q >  1 we shall also use the normal- 
ized risk, which is 

R~t (d q, n) = inf sup lE0 [dq (P0; T~) ] 
r. o~o L-l~olI~ J" 

We shall also need a few dimensional concepts concerning metric spaces. 
N(x, r) will denote the open ball of center x and radius r. If S is a subset of a 
metric space, N is called an e-net for S if any point in S is within a distance e 
of some point in N; S is said to be e-separated if any two points in S are at a 
distance greater than e. For  any totally bounded subset O of a metric space we 
may define its e-entropy N~. It is the logarithm (base 2) of the minimum 
cardinality of an e-net. Its e-capacity Z~ is the logarithm of the maximum 
cardinality of an e-separated set. The definitions and properties of those quan- 
tities and the way of computing them in many cases are given in the remark- 
able paper [12 3 by Kolmogorov and Tikhomirov. 

Throughout  this paper we shall denote by A i, C or Ci different constants 
but the Az's will always have the same meaning (issued from our assumptions) 
while the C~'s will be generic constants (often depending on the former ones). 
For  two sequences {u,} and {v,}, u. ,~v,  will mean that CllAn'~Vn<~C2un for 
some positive constants C1, C 2. In this case we shall say that {u,} and {v,} are 
of the same order. 

II. Smoothness and Dimension 

As was mentioned in the introduction a smoothness assumption for a family of 
densities generally implies some dimensional properties. As a very simple 
illustration we may consider the case of all density functions on [0; 1] satisfy- 
ing a uniform Lipschitz condition such as 

If(x) -f(Y)l ~ C Ix -Yl x, y~[O; 1]. 

Then the e-entropy N~ of this set is of order e -~. Using the techniques in- 
troduced in [2] and [3] we immediately find, by solving the equation ne E 
= C 1 8 -1 that an upper bound for the speed of estimation will be Czn -1/3 
when the risk is measured by dl for example. Analogous considerations using 
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results concerning e-capacity of this set give us the lower bounds. Since the 
relations between smoothness and dimension have been known for a long time 
by workers in approximation theory (see [12] and more recent results in [15] 
and [16] for example), we may express our assumptions in terms of dimension- 
al properties of the density families. This will allow us to give a unified 
treatment of different problems. Our A1 reduces to an assumption concerning 
the metric e-entropy of O, A2 is closely related to the e-capacity of O (see [12] 
for details). We shall also need two other technical assumptions, ULB being 
used to distinguish between the two possible behaviors of Hellinger distance 
and CS to ensure the possibility of estimating (see counterexamples in [7] and 
Sect. 4). 

CS. All densities f in 0 have the same compact support. 

In this case we may always assume that # is Lebesgue probability on the 
common support. This rescaling will not change the index of smoothness of the 
family but only the constaiats which are irrelevant here. 

ULB. There exists some constant L > 0 such that f > L for f in O. 

The two following assume that k is a decreasing function on [0; 1]. 

Al(d ,  k). The set 0 is metricized by some distance d and for each e in ]0; 1] 
there exists an e-net N(e) for 0 the cardinal of which is smaller than 8 A~ Also 
A o k(1)> 1/2. 

A2(k). For any e in ]0; 1] there exists some function g~ with support on I, g(I) 
=v and j 'g~d#=0 with 

I 

Ng~ll~<a and /z{lg~l>Ate}>A2v. (2.1) 

There exist r translates I + x i of the support of g~ which do not intersect and are 
such that the family 

{ f+~=16~g~(x-xi)}  (2.2) 

belongs to 0 with either 

i) cSi= +1 ii) c5i=0 o r  1, 

f being constant and equal to c on ~ I +x~. Moreover the following inequalities 
hold i= 1 

and either 
v=<A3 k-l(e); l>rv>-A4>O. (2.3) 

~) 2>-c>--A5>0 or 13) Ale<~c<--A5e. (2.4) 

It is clear that under ULB c 0 only is possible, 13) is useful only in the case 
that d = h and ULB does not hold. 
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Remark. 1) A1 is actually much stronger that what is needed in order to apply 
Theorem 3.1 but since it is easier to check and is satisfied in all subsequent 
applications, there is no need for the refined version given in [3]. 

2) In Sect. 3 we shall always assume that A1 holds with d=do~. This 
implies that O is compact for d~ and therefore uniformly bounded. In this case 
all dp's for 1 < p < 2  are bounded by some multiple of h as noticed in [3]. 

In the simplest cases the function k will be a power function of e which 
leads us to the following 

Definition 2.1. If a family (O, d) satisfies A1 and A2 with k(e)=e -~, c~>0 it will 
be said to have an exponent of dimension c~. 

