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Summary, We study the law of the iterated logari thm for the partial sum 
of i.i.d, r andom variables when the r,  largest summands  are excluded, where 
r , = o ( l o g l o g  n). This complements earlier work in which the case log logn 
= O (r,) was considered. A law of the iterated logari thm is again seen to 
prevail for a wide class of distributions, but  for reasons quite different from 
previously. 

1. Introduction 

Let X, X j, X 2 ,  . . .  be a sequence of independent identically distributed random 
variables with common  distribution function F. For  x > 0 define 

a(x)=P(IXl>x), K(x)=x -z 
lyl_-<x 

Q (x) = G (x) + K (x). 

y2 F(dy) 

If we need to distinguish X from another  r andom variable we will write Fx, 
Gx, Kx and Qx. 

Let (1)X . . . . .  , (")X, be an arrangement  of X1 . . . .  , X ,  in decreasing order 
of magnitude, i.e. [(~)X,I > . . .  > [(")X,[. We will assume throughout  that the distri- 
bution function of X is continuous one effect of which is to make the ordering 
(1)X . . . . .  , (")X. unique except on a null set. This assumption could be dispensed 
with but the ensuing technical details would only serve to obscure the main 
ideas. For  r > 0  an integer, define (r)S,=(r+ ~)X,+.. .(")X,.  We write S, for c~ 
We will refer to (r)S, as a t r immed sum. 

The study of t r immed sums is mot ivated on the one hand by statistical 
considerations, (although it is perhaps more  natural  to consider tr imming by 
the order statistics in this context) while on the other hand, probabilistically, 
by a desire to better understand partial sums of i.i.d, r andom variables and 
in particular to understand the role played by the summands  of large modulus. 

1 Research supported in part by NSF Grant DMS-8501732 
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This in turn leads to a deeper understanding of the classical limit theorems 
and puts them more sharply into perspective. 

The present paper grew out of an attempt to answer some unresolved ques- 
tions which arose in [3]. One of the main results in [3], Theorem 5.5, states 
that if the distribution of X satisfies 

(1.1) lim sup G ( x ) / K ( x ) <  oo 
x - - +  o0 

and r. is an increasing sequence of integers satisfying 

(1.2) 

(1.3) 

then 

(1.4) 

lira inf r./log log n > 0 
n--+ oo 

lim sup r. n-  1 < G(O), 

I<*-)S. - n E X  1 (IX[ <b.)[ 
0 <lim.4| (n log log n b 2 K(b.))  1/2 <oo 

where G(b. )= r. n-1 .  Condition (1.1), first introduced by Feller [2], is equivalent 
to stochastic compactness of S. and is discussed in detail in [4] where further 
references can be found. In particular (1.1) holds whenever X is in the domain 
of attraction of a stable law of index ae(0, 2]. The normalizer in (1.4) is the 
natural one to use for the Law of the Iterated Logarithm (L.I.L.) in that Pruitt 
[13] has shown that i f X  is symmetric, (1.1) holds, r.T oo and r.n -1 -+0 then 

(r.)Sn 
(1.5) (rib2 " K(b,))l/2 ~ N(O, 1) 

where N(0, 1) is normal with mean 0 and variance 1. It is interesting to note 
that no symmetry assumption is needed for (1.4) to hold, but (1.5) may fail 
without it. 

Results similar to (1.4), for other variants of the trimmed sum, have been 
discovered recently by several authors, see [5] and [6] for example. In each 
of these works it is also assumed that r, satisfies (1.2). In light of (1.5) one 
might expect that (1.4) holds without this assumption. We will show that this 
is not the case although an L.I.L. result for {r")S. is still available but for entirely 
different reasons. In (1.4) the large values of (r-)S, arise due to the cummulative 
effect of many summands as in the classical LIL, however when rn=o(log log n) 
the large values of (r")s, are determined by a small number of large terms. 
For example, we will show that if r, is an increasing sequence of integers tending 
to oosuch that 
(1.6) r.(log log n)- 1/2 ~ 0 

and if in addition to (1.1) the distribution of X satisfies 

(1.7) l iminf G (x) /K (x) > 0 
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then the large values of (r.-1)S, ' after centering, are due entirely to (r")X, and 
further, that (r-)X, can be normalized to obtain a finite non-zero lim sup. That  
is, there exist e,,  6, such that 

(1.8) 0 < lim sup [(~-)X. [ e [  1 = lim sup 1('- - 1)S n - 6 n ] O~ 2 1 < O0 
n - - +  oo n - ~ o o  

(1.9) l i m  s u p  [ (rn + I ) X n  ] (~n 1 = lira sup ](~-)S. - 6. ] ~21 = O. 
. ~ c O  ~ - - +  o9  

If instead of (1.6) we assume only that 

(1.10) r,(log log n)- 1 __, 0 

then one can still find c~ n such that 

(1.11 ) 0 < lim sup I<r-)x. I ~:  1 < o0 
n ~ o o  

but now there may be other summands which are also comparable in size to 
c~,. Nevertheless by controlling these terms we will show that under (1.1) and 
(1.7), there exists 7, and 6 n such that 

(1.12) 0 < l i m  sup  [<r"- l)S,,-- 6n[ 7n I < 00. 
. ~ o a  

The normalizer 7, is given by N, ~, where N .=  [r2/log log n] + 1 (Ix] denotes 
the integer part of x). The way in which this arises is that roughly speaking, 
the large values of (~--1)S. occur because infinitely often there are N, terms 
comparable in size to ~, and these terms all have the same sign. This is quite 
different from the way the large values arise in the classical LIL, see Sect. 5 
for a further discussion. 

Condition (1.7) is equivalent, by a famous result of L6vy, to X not being 
in the domain of partial attraction of the normal law. Thus the class of distribu- 
tions satisfying (1.1) and (1.7) is still quite large and includes all of those in 
the domain of attraction of a stable law of index ee(0, 2). We should perhaps 
point out here that Maller [10], extending earlier work of Kesten [7] in the 
case r = 0 ,  has shown that the failure of (1.7) is necessary and sufficient for 
the existence of an increasing sequence 7, such that (1.12) holds with 6, = median 
(S,) and r, a bounded sequence. 

