Skip to main content
Log in

Metal surface temperature induced by moving laser beams

  • Surface Modification and Ablation
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature for stationary cases. In practice, however, moving beams are of more importance.

Based on a fast numerical algorithm which allows calculation of the induced temperature profile, the maximum surface temperature for stationary and moving laser beams is calculated. Next, two types of approximating functions are presented relating the scanning speed to the maximum surface temperature. Using dimensionless numbers, the results can be applied to different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Heuvelman, W. König, H. K. Tönshoff, J. Meijer, P. K. Kirner, M. Rund, M. F. Schneider and I. Van Sprang, Ann. CIRP 41(2) (1992) 657.

    Google Scholar 

  2. J. Meijer and I. Vpan Sprang, Ann. CIRP 40(1) (1991) 1183.

    Google Scholar 

  3. M. Bass, Encyclopedia of Physical Science and Technology 7 (1987) 129.

    Google Scholar 

  4. A. Brandt and A. A. Lubrecht, J. Comp. Phys. 2 (1990) 348.

    Google Scholar 

  5. R. B. Kuilboer, P. K. Kirner, J. Meijer, M. Rund and M. F. Schneider, Ann. CIRP 43(2) (1994) 585.

    Google Scholar 

  6. Th. Rudlaff and F. Dausinger, Proceedings of the 3rd Conference on Laser Treatment of Materials, Erlangen, 1990, vol. 1, p. 251.

  7. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).

    Google Scholar 

  8. J. F. Ready, Effects of High-power Laser Radiation (Academic Press, New York, 1971).

    Google Scholar 

  9. J. Bos and H. Moes, Proceedings of the 20th Leeds-Lyon Symposium on Tribology, 1994, p. 491.

  10. C. de Boor, A Practical Guide to Splines (Springer-Verlag, Heidelberg, 1978).

    Google Scholar 

  11. J. A. Greenwood, Wear 150 (1991) 153.

    Google Scholar 

  12. H. Blok, Inst. Mech. Engrs., Proceedings of the General Discussion on Lubrication and Lubricants 2 (1937) 222.

    Google Scholar 

  13. J. C. Jaeger, J. Proc. R. Soc. NSW 76 (1943) 203.

    Google Scholar 

  14. D. T. Swift-Hook and A. E. F. Gick, Welding J. 52 (1973) 492.

    Google Scholar 

  15. D. Rosenthal, Welding J. 20 (1941) 220.

    Google Scholar 

  16. M. F. Ashby and K. E. Easterling, Acta Metall. 32 (1984) 1935.

    Google Scholar 

  17. M. F. Ashby and K. E. Easterling, Acta Metall. 30 (1982) 1969.

    Google Scholar 

  18. J. C. Ion, K. E. Easterling and M. F. Ashby, Acta Metall. 32 (1984) 1949.

    Google Scholar 

  19. H. R. Shercliff and M. F. Ashby, Metall. Trans. 22A (1991) 2459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römer, G.R.B.E., Meijer, J. Metal surface temperature induced by moving laser beams. Opt Quant Electron 27, 1397–1406 (1995). https://doi.org/10.1007/BF00326491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326491

Keywords

Navigation