This exponent is easily computed for the classical smooth families. For 
example assume that for f in O 

I f<~)(x)- f (p)(y) l<Clx-y[  ~ p>O, 0<c~__<l, x ,y~[0 ;  1]. (2.5) 

Then the family will be said to have an exponent of smoothness s=p+c~ and it 
is known that for such a family 6 = s-a. For  densities on some compact convex 
subset of dimension m in IR m, if (2.5) holds (f(P) being now any partial 

m 
derivative of order p) we shall find 6 =- - .  We may extend this to anisotropic 

s 
smoothness on IR m, which means that, as functions of coordinate x~, l < i < m ,  
the densities have smoothness s~, but s~ depends on i. In this case we may 

define an exponent of global smoothness s by s - l = m - ~  ~ s7 a and the follow- 
ing will hold: i= 1 

Proposition 2.2. I f  0 is a family of densities on ~m with common compact 
convex support of dimension m and exponent of smoothness s>0,  then Al(doo, k) 

m 
and A2(k) hold with an exponent of dimension (~ =--.  

S 

Much more general families can be used. In [2, 3] we consider families 
with a given concave modulus of continuity, i.e. the set of all functions 
satisfying 

If(x)-f(Y)l  < Co(Ix  -Yl) (2.6) 

co being a concave non-decreasing function and C a constant such that co(e)>z. 
The smooth families with s < 1 are of this type. We may also consider generali- 
zations of (2.5) of the form 

l fie)(x) -f(P>(Y)I < Cco(px -yp) (2.7) 

and multidimensional analogues (isotropic or not). For  the general case on Nm 
with different conditions of type (2.7) for each coordinate, denoting by t/= O~(e) 
the reciprocal function of t/~--,e= r/p' col(t/) we would find that 

Log k(~) = - ~ Log ~bi(~ ) 
i=1 
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which is a simple extension of the ordinary case when coi(t/)=t/~'. We shall not 
insist on this because those properties are only related to approximation 
theory and may be checked by the arguments used in [12]. Actually other 
types of families could be dealt using assumptions A1 and A2 and more 
general functions k may occur (see [2] and [3] for illustrations of this fact). 
Properties of type A1 may be obtained directly for distances other than d~o, 
depending upon the conditions imposed on the family (examples may be 
found in [16]). Here we shall always assume Al(d~,k)  and then derive 
Al(dq, k) from the fact that dq<__do~ when the dominating measure is a proba- 
bility, which is assumed here if CS holds. For h, the problem is different. It is 
known from [2, 3] that under some ULB condition we have h < Cd~; in this 

case there will not be any problem (just change h into C - l h  which is not 
\ 

important for the type of result we look for, or change k(e)into k (~--~)). But 

without ULB condition we only know that 2h2<dl<do~ so that Al (d~ ,k )  
implies Al(h,  kl) with kl(e)=k(e2). As a consequence if a family has an 
exponent of dimension 6, the rates of convergence will be functions of c~ for dq 
or h under ULB and functions of 26 for h without ULB, assuming that case/3) 
of A2 holds. But before we come to this, let us give the following useful but 
simple lemma: 

Lemma 2.3. Assume that g~ is a function with support on I, #(I)= v, that (2.1) 
holds and that f is constant and equal to c > e on I. Then 

Aql A2eqv<dq(f ; f + g)= 2-q dqq(f - g ;  f + g)<=eqv, (2.8) 

A~ A2 e2v a 1 eZv 
- - < h  ( f ; f  + _ g ) < - - -  (2.9) 

12 e =2  e '  

A21A2 e2V<=h2(f +g;f-g)<eZv-- (2.10) 
2 c = c 

III. Upper Bounds for the Risk 

The idea of relating the speed of convergence with the dimensional properties 
of the parameter space and of the construction of "universal" dimensional 
estimates goes back to Le Cam [13]. We shall use here the following result 
which may be found in [2, 3]. 

Theorem 3.1. Suppose we observe n i.i,d, random variables from an unknown 
distribution Po in some parameter space (0,  d) with metric d. Suppose also that 
the following properties are true for some constants B, D: 

i) d(O; O')<Bh(Po;Po, ) Po, Po,~O, 
ii) for some e with ne2 > D > �89 there exists an z-net N in (0, d) such that 

Card [Nc~ N(0, 2Je)] _-< 2 jD V0~O, j>3 .  
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Then there exists an estimate O R of  0 such that 

sup lE0 [d*(0,; 0)] _<_ C(B, t) e t. (3.1) 
0e6) 

Let us now apply this theorem to our particular case. If we restrict our- 
selves to d 1 or h, i) is certainly true because of (1.1). It is also true for dq if 
l < q < 2  and Al(do~, k) holds because O is then uniformly bounded (see [3]). 
For q >2  this becomes false and the treatment of such cases does not naturally 
follow from this theory. That is why we shall restrict ourselves to the case 
1 < q < 2 throughout this section. 

Let us now assume that A 1 (d~o, k) holds. Then we may distinguish between 
two cases: 

~) d=dq,  l<q__<2 or d = C h  and ULB holds. 
13) d = h and ULB does not hold. 

In case c~) A l ( d , k )  holds; in case /~) Al(d,k~), lq(e)=k(e2). But in order to 
apply Theorem 3.1 we only need to check that 

ne2>D>-_�89 with ~) D=Aok(e ) or ~) D=Aok(a2) ,  
that is 

c 0 ne2->Aok(~) ~) ne2>-_Aok(e2). (3.2) 

If ~ satisfies (3.2) we shall immediately get that 

RM(d ~, n)< C~ t (3.3) 

which leads to the following corollary using Proposition 2.2. 