To illustrate the difference between the normalizers in (1.4) and (1.12), assume 
that X is symmetric stable of index c~e(0, 2) and the scale parameter is chosen 
so that G ( x ) ~ x  -~. Then the normalizer in (1.5) is given by nl/~(e(2 
- c O  -1  rl,-2/~) 1/z and so in (1.4) it is n l/~ (e (2 - e) -1 u 2/a log log n)l/2. In (1.12) 
if we take for example r . = [ I p n ]  for p > 3 ,  where Ivn is the pth iterate of the 
logarithm function, then 

- = e 2 / ~  lim sup ff-)X,[ c~ -1 = l im supI(r"-1)S,[ ~, 1 
. - - +  oo . ~ o 9  

where e, = nl /~( lvn  ) -  1/~ exp ((/2 n + . . .  + l v_ 1 n ) ( e r , )  - 1). 
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If (1.7) fails then the non-classical behaviour given by (1.12) need not hold. 
For example let X have bounded support, then it is easy to see that (r")S, 
satisfies (1.4) no matter how slowly r, increases to infinity, indeed (1.4) holds 
for r, constant. In fact it can be shown that for any random variable X in 
the domain of attraction of the normal law, there exists an increasing sequence 
r,, which depends on X, such that r ,=o( log  log n) and (1.4) holds, c.f. [-8]. On 
the other hand one can also construct examples of X in the domain of attraction 
of the normal law for which (1.12) holds provided 1-, increases sufficiently slowly, 
this rate again depending on the distribution. Thus for distributions satisfying 
(1.1) and (1.7) there is a single level, namely log log n, which distinguishes between 
classical and non-classical LIL behaviour, while for distributions attracted to 
the normal such a cut-off, if it exists, seems to depend on the distribution. 

2.  P r e l i m i n a r i e s  

Our basic assumption on the underlying distribution will be 

(2.1) 0 < lim inf G (x)/ K (x) < lira sup G (x)/ K (x) < 
X--+ o0 X - ~ o ~  

Hence for some 0 > 1 and all x > 0 

(2.2) G (x) < Q (x) < 0 G (x). 

By (2.1) and Lemma 2.4 of Pruitt [12], there exists q > 0  and x 0 > 0  such 
that for all x > x o 

(2.3) x~ Q(x) 

On the other hand by Lemma 2.1 
for any ~e(0, 1) if ~X>Xo then 

is decreasing. 

of [12] x 2 Q(x) is always increasing, thus 

(2.4) ~z 0-1 G(~x)< G(x)<=O~ ~ G((x). 

We will assume that r, is a sequence of integers such that 

(2.5) r, increasesto ce, r,(12 n) -a ~0.  

In order to describe the normalizing sequences e, and 7, we must first intro- 
duce an auxilliary sequence. Thus let a. be any sequence of positive reals satisfy- 
ing the following conditions: 

(2.6) a, is decreasing 

(2.7) (l n) - 2 < a, < (l n)- 1 

(2.S) ~a,n_le~r ,{<oo e < 0  
. oo ~ 0 .  



LIL for Trimmed Sums 297 

In the case that r, satisfies l iminf r , ( l p n ) - l > O  for some p>2 ,  one can easily 
check that a,=((ln)(lzn). . . (Ip__l  n)) -~ satisfies (2.6)-(2.8). The proof that such 
an a, exists in general is not difficult but will be deferred to the appendix. 

It is a simple consequence of the monotonicity of a, and r, that if b > 1 
then 

(2.9) ~ t , { < ~  i f g < 0  a bk e er[bk] 
k = if e > 0  

and furthermore, again by monotonicity, if nk > b k, then for every g < 0 

(2.10) ~ a,k e~r"k < oo. 
k 

Of course the sequence a, depends on r, but note that if a. satisfies (2.6)-(2.8) 
then it satisfies (2.6)-(2.8) with r, replaced by the sequence r, + j  for each fixed 
j. Also observe that if w, is any sequence such that ] r . - w , ] = o ( r , )  then (2.9) 
and (2.10) hold with w, replacing r, provided we exclude the case e= 0 in (2.9). 

Now let 

(2.11) ft, = exp ((1 a21 _ r, lr, + r,) r21). 

Thus 

(2.12) a , = e x p ( r , - - r .  I r , - r ,  l fl,). 

For later reference note that by (2.5) and (2.7) for any pMR 

(2.13) r~ + 1 (/2 n)-  a fin >= (r,/12 n) p exp ((/2 n/r,)) --* oe. 

Set 

(2.14) N. = [rg./12n3 + 1 

and for )~ > 0 define 

(2.15) e, (2) = min {x: G (x) = (2 n ft,)- ~ } 

and let 

(2.16) 7, (2) = N, ~, (2). 

We will write e, for e,(1) and y, for 7,(1). The sequence e, will be used to 
normalize ~r-)X,, while 7, will be used to normalize ~'--1)S,. Note that by (2.5) 
and (2.13) nfl,--+oe, so c~,(2) and 7,(2) both tend to infinity for every 2>0.  
Thus by (2.4) if 21 <22 and n is sufficiently large 

(2.17) (21/022) q-1 (Zn (}~2) ~ 0~n(}~l) ~ (021 }~2 i)1/2 an (22)" 

In the special case that X is in the domain of attraction of a stable law 
of index e e(0, 2), then G ( x ) / K ( x ) ~  ( 2 - e ) e - 1 .  Thus using Lemma 2.4 of [-12] 
instead of (2.4) one can improve (2.17) in this case to 

(2.18) c~,(21) e,(2z)- 1 .  (21 2 ;  1)~/~. 
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In many of our Borel-Cantelli arguments we will be using the same subse- 
quence to sum along, so we will now describe this subsequence and also some 
of its properties that will be needed. 

Let a >  1 and set nl = [ ( a -  1)- 1] + 1 and 

(2.19) nk+l =min{n:  rn) rn~ or an(an J2}/x lank]. 

We first note that for some be( l ,  a) 

(2.20) nk > b k for all k. 

This is because for each given k, there are [k/3] values of j for which one 
of the following hold: 

rnj>rnj_~, a,~<a,~_~/2, n j=[anj-1] .  

In the first case, since rn is integer valued 

[k/3] __< rn~ 

<= 12 nk 

for large k by (2.5). In the second case 

2 [k/31 a~ 1 < a~ l  

<(lnk) 2 

by (2.7), while in the final case by the definition of nl0 it is not hard to see 
that for some c~(1, a), independent of k, 

El k ~ C [k/31. 

Consequently (2.20) holds, and also by (2.19) 

(2.21) nk+ i < a nk. 

Set mk= nk+l--1. Note  that we trivially have 

(2.22) r, is constant on Ink, mk], 

and since an is decreasing we see that 

(2.23) fin and %(2) are increasing o n  Ink, ink]. 

Furthermore for some constant c > 0 independent of k 

(2.24) /?,~ > c fl,,~. 



LIL for Trimmed Sums 299 

As a consequence of  this and (2.21) we have by (2.4) tha t  for some cons tant  
c > 0 independent  of  k and  2 

(2.25) ~.k(4) >= c ~m~(4) 

(2.26) ?,,~(2)>__ c7m~(2 ) . 

Remark.  T h r o u g h o u t  we will use the letter c to denote  a positive cons tant  whose 
value may  change f rom one useage to the next. 

3. Probability Estimates 

F o r  b > 0 and d > 0 define 

(3.1) g.(d)= ~ Xi l(IXil~d) 
i = 1  

(3.2) J,(b)= ~. l(IXil>b). 
i = l  

In  order  to prove our  main  results we will need probabi l i ty  estimates on 
the size of  J,(b) and  U,(d). Since we will be work ing  outside the range for which 
the classical exponential  bounds  were designed (see p. 266 of  I-9]) we will use 
the following estimate which is an immediate  consequence of  L e m m a  3.1 in 
[12]. 

L e m m a  3.1. For any v > 0, d > 0, s > 0 and all n 

(3.3) P(I U , ( d ) -  EU,(d)I > 2 -1  v e ~ nd K (d) + s d v -  1) < 2e-~. 

Given two sequences s, and  t, we will write s , ~  t, if s, t~-a and s~-1 t, are 
bo th  b o u n d e d  as n -+ oo. 

L e m m a  3.2. There exist  positive constants cl and c 2 such that for  all r>= 1, all 
n and all b > 0 

(3.4) c 1 r - 1 / Z e x p ( r - r l r + r l ( n G ( b ) ) - 2 n G ( b ) )  

< P (J, (b) >_ r) < c2 r -  1/2 exp (r - r 1 r + r 1 (n G (b)) - (n - r) G (b)) 

provided 

(3.5) n > r 2 

(3.6) nG(b) < r/2. 

Proof. For  any b => 0, r => 1 and n => r 

(3.7) P(J,(b)>=r)= ~ G(b)J(1-G(b) )  "-j .  
J = r  
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Set j =  G(b ) J (1 -G(b ) )  "-j. Then  for r < j < n  j = = 

U j + x _  ( n - j )  G(b) < nG(b) < 1 

u i ( j  + 1 ) ( 1  - -  G(b)) = r ( 1  - G(b)) = 2 ( 1  - G(b)) 

by (3.6). Fu r the r  since 1 < r < n 1/2, we have  by  (3.6) tha t  G(b)< (2 n 1/2)-1< 2-(3/2) 
and  so uj+a uj -1 < 2  -1/4. Hence  

where the c is independen t  of  n, r and  b. Nex t  by  Stirling's fo rmula  there exist 
posi t ive cons tan ts  c3 and  c 4 such tha t  for all r > 1 and  all n > r 2 

' ( n--7"("7 r_112| i n "  n -12  (3.9) 

N o w  it is a s t ra igh t forward  exercise to check tha t  for all r and  n satisfying 
l < r 2 < n ,  

< (  n / " - "  
(3.10) e r - a  < e ' .  

= \ n - r ~  

Also the e lementa ry  inequali t ies e-ZX~ 1 -  x ~ e -x for 0 _< x ~ 1/2, give 

(3.11) exp ( - 2 n G (b)) <__ ( 1 - G (b))"-" < exp ( - (n - r) G (b)). 

Thus  (3.4) follows f rom (3.8~(3.11). [ ]  

Corol lary  3.3. For any sequence of integers s, satisfying 1 <-- sZ, < n and any sequence 
of real numbers b, > O, if nG(b,) Sn 1 ~ 0 then 

(3.12) P(a,(b,) > s,) ~ O. 

This also follows trivially f rom M a r k o v ' s  inequality.  The  fol lowing result 
is an  easy consequence  of  a general ized Borel-Cantel l i  Lemma .  

L e m m a  3.4. Assume Bk, Ck are two sequences of  events such that B k k = 1, 2 . . . .  
are independent and for each k, Bk and Ck are independent. I f  N P(Bk)= oO and 
P(Ck) ~ 1 then P(Bk Ck i .o . )= 1. 

Proof Let  Ek=BkC k. Then  P(Ek)=P(Bk)P(Ck)~P(Bk)  and  so NP(Ek)=Oe. If  
i < j  then 

P(E i E j) < P(B~ B j) = P(Bi) P(Bj) ~ P(E~) P(Ej) 

as i ~ oo. F r o m  these two facts, it easily follows tha t  

(--~1 i )) ( =~1 ))--2 l im sup  P(Ei E s P(EI <= 1. 
n - + o o  i j = l  i 
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The result now follows by P3 on page 317 of [1@ [] 
We conclude this section with a simple Lemma which will prove useful 

later. 

Lemma 3.5. For any x > O, e > 0 and N > 0 

(3.13) [ (N + e) [xJ]  + i - [ N [ x ] ]  __>e(1 + 8 )  -1  X 

Proof  If ~=0 the result is trivial, thus we may assume e>0.  If x < ( l + e )  e-1 
then RHS__<I while L H S > I  for all x. If x > ( l + e ) e  -1 then x - l > ( l + e ) - l x  
and so 

LHS _> (N + ~) [x] -- N [x] 

> ~ ( x -  1) 

>e( l+~)-~  x. [] 

4. Main Results 

We begin this section by describing the growth of (r")X.. The only consequences 
of (2.1) that will be used in this paper are (2.4), (2.17), (2.25) and (2.26). Since 
these are not needed in the proof of the following result, no restrictions need 
be placed on the distribution of X. 