Corollary 3.2. Assume that 0 is a family of densities for which A l (d~o, ~-~) holds 
with a distance d satisfying either c~) or ~), then there exist estimates 6, of  0 
depending on n observations such that 

- - t  

sup lE0 [dt(6,; 0)] < { C1 n2+6-t case c~ 

0so C2 n2(l+~ ) case fl" 

I f  0 is a family of  smooth densities on some compact convex subset of  N"* of  
dimension m with an exponent of  global smoothness s then 

~ t s  

RM(d t, n) < C 3 n 2~+" case ~, 
- - t s  

R g ( h  t, n) < C., n 2(~+,,) case [3. 

These are the classical results of [2, 3, 5, 8, 9, 18], but we may also deal 
with more special families using for example the moduli of continuity. Let us 
just consider two simple cases using Theorem 3.1. 

Example 1. Let us look at densities on [0; 1] satisfying (2.6) with co(x)= 
- x  ~ logx; 0<c~_<l; x<{ .  Then, following the same computations as in [2, 3], 

we easily find 
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- - t ~  t 

Case ~: R~t(d t, n)<__ C 5/2 2 ~ + 1  logn 2Z+l, 
- - t ~  t 

Case fl: R~t(h t, n)< C6F/2e+2 logn 2~-+2 

Example 2. Same case as Example 1 but co(x)= for x<0.1.  Then 

Case c~: RM(d t, n)< CT(logn ) t, 

Case fl : R M(h t, n) <__ Cs(log n) -t/2, 

which shows that very slow rates may occur (those bounds being optimal as we 
shall see). 

Other cases including classes of analytic functions could also be treated but 
to get lower bounds for those classes one generally needs assumptions that are 
more complex than A2. This would make this presentation more obscure. For  
examples of such cases see [2] or [3] and [8]. 

IV. Lower Bounds for the Risk 

Let us begin with two general theorems which could be used in many circum- 
stances to find lower bounds. They are Fano's Lemma and Assouad's Lemma. 
The first one has been applied very often in [11, 8, 9, 41 (see [10] or [3] for a 
proof) and is in a sense more general because it applies in more general 
situations. It could also replace Assouad's Lemma in almost any practical case. 
Assouad's Lemma is more specific but gives better constants and is also easier 
to apply. It is in the spirit of Proposition 2.1 of [5] or [18] and may be found 
in [1]. 

Fano's Lemma (see [3], Lemma 2.7). Let S be a finite set of  probabilities S 
= {P1; .--; P~} such that 

I<(~,~)<=I< v~,~ss. 

Then for any estimate ~ with values in {1; 2; ... ; r} we have 

/f 

r -1 ~, P~EqS==i] =>7 (4.1) 
i = 1  

K + l o g 2 < ( 1 - 7 )  log ( r -1 ) .  (4.2) 

In the case of n i.i.d, observations, we have P/=Q7 and K(PI, Pj)=nK(Qi, Qj) 
so that (4.2) is equivalent to 

n[supK(Qi, QJ)] +log 2<(1-7)  log(r -1). 
i , j  

(4.3) 

We shall now prove a suitable version of Assouad's Lemma following the 
original treatment of [1]. The hypercube Cg(r) of dimension r will be the set 
{0; 1} r with points x = { x l ;  ... ;xr} , xi=O or 1 and distance A" 

A(x, x 3 =  ~ Ixi-x'il. 
i = 1  
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Assouad 's  Lemma.  Assume we are given n i.i.d, observations from some unknown 
distribution in some parameter space O. Assume that some finite subset Oe of 6) 
is in one-to-one correspondence with Cg(r): 

x ~g'(r) ~ P~e O~ 

with the following properties 

h2(p~;P~,)<=fli<=l if xj=x~, j+i .  (4.4) 

is a loss function defined on the space of probabilities and satisfying for all P: 

#(P;  P.)>= Z [x i4 (P)+(1-x~)  4 ( P ) l ;  
i = 1  

(4.5) 
F~(P),(;(P)>-_O; f,(P)+f[(P)>=c~>O i=1 ,  ... ,  r. 

Let ft, be any estimate and let R B be the Bayes risk of ft, with respect to the 
uniform probability on 0~." 

R B = 2 -"  y'  ~. ~(~, e~) dP 2. 

7-hen/f ~ = r -~ ~ / L  
i = 1  

r0~ 
RB >= T max [1 -(2nfl)*/2; �89 _fl)2.].  (4.6) 

Proof. Using (4.5) we may write 

4(P.)dP~ + ~ ~ ' ^ f, (P~) dP], ] 
i= 1 x [x i=  1 x l x i =  0 

= � 8 9  ~, d P : ] + f  ' ^ e,(P,)d[  2-r+* Z d ~ ] ]  
i= 1 x [x i=  1 x [ x i =  0 

>-- =[2- r+1  ~ V~ ";2-~+* 2 P-~" 
- 2  i=1 xlx i= l XlXi= 0 

Inf(x, y) being a concave function of (x, y), Jensen's inequality entails that 

R . >  2 ~ [ 2 * - ' ~  rc(P~",P~",)], 
i= 1 Ji 

Ji = {(x, x')l x i =0,  x' i = 1, xj =x)  for j 4= i}. 