Theorem 4.1. Assume that r. satisfies (2.5), then 

l imsup I(~)X.I ~__<1~.~_. if 2>1  (4.1) 

Proof  Given 2>  1, choose aE(1, 2) and let n k be defined by (2.19). Set mk=nk+ 1 
--1 and observe that b y  (2.13) and (2.21), mkG(C%(2))r~ 1 ~ 0 .  Thus for large 
k by (2.21), (2.23) and (3.4) 

(4.2) P(I(r")X.I > e.(2) for some nk<__n~=mk) 

=P(J . (e . (2 ) )>r .  for some nk <<_n<mk) 

<= P(J,,~(a.~(2)) >= r.k ) 

<= c a r.-~ u2 exp(r.~-- r..  lr.~ + r. .  l(m k G(%k(2)))) 

= c 2 r~ 1/2 exp (r.k -- r . .  I r. .  + r..  l (nk G (~.~ (2))) + r.~ l(mk n[ 1)) 

< c2 r~ 1/2 exp (r.~-- r.k lr.~-- r.~ lfi.~ + r.~(1 a--/2)) 

= c2 r~ 1/2 a.~ exp((/a-- 12) r.~) 

and this gives rise to a convergent series by (2.10) and (2.20) since a < 2 .  The 
upper bound now follows by the Borel-Cantelli Lemma. 

Now fix 2 < 1 and choose D, an integer, large enough that 

(4.3) 1 - D-  t > 2 
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Set nk = D k and 

Ak = { Jnk (O~nk ();))- Jnk-1 (~nk (J~)) ~ rnk}" 

Now J,k(C~,k(2))--J,k_, (e,k(2)) has the same distributions as J,~_,~ 1 (~,~(2)) and 
one can again easily check that the conditions of Lemma 3.2 are met, so 

P (Ak) > c i r~ 1/2 exp (r,~-- r.~ Ir,, k + r,~ l((nk-- nk- 1) G (~,~ (2))) -- 2 (rig -- nk- 1) G (~,~ (2))) 

C a r~  1/2 exp (r,~-- r.k Ir,~ -- r,k lfl,~ + r,~ (l(1 --D 1)-  12)-- 2 (2fl,k)- 1) 

= c~ r~ 1/2 a,~ exp ((/(1 -- D-  1)_/2) r,~-- 2 (2 fl,~)- a) 

which gives rise to a divergent series by (2.9) and (4.3) since r ,~ f l ,~o  oo by 
(2.13). Since Ak k =  1, 2, ..: are independent events, P ( A  k i.o.)= 1 from which the 
result follows. [] 

Of course in general a,(2) and a, need not be comparable, for example when 
G is slowly varying, however in our case we have 

Corollary 4.2. Assume that r, satisfies (2.5); 

(a )  if X satisfies (2.1) then 

(4.4) 0 < lim sup [(r")X,[ ~-  1 < oo 
n - - ~  oo 

( b )  if  X is in the domain of  attraction o f  a stable law of  index a E (0, 2) then 

(4.5) lira supl~r-)X,] ~,- 1 = 1. 
11---~ o9 

Proof  (a) follows from (2.17) and (4.1) while (b) follows from (2.18) and (4.1). [] 

Remark. It is easy to see that (4.4) holds more generally than under condition 
(2.1). What  is needed for (4.4) is that c~,(21)~e,(22) for some 21 < 1 < 2  2. This 
is true for example if there exists p > 0 and a non-increasing function f such 
that x p G(x) ~ f ( x )  as x --* oo. In particular this is true for many random variables 
in the domain of attraction of the normal law. 

As was pointed out earlier any sequence a, satisfying (2.6)-(2.8), satisfies 
(2.6)-(2.8) with r, replaced by r, +j.  Thus defining 

(4.6) ft, ( j)= exp ((Ia~ 1 _ (r, +j)  l(r, +j)  + (r, +j))(r, + j ) -  1) 

~, (2, j) = min {x: G (x) = (2 n ft, (j)) -1 } 

we have by Theorem 4.1 that for each j > 0  

(4.7) lim sup t(r-+J)X.[ { ~  1 if 2 > 1  
, ~  ~,(2,j) 1 if 2<  1. 

In particular for each j > 0, ](r. +J)X,] < a,(2,j) eventually. Our next aim, Lemma 
4.4, is to show that this holds uniformly in j for O<=j<=j,, provided j ,=o(r , ) .  
Actually we will not prove quite this much, we will introduce a new sequence 
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b,(]), which is more convenient to work with and show that I(r-+J)X,l<b,(j) 
for all 0 =<j_<j, eventually. To do this set 

(12n] 
6 , = e x p  \ 2r2 ] (4.8) 

and for 0 Gj =< r, define 

(4.9) 

First note that by (2.5) and (2.7) 

l 2 / 7  , l 2 
nS~" fl,,>n exp - - ~ r +  

Thus 

(4.10) 

b,(j) =rain {x: G(x)=(2n 6J, ft,)-1}. 

>nr21 

~OC}. 

b . ( r . )  ~ oo 

and since 6. < 1 we trivially have 

n--rnrnlrn+rn) 

(4.11) b , ( r , )<b , ( j )<b , ( j -  1 ) ~ . ( 2 )  

for 1 < j  < r,. Next observe that for 0 < j  < r, 

j l zn  ~_la2a_lr, la~ 1 
1(6~ ft, ft,(j)- 1) = 2r~ - r, - - - -  

> jla,~ t jl2n 
-r.(r.+j) 2r2, 

~ 0  

by (2.7). Thus 

(4.12) 6~ fl ,> fl,(j), O<j<r , .  

r, +j  
~- l(r. +j) 

Later we will need to compare b,(j) with b,(1) and also b,(1) with a,. To do 
this we let 

(4.13) a =  [2l(4 0)] + 1 

where 0 is given by (2.2). Thus by (2.14) 

(4.14) 6n ~N~ > 4 0. 

Lemma 4.3. I f  n is sufficiently large, then for all integers k >O satisfying akN,  
+ l < r ,  
(4.15) b,(~kN, + 1) =< 2 -k b, (1). 

Proof. If k = 0 then the result is trivial, thus we may assume k > 1. 
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By (2.4) if 2-  k b, (1) > x o then 

(4.16) G( 2 -k b,(1)) < 4 kO G(b.(1)) 

<(40)k(Zn6, fl.) - ~ 

<=(2n6~kN.+l ft.)-1 

= G(b,(akN, + 1)). 

Thus if we can show that 2 -k b,(1)>Xo holds whenever a k N , +  1 <r , ,  provided 
n is sufficiently large, we will be done. Let 

(4.17) k, =max{k:  2-kb,(1)>Xo).  

Since b . (1)~  ~ by (4.10) and (4.11), we must have k, ~ ~ .  Suppose that ak,  N, 
+ l < r ,  infinitely often, then by (4.16) and (4.17) along some subsequence we 
have both 

2-(k.+ l) b.(1)<Xo 

and 
2-k"b,(1)>=b,(ak, N , + l )  

> b, (r,) 

---~00 

by (4.10) and (4.11). This is a contradiction and so ~ k , N , + l > r ,  eventually 
which completes the proof. [] 

If r, = o ((12 n)1/2) then 6, ~ 0 and so for every e > 0 by (2.4) 

G(eo~,) ~ e-  Z O G(o~,) 

=8-20(n /L)  -~ 

<(2n f ,  fl.) -1 

= 6 ( b . ( I ) )  

provided n is sufficiently large. Thus if r, = o((Iz n) 1/2) then 

(4.18) b,(1) = o (a.). 

Lemma 4.4. Let j ,  be any sequence of integers satisfying j .  r~ x __. 0 and set 

A,={[(r.+J)X,[>b,(j) for some O<=j<_j,} (4.19) 

Then 

(4.20) P(A n i.o.) = 0. 

Proof let  a~(1, 2) and define nk by (2.19). Set ink=rig+l--1 and let 

B k = {A. for some nk < n < ink}. 

~k(J) = min  b.(j). 
nk <--n<=mk 
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By (2.22), since we may assume j,  is nondecreasing, we have 

(4.21) P(Bk)<P(](r"~+J)X,,~[>Sk(j) for some O<j<j,,~) 
<jm~ max P(l(rmk+J)xmk]>~k(j)). 

O <=j <=jmk 

We now wish to apply Lemma 3.2. By (2.5) it is clear that if k is sufficiently 
large then max (rmk+j)Z<mk. To check (3.6) first observe that by (4.12) 

O<=j<=Jmk 

(4.22) G(6k(j))= max G(b,(j)) 
nk~n~mk 

= max (2nb~fl ,)- i  
nk <n<rak  

< max (2n ft,(j))-1 
nk < n < m k  

<(2nk flnk (j)) -1  

by (2.6) and (2.22). Thus for every 0 < j  <j,,~ 

(4.23) rnk G(6k(j)) < ank G(6k(j)) 
<a(2f i  0)) -1 n k 

=(a/2) exp ( lank1 + l (r,k +j) -- i ) 
r.~ +j 

( la2kXt 
< (a/2)(r,~ +j) exp r,-~+j~] 

=< 1/2 (rink +j) 

for large k, independent of j, by (2.5), (2.7) and (2.22). Consequently we can 
apply Lemma 3.2 to obtain 

(4.24) P(Bk)<j,,~ max c2(r,n~ +j)-l/2exp((rm~ +j) 
O <=j <=Jmk 

-- (rm k +j) l(rmk +j) + (r,~ k +j) l(mk G(gk(j)))) 

Using (2.22) and (4.22) the exponent above can be written as 

(4.25) (r,,~ + j ) -  (r,,~ +j) l(r,,~ +j) + (r,,, +j) l(n k G(6k(j))) + (r,,~ +j) l(mk n; 1) 

< (r,~ +j)-- (r,~ +j) l(rn~ +j)-- (r,~ +j) l fl,~ (j) + (r,~ +j) (1 a--/2) 
=-la,~ +(r,~ +j)(la--12) 

by (4.6). Thus, since a < 2 

P(Bk) <-<_ C2Jmk r~nk 1/2 a,~ e (l"-/2) rnk 

and this gives rise to a convergent series by (2.10) since J,~k r,-~ 1 =J,,~ rm -1 ~0 .  
The result now follows from the Borel-Cantelli Lemma. [] 
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In proving the lower bound in Theorem 4.8, we will, roughly speaking, 
need to ensure that infinitely often the N, largest terms are all of size e, and 
further that all of these terms have the same sign. This will be formulated precise- 
ly, together with an additional requirement, in Lemma 4.6. To prove this we 
must first introduce some further notation. 

For O<_yl<=y2, if G(y~)>G(y2) let X(y l , y2 )  be a random variable with 
distribution function Fx(y,,y~) given by 

(4.26) dFx(y,,y~)(x)= l(y~ < ]x[ < yz)(G(yl)-G(y2))  1 dFx(x)" 

Thus X ( y t ,  Y2) is X conditioned to have absolute value between y~ and Yz. 
Note that 

(4.27) G x ( y l , y 2 ) ( x  ) = 

1 if x < y  1 

(G(x ) -  G(yz))(G(yO - G(y2))- ~ if y~ < x <Yz 

0 if x>y2  

We will write X(yl) for X(0, Yl). 
For  r > 2 and s > 0 let Hm, r + s,r- 1 (Y t, Y2) denote the two-dimensional distribu- 

tion function of ([("+*)Xm[, [(~-~)X,,[). Observe that this distribution assigns zero 
probability to the complement of the set {(yx, y2):0 < y 1 < Y2 and G(y 0 > G (Yz)}- 
The following proposition does not appear to be in the literature, but since 
variants of it are well known, (see for example Lemma 1.1 of ]-11]), we will 
not prove it here. 

Proposition 4.5. Let X i ( y l )  , i= 1, 2, ..., and Xj (y  1, Y2), J =  1, 2, ..., be sequences 
of i.i.d, random variables with common distributions given by X(y  0 and X(yl ,  
Y2) respectively. Further assume that these sequences are independent. Then for 
all r > 2 ,  all O<s<u, all bounded Borel functions q~l: R"-s-*IR 1, ~b2: IR*~IR t, 
and all Borel sets B~[0 ,  or) x [0, oe). 

(4.28) E [~) 1 ((r + u) X m  ' . . . ,  (r + s + 1)Xm ) • 2 ((r + s-- 1) X . . . . . .  ( r ) X m )  ; 

(l(,'+.)x,.i, [(,'- 1)Xml)eB ] 

= S Eio , ( ("-~)X, ._r_. (yO . . . .  , " ) X m - ~ - s ( Y i ) )  ~ 4 ) : ( ( ~ ) X . ( Y ~ ,  Y:)  . . . .  , 
B 

(x)X,(yl, y2)) dHm,,.+,,,.- 1 (Yl, Y2)" 

Remarks. 1. If s = 0  or u = s  we should explain what is meant by (4.28). If s =  0 
then q52- 1, while i f u = s  then q51 - 1. 