For  the pairs (Px, Px,) such that (x,x') belongs to Ji, (4.4) holds. Using (1.1) 
and (1.2) this leads to 2 , , p (P~', P2,)>(1 -f l i )  2" and 

7z (P2, P~",) => 1 - [1 - (1 - ill)2,] 1/2 _--- max [1 - t(2nt~piJ~l/2", !(12, - piJa a2,lj 

which implies 
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R,> T r -~ max[ l - (2nf l0 i /2 ; �89  
i = 1  

the conclusion follows from a convexity argument. [] 

In the sequel we shall always use this lemma with all fi/s equal to fl but 
this version may prove useful in other cases. 

The use of (4.6) in conjunction with assumption A2 will then become fairly 
obvious: 

Corollary 4.1. Let 0 v be a subset of 0 of the following type 

0 ~ =  big i with i) c~i= ___1 or ii) 6 i=0  or 1. 

f is a density which is constant on the sum of the supports of the gi's which 
supports are disjoint and the &'s are translates of the same function g with 
~ g(x)dy(x)=O. Assume that Y(P, Q)=dq(P, Q.) or h2(p, Q) (in this case we take q 
=2 in (4.9)) and 

h 2 ( f + g ~ ; f - g ~ ) < f l ( c a s e i )  or h2 ( f ; f+g l )< f l ( case i i )  (4.7) 

f ( f + g , ; f - g ~ ) > c r  (case i) or d(f ; f+gl)__>a (case ii). (4.8) 

Then the (uniform) Bayes risk on Ov for any estimate depending on n i.i.d. 
variables satisfies 

Rs > 2-q r~ max [1 - (2nil)1/2; �89 - f i ) 2 n ] .  (4.9) 

Proof We shall just look at case i) for f = d  q and apply Assouad's Lemma to 
O~ which obviously satisfies (4.4) since all g[s are translates of the same 
function with disjoint supports. Because of the definition of ~ we easily see that 

( P , f +  

I i being the support of gi, 

= S d~P _ f _  &q 4 
u / *  

and because (a + b) q < 2 q- 1 (a q + b q) 

2_ l<g, >= E - ( f  + 
i= i= 1 i 

which implies (4.5) with 

dP q 
d# r ~ - f  q-gi d# 

4 + E / > 2 * - q ~  - f - g i  + ~x-x-f+gi  d# 
Ii 

> 2 1 - q  ~ 12gl]qdx>21-qo:, 
Ii 

hence the result. [] 

Remark. The assumption that f is constant wasn't used in this case and could 
be removed but is useful for case ii) or when f=h Z ;  also in what follows, the 
constancy o f f  could be removed when 6 i = ___ 1 and f = d q. 
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Proposition 4.2. Assume that A2(k) holds and ~ satisfies n~2~A6k(~ 2) /f d=h 
and fl) holds, ne z <=A 6 k(e) in all other cases. Then 

RM(d q, n) > Ce q. (4.10) 

Proof Let us prove it when d=h in case fl, the other cases being analogous. 
Then A2(k) holds with (2.4) fl) and (2.2) i) (say). The hypercube Oe of Corol- 
lary 4,1 is then given by the family (2.2) with gi(x)=g~2(x-xi). Using (2.10) and 
(2.4) we may choose fl=e2vA-~ 1 in (4.7) and e=A2A2(2A5)- le2v  in (4.8). 
Putting these values in (4.9) and using (2.3) gives the result. [] 

We may now use our whole set of assumptions to put together the upper 
and lower bounds using Theorem 3.1 and Proposition 4.2 to get 

Proposition 4.3. Assume that Al(d~,  k) and A2(k) hold and that ~, is a sequence 
such that 

n 2 , , j  0{); 2 ~ j  ~2 s..-.k(s.) case ne.,-.k(o.) case fi) 
then 

RM(d q, n )x  e~. 

Proof. We just consider case c~. Then by assumption 2 nen < Ck(~,); choosing e 
= [(Ao/3 C) 1/2 v 11 e,, (3.2) will hold and (3.3) will give an upper bound of order 
~q which is also of order e~,. The lower bound case is similar using the fact that 
(4.10) holds if n~ a__<A 6 k(e). [] 

As a consequence we find the well-known fact that the rates of 
convergence for smooth densities with exponent s in I(  m given by Corollary 3.2 
are the optimal ones. The same holds for the examples of Sect, 3. 

We shall now prove an analogue of Theorem 1, ii) of 1-7] in the case of a 
given convergence to zero of the risk. Devroye's result could be proved in the 
same way but since we shall get an improved version in the next section we 
shall not consider his case but the following one, deliberately restricted for the 
sake of simplicity and brevity: O is assumed to be a family of densities with 
support on [0; 1], d=h and ULB holds. It could easily be generalized to N",  
dq or case ft. We shall need a slight modification of A2 allowing us to use 
simultaneously different g]s corresponding to different values of e. It is practi- 
cally no more restrictive than A2. 