2. The more intuitive way of phrasing (4.28) is that the distribution of 
( ( r + u ) x m ,  . . . ,  ( r + s + l ) X m ,  (r+s--1)X . . . . .  , (r)X=) conditioned by L(r+*)XmL=yl, 
[(~-l)Xm[=y 2 is given by (("-S)Xm_,_,(y O, ..., (1)Xm-~-s(Yl), (s)X,(y*,Y2), ..., 
(~)X~(y,, Yz))- 
Set 
(4.29) p, = [rZ/ta n]. 
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Lemma 4.6. For every,integer N >  I there exists J~2~(0,1) such 
21E(0, 22) and all eE(0, 1) 

(4.30) P(I<r ~ ~n(/~l), [(rn+s")XnI "~ 0~n()~2) , E, i.o.)= 1 

where s, = N p,, t, = [(N + 2 e) p J  + 1 and E, = E + u E /  where 

(4.31) E + = ( ~ l l ( < " , + i ) X , > O ) > ( 1 - ~ ) s ~ }  
z 0 

(4.32) E~- = l((r-+~ . 
i = 0  

(4.34) 

(4.35) 

and 
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that for all 

s ic--  1 

~, l(<rk+i)Xm :>O)~sk--Vk 
i = 0  

__> (N - e) Pk 
> ( 1 - 8 )  s~. 

Similarly on the event AE Bk Ck we have (4.34), (4.35) and 

S k -- 1 

(4.36) E 
i = 0  

1 (<*~+ ~ < 0) > ( 1 - 0  sk. 

Remark. If s, =-0, then E, is the whole space. 

Proof. Fix N >  1 and choose ~2~(0, 1) SO that 

(4.33) /(222) + 2N + 1 <0  

Let nk = 2 k, and for notational convenience write rk = r,~, Sk = S,~, tk = t, k, Pk = P,~ 
and ek(2)=C%(2). Define Uk=[(N+e) Pk]+ 1 and Vk=[epk]. Note that Uk>Sk. 
Let 

<r)Zk = / "  largest random variable in absolute value from amongst 

Xnic l + l ,  . . ' ,  Xnk 
A~={(ric+i)Zk>O for all O<i<Sk} 

A[={(r~+i)Zk>O for all 0 < i < s k )  

Ak = A~ w A~ 

B k = -  {](~k +"ic)Zk I <= ~k(2a), [('k+sk)Zkl >= Ctk (22) } 

c~ = {J, ic_, ( ~  (,h)) _-< v~}. 

If Sk = 0 then A~ and A~- are the whole space. Observe that on the event A~- B~ Ck 
since u k + vk < tk we have 

I<~ic+ 'ic)x.icl _-_ ~ ( ; t d  
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Hence to prove (4.30), it suffices to show P(AkBkC k i.o.)= 1. To do this we 
will use Lemma 3.4. First observe that AkBk, k =  1, 2, ... are independent, and 
for each k, Ck and AkBk are independent. Now setting V'k=Vk+ i we have by 
(3.I2) 

1 - -  P ( C k )  = P (J.~- i (C~k (21)) > v~) 

--*0 

since 

rig- a G (ak (21)) (V'~)- 1 < (21 flk V'k) - 1 
<(1 +O(e2a 2 -1 flk rk/12 nk) 

~ 0  

d 
by (2.13) and (3.13). Next let mk = rig--rig- 1 = 2k- 1, SO {(S)Zk: 1 <j  <mk} = {(S)Xm~ : 

1 <j  < ink}. Thus to compute P(AkBk) we can use Proposition 4.5 with 

qs1 (Xl, . . . ,  x , ~ - s )  = 1 (Ix, I< ~ (,~1)) 

1 (Z i>0)  + 1 (Z i<0)  if Sk::[=O 
~ ( ~ ,  .. . ,  z ~ ) =  ]i=~ i~ 

1 if s k = 0  

B = {(Yl, Y2): ~k(,~2)_-< Yl _-<Y2 < ~ } .  

Recall that Uk > Sk SO there is no need to modify the definition of r to include 
the case Uk=Sk. Observe that if G(yl)> G(y2) then 

E ~2 ((sk)Xs k (Yl, Y2) . . . .  , <l)Xsk (Yl, Y2)) 

= E q~2 ( x l  (yl ,  y2), . . . ,  Xsk (y l ,  y~)) 
____ 2-s~ 

while for any Ya > ak(22) 

(uu - Sk) 
E~) I  ( Xmk-r l~-sk(Yl )  . . . . .  (1)Xmk--rk--sk(Yl)) 

= 1 -P([(uu-sk)Xmk_r~_~k(yl) [ > ~k('~l)) 

uniformly in Yl --r ak(22) by (3.4), since by (4.27) 

(rag-- rk-- Sk) Gx (y,)(C~k()Ca)) (Uk -- Sk)- 1 <= (ink-- rk -- Sk) G(C~k(2 0)(Uk -- Sk)- 1 

<= (;o, ~k(uk - sk))- 

< (1 + e) (e 21 flk r2/12 nk) - 1 

~ 0  

by (2.13) and (3.13). Thus by (4.28), for large k 

e(AkBk)>=2 -(~ + ~) e(l(~ +~)X~J > ~k(R2)), 
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and so to complete the proof  we must show that this gives rise to a divergent 
series. Let w, = r,  + s, and write Wk = W,~. Note  that I % - r , [  = o(r,) by (2.5) thus 
it is easy to check that conditions (3.5) and (3.6) are met, so by (3.4) 

(4.37) P(l(w~)Xmkl>=C~k(22))~cl Wk 1/2 exp(wk--Wk lwk--Wk lfl~--Wk /(222) 
-(2~ p~)-'). 

Now set f l ' .=exp ( ( l a21 -w ,  l w . + w . )  w ;  1) and fl'k=-fl'.k" Observe that by (2.5) 
and (2.7) 

Sk 1 a~ 1 
lflk-- lffk -- F I(1 + skr ~ 1) 

rk (rk + Sk) 

< 2Skl2nk Fo(1) 
2 

?'k 

__<2N+o(1). 

Thus for large k, l f l k - - l f i k = 2 N +  1 and so 

P(AkBk) > Cl 2-(~k+ 1) W~- 1/2 exp(wk_ Wk lWk-- Wk lfl'k 

- Wk  ( l  (2 22) Jr- 2 N + 1) -- (2z ilk)- 1) 

=Cl 2 -(s~+ 1)W/1/2 a,~ e x p ( - - W k ( l ( 2 2 z ) + 2 N +  1)--(22 fig)-1). 