A'2(k). Suppose that the ei's , i> 1 are small enough (q <=tli, say), that they form a 
decreasing sequence and that the gi's (&=g~) are chosen according to A2 with 
(2.1). Then for some numbers r i the family 

i > 1  j = l  

is a subset of O, the functions gi(x-x~j) have disjoint supports and 

A42- i<rlv i<2-1;  vi<A3k-l(el) .  (4.11) 

Proposition 4.4. Let us consider two decreasing sequences {an} and {cn}, converg- 
ing to zero with 
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C 1 na 2 < k(a,)<__ C 2 na 2. (4.12) 

I f  A'2(k) holds and {f,} is a sequence of estimates, there exists at least one point 
0 in O~ such that 

lim sup C n  1 a~- z lE0 [he (L;  f , )]  > 1. (4.13) 
n 

2 is the Notice that under assumptions A1 and A2 (4.12) implies that  a, 
speed of convergence of RM(h 2, n). Statement  (4.13) shows that it cannot  be 
improved for a given sequence of estimates. For  the smooth  densities it implies 
the following 

Corollary 4.5. O being a family of smooth densities on [0; 1-] with exponent s and 
{c,} a sequence decreasing to zero, for any sequence {f,} of estimates there 
exists a fixed f in 0 such that 

2 s  

lim sup c~- 1 n 2 ~+ 1 lEs [h e (f ,  ; f ) ]  > 1. 
n 

Proof of Proposition 4.4. Let  us denote  by c~i the vector {ao}J= 1 . . . . . .  i and call 
the 6i's the coordinates  of the points of Ooo. Ok is the subset of points with ~ 
= 0  for i>k. Choose a sequence {m~} such that % < C 3 C 2 2  -~-2 and a se- 
quence n i satisfying 

ni>=mi; C 4 a n ~ t l i  , (4.14) 

< C4 C3 ni- 1/2 2-i/2 a 2 (4.15) 
ani+l= 5 n~ 

with 

C3 A2A2A* ( C l t l / 2  
- 100 ; C 4 = A 1 ,  \4A 3 ] 

This is always possible inductively since a,-~0 when n--+ +oo.  Fix gi=C4a,, 
and notice that i f fo  and f l  in Ooo just differ by one coordinate  c5 i and only one 
61j then by (2.9) 

A2 Az vi~2 <hZ( f " r ~<vi82 (4.16) 
12 = woo J1]= 2 ' 

and i f fo  is in O k a n d f l  has the same k first coordinates  

vi~2< 2 
hZ(fo;f l)<=~ri ~ 2 - i - l g 2 _ < 2 - k - l g k +  1. 

i>k 2 = i > k  

This implies using (1.1), (1.2), (4.15) that  

pn~(fo; fO>exp[nklog(1 _~;_f]]>~+l~ 

1/2 2-k/z<C3 2 - -k  D(P~; P~) < - nk ek + l ~ -  e k2 , 

2 
g k +  1 

1 - -  n k 2k + 1 ,  

(4.17) 
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and also for any probability P 

h2(p.  p)>�89 p)_h2(Po.pt)>�89 p) C3 2-k ~2 
~ ~ - - - -  G k . 

20 
(4.18) 

Now consider the subset of O k formed by the points having their k - 1  first 
coordinates fixed, c5 k being free and some estimate /s depending on n k obser- 
vations. We are then in a situation to apply Corollary 4.1 which gives using 
(4.16) and (4.11) 

RB > �88 A 2 A 2 ~2W27>2_kgc o211-(nkA3e#k-l(G))l/2]. = ~ - -Vke2[1- - (GVk~k ,  a ~  "~3~ 

2 - 1  <g/, But since ek--<--a.~ we have G G k (G) = k C2 k-  1 (G~) a2~ < and then there 
3 

exists one point Po in O k with those first k -  1 coordinates and 

IEp> 2 [h2(ff; Po)] >2-k  Ca G. 

Because of (4.18), (4.17) for any P~ having the same k first coordinates as Po 

IE,?~ [-h2(i6; [~ C32-k  2] 9 22-k>~--~3 -k 2 - 2 e k. P0] --> 2 -k C 3 e~ - ~  G G = 

Now by induction on k, we shall find that for any k there exists 3,, ..., c~ k such 
that any point fo in O~ with those first coordinates will satisfy for all i<  k, 

, G c3c  - ,  
IEo[h2(fo �9 " 2 a . ,  (4.19) , >= an~ C m �9 = 4  = 4 

We deduce (4.13) by a simple limiting argument since O~ is compact and the 0's 
satisfying (4.19) up to order k form a decreasing sequence of closed subsets of 

0o0. [] 

V. B a d  P r o b l e m s  

We shall consider here what may happen when the families are not nice. Let us 
begin with the case considered by Devroye [7] of the densities bounded by 2 
on [0; 1] m. Actually we may take m= 1, the extension to IR m being obvious. 

Let us start with some cg~o function ~ in [0; 1] with the following properties 

1 

~ ( x + l ) =  -~,( �89 O__<x<�89 so that 5~,(x)dx=O 
0 

[ 14] I~l_<_l and ~=1 on ~ ; ~ -  ; ~(P)(0)=0 Vp. 