Since I w , -  r, I = s, = o (r,) we have Sk = 0 (Wk), and further by (2.13) that fi~- t = o (Wk)" 
Thus by (4.33) and the remarks following (2.10), the above give rise to a divergent 
series and the proof  is complete. []  

Fix p > 2 and let 

(4.38) d, = min {x: G(x) = (/2 n/r,)P(nfl,)- t}. 

One easily checks that G(d,)--. 0 and so d,--* oQ. Let 

(4.39) 

Note that by (2.5) 

(4.40) j ,  r~- 1 ~ 0. 

Let nk defined by (2.19) with a = 2  and set mk=nk+x - 1 .  Let 

(4.41) dk= rain d., 
n k ~ n ~ k  

then 

(4.42) G ( CTk) < (/2 mk/rmk)P ( nk fl,k) - 1. 
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Observe that 
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G (b.,k (Jm~)) = (2 mk 6 ~  fl,.~)-* 
=(2ink fl"k)- 1 exp(j,.k 12 mk(2r2) - 1) 
> (/2 mk/rm~) 2P(2mk time)-1 

>= C(12 mk/r.,k) 2 P (nk fi.~)- 1 

by (2.21) and (2.24) where c is independent of k. Thus by (2.5) for large k, 
G(b,.~ (j,.~)) >_- G(dk) and s o  

(4.43) bmk(jmk)~dk. 

Similarly one can show that for large n 

(4.44) 

Now let 

(4.45) 

b,(j,)<=d,. 

ark = max dn 
nk <=nKmk 

then by (2.5), (2.21) and (2.24) for some c>O, independent of k 

G(da) >= (12 nk/r.k) P(mk flmk)- 1 

c (I2 nk/r.k) P(nk fl.k)- * 

=cG(d.k). 

Thus by (2.4) since d. ~ 

(4.46) dk <=Cd.k 

for large k, where c is independent of k. Also note that by (2.1) for any e>0,  
x 2+' G(x)--* oo as x--* o% (this actually holds for e,=0 also). Thus by (2.7) and 
(2.11), n -s ~. ~ oo for all s <  1/2. In particular (r~/t 2 n) p/2 c~. ~ oo and so by (2.4) 
for large n 
(4.47) d. G 0 ]f2 (r,/t2 n) p/2 o~n. 

From (2.5) it then easily follows that 

(4.48) d, r, = o (7,). 

Note also that by (2.21), (2.22), (4.42) and (4.46) for some constant c 

(4.49) ark m k G(t~) ~ cdnu (12 nk/rn~ ) pflG1 

= o ( ~ . )  

by (2.13) and (4.48). 
To simplify notation in the next Lemma, it is convenient to define 

U, (d) = U. (d) -- E U. (d). 
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Lemma 4.7. 

IU,(d,)-EU,(d,)[ 
(4.50) lira sup - 0  a.s. 

n ~ o 9  ])n 

Proof. Let nk be defined by (2.19) with a = 2  and set mk=nk+~ --1. By (2.21)-(2.23) 
it suffices to prove 

l U,(d,)I 
l imsup max 0 a.s. 

k ~  nk<=n<_mle ~;nle 

First observe that for nk _--< n <mk 

I U.(d.)l = I ~7o(a~) + ~ x ,  1 ( ~ <  Ix,I <=d.)- Z ex, 1(~< Ix,I _-<d.)l 
i = 1  i = i  

mle m k 

~lgn(~k)l+dk ~. l(dk<lX~l~Jk)+ ~ EIXr l(dk<lX~l~dk) 
i = 1  i = 1  

Thus 

(4.51) 
mk 

max IU~(d.)l~ max [U.(&)l+dk~l(&<lX, l~dk) 
nle <n<~mle nk <=n<=mle 1 

Bile 

+ ~ EIX, l l(a~ < IX~l ~dk) 
1 

= X + I I + I I I .  

Now by (4.43) for large k 

< dk J,,k (bBi~ (Jmle)) 

while by (4.19) and (4.40) for large k we have a.s. 

J,~le (bBi~ (j,,le)) < r,,le +jBI~. 

Thus for large k, by (2.22), (4.40) and (4.46) 

II  < 2clk rmk 

<= C d,k rn~ 

=o(~.~) 

by (4.48). Next 

= o (~.~) 
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by (4.49). To deal with I, first observe that  for nk<=n<=m k by Chebyshev and 
(2.2) 

n(I G. (d )l > n) 
< 

~ 0  

by (4.48) and (4.49), uniformly in n. Thus by Skorohod's  Lemma (Breiman [1] 
p. 45) for large k 

P(  max [Un(dk)[>ZeTnk)~ZP(lUmk(dk)l>e?nk). 
nk <--n<=mk 

We will now use Lemma 3.1 with s = 212 n k and v = 12 n k (2 r,~)- 1. Then 

Sdk v-1  <= 4dn~ rn =O(Tn~ ) 

by (4.48) while 

�89 v e ~mk ak K (dk) <-- 0 v e Vdn, n k G (~k) = 0 (7,k) 

by (4.49). Hence by (3.3) for any e > 0, if k is sufficiently large 

P(] ~7,n, (dk) I >eyn~)< 2 exp(--212 rig) 

which gives rise to a convergent series by (2.20). The result now follows from 
Borel-Cantelli. []  

We now come to our  main result describing the L . I i .  behaviour of (r"- ~)S,. 