(5.1) 

Now fix an integer r and put g(x)=~,(xr); then it is immediate to check that 

1 --e 1 1 - e  
_<c~_<-; dq(1 +g;  1 - g ) > 2  q - - -  h2( l+g ;  1-g)=c~, r r r 
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Let us consider the family O r =  1+  big x -  , 3~= +1. Applying 
i =  

Assouad's Lemma we get from Corollary 4.1, 

1 - - g  Ru(h 2, n ) > = ~  (1 - (2nr -  1)1/2); Ru(d q, n)>__(1 -e)(1 - ( 2 n r -  L)1/2). 

Letting r ~  + oo and ~-~0 we find that for the set O of ~ functions on [0; 1] 
bounded by two 

RM(h2, n)>=�88 and R~(dqq, n)>l. 

To get Theorem 1, i) of [-7] we just need a proper normalization by the IL q 
norm of the true density. But in Or ,  all elements have the same IL q norm, 
which is approximately 2 q- i; dividing by this quantity we find for the normal- 
ized risk R~(dq)>2 -q+~. 

Let us now come back to any smooth family but just assume that its 
elements may have arbitrary compact support (i.e. CS is no more true) and 
consider the following transformation A from ~~176 13 to cg~ given by 
Af(x)=2f(2x),  2>0.  It transforms a density into a density and has the follow- 
ing property that 

dq(Af; Ag) d{(f; g) 
h2(Af' Ag)=h2(f; g); dqq(Af; Ag)=2q-ldq(f;  g); ][Afl]~ - [Ifl[ q 

t q Because of this property the risks RM(h 2, n) or RM(d ~, h) will remain constant if 
we transform O r using A. But for given r, even very large, there exists some 
2<1  such that A(O~) will become arbitrarily smooth with compact support 
because all elements of O~ e have their pth derivative uniformly bounded. That 
means that any family of arbitrary smooth densities with compact (not the 
same) support contains some AOe and that for those families 

t q - -  RM(h 2, n)~�88 RM(dq, n)>2 -~+1 

Remark. This is the analogue of Devroye's result for the family •(g). We could 
get exactly the same result as his using a modified version of the above proof 
and applying case ii) of Corollary 4.1. 

We shall now improve the second part of Devroye's theorem. We shall 
need some preliminary considerations and first recall this known lemma: 

Lemma 5.1. Assume that O~ is in one-to-one correspondence with some hyper- 
cube of dimension r and that d is a distance such that 

dq(Px ; Px,) > c~A (x, x'). 

For any 2 with 0 < 2 < 1 there exists a subset S of O r such that 

CardS_>_ exp ; d~(P;Q)>~r 2 
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Remark. In conjunction with Fano's Lemma this leads to an equivalent of 
Assouad's Lemma which was used in [2, 3-1 or [8-1 to get lower bounds and 
could have been used here, but the constants would not have been the same 
and Assouad's Lemma is simpler. 

First we must describe the families of densities in cg~ [0; 1] that we shall 
use. Let us come back to the function ~ of (5.1) and consider two sequences 
{ai}, {ri} for i>  1 with 

Define 

+09 

a i>0;  ~ a i = l ;  rl--++oo when i~+oo ,  ri~]N. 
i = 1  

i 

Ai= 2 as A0=0;  if i>1 ;  }~i=ri-lai; I i=[Ai_ l ;A i ] ;  
j=l 

k ~- ~ i > l ; j = l , 2 , . . . , r  i 

and consider 

Oa= 1 ( ~ i j f i j ( x  , (~ij = - ~ 1 .  
�9 = j 

0' 1 is a family of cg~176 densities on [0; 11 bounded by 2. Easy computations with 
K = 2 log (2e- 1) give 

g ( l + 6 i j f j ;  1-Oijf~j)<K;~i; h2(1 +f~j; 1 -f~j)__<2i, (5.2) 

h2(1 +f~j; 1 - f0=>2,(1 -e)2;  dg(1 +f~j; 1 -f~j)_>_2q 2,(1 -e)(1 -e2)  q/2. (5.3) 

From now on we shall restrict our discussion to the case of h, the other one 
being similar up to multiplication by 2 q which cancels in (5.11). O' a may be 

considered as a product of hypercubes of dimension ri: 0' 1 = I7I cg~. Applying 
i = l  

Lemma 5.1 to cg~ with 2 =  10 -1 /2  and d replaced by h restricted to the set Ii, we 

shall find a subset cg i of cg~, with cardinal larger than exp ~ , having the 

following property: for any two points x, x' in cgl, (using (5.3)) and suitable 
choice of z, 

1 --10 -a/2 >_ai. (5.4) h2(p~ lz,; P~, lr)>2iri(1 _e)2 2 - 3 

Since the set cg i will only depend on the part of the measures supported by I i, 
-t-oo 

i.e. on coordinate i, the subset O I = IN[ c~ i will have the following property that 
i = !  

if 0 and 0' are two points in O1, 0={01}i>__ 1, Oi~Cgi and A(Oi, 0'i)=0 if 0i=0'i, 1 
in the other case: 

+ c r  

h2(O, O,)= ~ A(Oi, , 2. ai <h2 �9 Oi) hi , ~ =  i < a l ,  (5.5) 
i = 1  
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+~X3 

K(O, O')<K ~ A(O,; 0'~)a~ (5.6) 
i = 1  

because of (5.2) and (5.4). Moreover we may assume that 

rl ) 
exp ~ <Carded i = U  i (5.7) 

and notice that O 1 is totally bounded and closed, hence compact by (5.5). 
Given a subset Tj of O 1 of the following form 

Tj={O1}x...X{Oj_I}XSjx{Oj+I) X..., Sj~(~j ( 5 . 8 )  

with Card T j = C a r d S j =  Vj< Uj and an estimate 0j of 0t, with values in St, 
depending on n observations, we may apply Fano's Lemma and using (5.6) find 
that if 

nga j+log2< l~31og(Vj-1) (5.9) 

then Vj -1 ~ Poj[0t ,0t]  12 �9 >TS, which implies because of (5.5) 
OjffSj 

vj -1 E moj [ h2 (Poj; P0)] > 13 t. 
A 

OjeSj 

By (5.5) h2(Poj; P0) is smaller that at; then there exists a subset S) of S t with 
Card S) > 121 Vj and 

2a t 
inf IE0, [h2 (P0, "P0)] > (5.10) 

oj~sj ' 13 " 

Given an arbitrary probability P let us call 6j any point in S t which minimizes 
h(P11~; Poj lr). It is easy to see that we always have (with O, 0 in T~) 

hz(e; Po) > �88 Po). 

This remark and (5.10) give the following lemma: 

Lemma 5.2. Given a subset Tj of 0 1 defined by (5.8) with C a r d S / -  Vj satisfying 
(5.9) and an estimate P depending on n observations, there exists a subset Tj of 
Tj with 

inf iEo[h2(Po; 16)] > aj.  Card Tj 2 1/). (5.11) 0~ =26' '>~f 

or inf IE0[d~(Po;/~)-1 >2aj~ 
0~rj = 13 ]" 

We are now in a position to prove our theorem. Let any sequence {c~}~>__ 1 
converging to zero be given such that 7~g<sup c I<~6. Fix a1=26 sup ci and a t 

i [ 

= 2 1 - t ( 1 - a  0 for j > 2 .  Then {at}t>__ 1 is a strictly decreasing sequence. Define 
m o = 0 and 

mj= mj_lVSU p i lc i>26 +1, j > l .  
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f Then m ~ = l  and tmj}j>__~ is a strictly increasing sequence such that i>mj 

implies c < a j  For convenience let us set the following notations: 
~--26 

Mj=mj+ 1 -mj;  m)=mj+~ - 1 ;  Bj=(2/ll)M~; 

Cj=(2/11)-";+1; Dj= 1 q-213 exp[13Kmjaj]. 

Notice that C~=BF ~ and Cj+I--CjBj-+Ip We may now choose the rSs in- 
ductively in order that the U i satisfy (5.7) together with 

Ut>CtD1; Uj>=CjDj[ [I U/-i-1] ,  j > 2 ;  (5.12) 
i<=j--1 

(in the case of dq just replace in those formulas 26 by 6.5). We shall first prove 
the following 

Lemma 5.3. For any Tj of the form (5.8) such that 

m}K aj + log 2 < ~ log [Bj Vj - 1] (5.13) 

and any sequence of Mj estimates {/~li=mj; m j + l ;  ... ;m)} such that /~ is a 
function of i variables there exists a subset Tf' of Tj with 

inf inf ci-~lEo[hZ(l~;Po)]>l; Card Tf '>  Bj Vj. 
o~ ry i= ,,.~ ..... m) 

Proof Assuming that (5.9) is true with n=mj we may use Lemma 5.2 to get 

some T i ,  Card ' 2 a. ' Tj >77Vj and satisfying (5.11) which gives us since ~6>ci for 
i>=mj 

inf c2,j 1 IE0 [h2(/~,,j; P0)] > 1. 
O~ T~ 

But we may now apply the same lemma to Tf if (5.9) is still valid with n=mj  
+ 1 and Vj is replaced by 2 Vj, and so on. The cardinal of the last set Tf' will 
be at least BjVj. Since during this process the right member of (5.9) is 
decreasing and the left one is increasing, all conditions will be true if the last 
one is true which amounts to (5.13). [] 

Suppose we are given a sequence {/~},>1 of estimates, /~ depending on n 
variables. In order to apply Lemma 5.3, we may notice that (5.13) is equivalent 
to BjVj>Dj which will always be satisfied because of (5.12) if we have 

VI=U1; Vj>Cj--~[ [ I  U / - ' - I ]  -a Uj, j > 2 .  (5.14) 
i<, i -  i 

We start the construction with 7"1 given by (5.8), and S~ =;g~ so that V 1 = U~ 
and we may apply Lemma 5.3 getting some T~' of the form 

r'~ = S'~ x {02} x . . .  ; Card S'~ > B~ V~, 

where S'~ obviously depends on 02, 03, .... Keeping 03, 04 . . . .  fixed we shall 
now vary 02 and write S'~(02). When 02 varies in cg 2 we shall consider 
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CardS'~(02). Since S';(02) is a subset of (~1 we may see that if each 01 in cg 1 
02 ~c~2 
belongs to no more  than V 2 distinct S'~(02) then 

V2 gl ~---- 2 CardS'l(02) >= U2 B1 U1 (5.15) 

which implies that  V 2 > B 1 U z and proves the existence of some S a with Card  S 2 
=Vz>=BaU2=U2CT a and some 01e 0 S'~(02) such that  with Tz={O1}xS2 
x {03} x . . . ,  

inf inf c:~ l lEo[h2(~; Po)] > l. 
O~T2 i-- 1 ..... m' 1 

Let  us now proceed by induction. Assume that  for any sequence 0j+l,  0j+ 2 .... 
there exists 01, 02, . . . ,  0j_ 1 and some subset Sj of ~gj such that  (with Tj as in 
(5.8)) 

inf inf c~ -1 lE O [h2 (/]; P0)] > 1, 
OeTj i= a ..... mj 1 

CardSj=I/)>=UjC721[ ~I U / - i - 1 ]  - I  
i<_j--1 

Lett ing all 0~ fixed except for 0j, we may  apply L e m m a  5.3 to Tj since (5.14) is 
. . . .  " ' > V satisfied and for some Tj and Sj with Card S~. = Vj = Bj i 

inf inf cF 1 iEo[h2(/~; P0)] > 1. 

To  make the induct ion work we keep 0j+2, ... fixed and let 0j .~ change; then 
01 . . . .  ,0y_ a and S}' are functions of 0j+ 1. But the possible choices for 

j - 1  
01 . . . .  , 0 j _ t  are at most  I ]  Uv Since because of(5.12) Uj+a[ [-[ U ~ ] - I > I ,  we 

i=1 i<_j-1 
may restrict Oj+l to vary within a subset S~+~ of ~j+~ of cardinal 

~'J~+ 1 ~ Uj+I  [ H Ui] - 1  and keep 01, . . .  , O j _ l  fixed for all the 0j+l in S~.+1. 
i<=j--1 

Now S}' is still depending on 0j+ 1 but  we may also fix it using the same 
argument  that  we used for (5.15) and get some fixed 0j for a subset Sj+ 1 of 
S}+ 1 of cardinal  Vj+ 1 and 

Vj+ ~ Uj> Z ,  CardSj'(Oy+ l)> Uj+ l V/ 
Oj+leSj+l 

which implies 

V+I v/>R vi 
vj+ > - _ _ j  [ FI = - 

Using these 0 a, . . . ,  0j_ 1, 0j, S j+ a, to define Tj+ 1, we get 

inf inf ci-llEo[hZ(~;Po)]>l 
O~Tj+I i= 1 ..... m~ 

and from (5.12) and (5.16) 

Vj+ > o j + l  [ H U  j i ] - 1  
1 i J = Cj i<=j 

(5.16) 
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which is our  induct ion assumption. We have then proved the following theo- 
rem in case i) for n < + oc. Case ii) is absolutely analogous because all points in 
O 1 have the same ILq no rm and this no rm is approximate ly  2 q- 1 when e is 
small. The case n =  + o o  follows f rom the fact that  the subset of the 0's 
satisfying (5.17) for some n is closed then compact ,  non-void  and decreasing 
with n. 

Theorem 5.4. For any given sequence {c~},,_>_ 1 converging to zero such that 

i) ~ < sup c t < 1 i f  d = h, ii) 2 < sup c i < 2 i f  d = dq 
t i 

there exists a compact subset 0 of  densities in cg~o [0; 1] bounded by two and for  
any sequence {/~},>_ 1 of  estimates depending on n observations there exist infinite 
subsets 0',  with 

inf infc~ 11E0[h2(/~; P0)] > 1, 
Oe(O' n k < n 

O r  

inf infc~ -1 lE0[d~(/~; P0)] > 1, (5.17) 
OeO' k < n  

o r  

inf infc~ -1 IE 0 >-21-q 
0~o' k<n k Heoll~ q I -  

and there is at least one point in 0 satisfying (5.17) with n = + oo. 

Remarks. 1) The constants  which we used here (z-ag, etc . . . .  ) are not  optimal at 
all and were chosen for convenience. The same proof  with longer computa t ions  
could lead to ~ which is still not  optimal. 

2) The same me thod  also gives a similar result for the second family s 
considered by Devroye  for d 1 or  h (not for dq if q > l ) .  We just need minor  
modificat ions and the t ransformat ion A ment ioned at the beginning of the 
section. We should use a family {At}t=> ~ of such applications with different 
values of the 2i's: 2 i = r  t- ~ a~ and apply A t to the parts of the measures which 
have a support  on I t. This will t ransform I t into an interval of length r t and 
each f~j will have a support  of length 1. The details are easy. It does not  work 
for q > l  just as in Devroye ' s  paper  because there is no longer a suitable 
normal iza t ion  by the 112 q norm. 

Je remercie tout  part iculi6rement Lucien Le Cam et Charles Stone pour  
leurs nombreux  commentai res  et suggestions. 
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