Theorem 4.8. Assume that r n satisfies (2.5) and let yn and dn be given by (2.16) 
and (4.38) respectively 
(a )  If(2.1) holds then 

(4.52) 0 < lira sup[ (r-- 1)S, - E U, (d,)l ~s 1 < oo 
n- -+  oo 

(b )  

(4.53) 

Further 

(4.54) 

(4.55) 

I f  (2.1) holds and in addition r, = o((lz n) 1/2) then 

0 < lira sup I('-)X, [ ?,71 = lira sup[ (r-- 1)S. - E Un (dn)[ 7,- 1 < oo 
n ~ c o  n ---~ co 

lim sup[ (r'+ I)X,[ 7,- 1 = 0  
n ~ c o  

lim sup I(r")Sn -- EU, (dn)] 7;- ~ = 0 
n ~ c o  

( c )  I f  r ,=o(( l z  n) a/2) and X is in the domain of  attraction of  a stable law of 
index ~ ( 0 ,  2), then (4.54) and (4.55) hold and (4.53) can be strengthened to 

(4.56) lira sup J(r")x,I 7, -a =l i ra  supl (r-- 1)Sn--EUn(dn) [ y~ ~ = 1. 
n- -*  oo n - ~ o o  
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P r o o f  First note that to prove (4.54), it suffices by (4.7) to show that e,,(2, i) 
c~ - ~ 0  for some 2>1.  To do this it suffices by (2.4) to show that 
G(a.(2, 1) ) /G(a . )=  f i . (2  fl .(1)) - ~ ~ ~ .  But by (2.7) 

, l a2  t la~  1 
1(ft. fin(l)-1)~ 

r n r n + 1 

> 12 n 

= r . ( r .  + 1) 
---~ ct3 

if r. = o ((12 n)l/2). 
Next observe that (4.56) is an immediate consequence of (4.53) and (4.5). 

Further (4.53) follows from (4.55) and (4.4). Thus we only have to prove (4.52) 
and (4.55). We begin with the proof of (4.55) and the upper bound in (4.52), 
which will be proved simultaneously. Observe that to prove the upper bound 
in (4.52), it suffices by (4.4) to show that 

(4.57) lim sup [~-)S.-EU~(d.)[ 7~ ~ < oo. 
n.--~ oo 

Fix n; if ]~r"+ 1)X.I =<d . then 

and so by (4.48) and (4.50) 
(4.58) 

If [(r- + 1)X. ] > d. then 

(4.59) 

[(r-)S. - U~ (d.)] <_d. r. 

I ~'~ - E U.  (d . ) l  = o (~.).  

t / m  Pn 

I(r")S.-~U.(d.)[-_<l Y~ (r"+~x. 1U~ > d.)l 
j = l  

+ l U.(d.l- EU.(d.)l 
= I + I I .  

By (4.50), 1 1 =  o(7,), thus we have left to estimate 1. Let j ,  be as in (4.39), then 
by (4.20), (4.40) and (4.44) we have that I~r-+J-)x.I =<d, eventually. Thus for large 
n, using (4.11), (4.15) and (4.20) we have a.s. 

J n -  1 

(4.60) I <  2 ](r"+J)X.[ 
j = l  

j ~ -  1 

<= Z b,,(j) 
j = l  

[in/aNn] (k + t)atNn 

< Z Z b . ( j )  
k=O j = k ~ N n + l  

[in~aNal 

< ~, a N . b . ( k a N . + l )  
k=O 

U,,/ a N ~] 

<eN.b . (1 )  ~ 2 -k 
0 

< 2c~N. b.(1). 
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Thus by (4.59) and (4.60) 

[('")S,-EU,(d,)[ < 7,(2a b,(1) c~21 + o(1)) 

Now by (2.17) and (4.11), b,(1)c~,-l=O(1) which proves (4.57), while if r, 
=o((Izn)  1/2) then b,(1) e~-i __. 0 by (4.18) which proves (4.55). 

To prove the lower bound in (4.52) we begin by letting N = 4  in Lemma 
4.6 and choosing 22E(0, 1) to satisfy (4.30). By (2.17) we have 

(4.61) c% (~2) ==_ 0},2/2 O) q - '  an (2). 

Next choose M an integer, large enough that 

(4.62) 2-  M ~ (8 0 O- 1 (~2/2 o)q-* 

and set 21 =(160 a 2 M 2 )  - 1 ~2- Observe that 21 e(0,/~2) and by (2.17) 

(4.63) 

Set 

(4.64) 

in Lemma 4.6 and let 

c~,(21)<(4aM) -1 c~, (22). 

e = (8 (1 + (2 0/22) q-'))- 1 

Now by (4.20) and (4.44) for large n 

Jn 

I1__< Z 
j = s n + l  

t n -- 1 a M N  n Jn 

= 2 Z I(r"+J)x.l+ Z 
j = s n +  1 j = t  n ~ M N n +  1 

= II1 + IIa + 113. 

](rn + J ) X n  ] 

Thus P(D,  i.o.)= 1. If toeD,  and n is sufficiently large then [(~"+s')X,[ >d ,  since 
c~,(22)>dn for large n by (2.17) and (4.47). Thus for infinitely many n, D, occurs 
and 

s~ ( r n + J ) X n  n - r  n 
[(r"-I)S'-EU"(d')]>= ~=o - ~ I(~"+J)X"[I(I(r"+J)x'I>d") 

j j = S n +  1 

--]U.(d~)--EU~(d.)I 

= I -- t t - -  111. 

D, = {](r" +t")X,[ < c~,(2,), ](r" + s')X,[ => c~, (22), E,}. 
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Now for large n by (4.1) 

111 <(t.--s, - 1)I (r" +s" + a)x,I 
=< 2~p,l(r")X,] 

=< 2ep, a.(2) 

____(1/4) p, a,(22) 

by (4.61) and (4.64). Since co~D, 

by (4.63). By (4.15) and (4.20) 

113 

112 <= aM N. ~. (/~1) 

< (1/4) N, e,(22) 

Jn 

Z b,(j) 
a M N n  + l 

[ j n / a N ~ ]  ( k +  1)~N~ 

--< Z Z b.0) 
k = M  kccNn+ 1 

<=c~N. ~. b,(k~N,+ l) 
k = M  

U~IC~Nn] 

<aN, 2 2-kb,(1) 
k = M  

__<aN. 2-M+1 b,(1) 

<G_aN, 2 -M+ 1 c~,(2) 

< (1/4) 57, c~.(22) 

by (4.11), (4.61) and (4.62). Thus for large n, if coeD, 

(4.65) II < (3/4) N, c~, (22). 

Next for co ~ D,, if p, = 0 then 

(4.66) I = I(~..)X.I 

= N ,  ~,(&) 

while if p. 4 = 0 then s, > 4 and so 

s n --  1 s n -- 1 

I= ~ (~"+~)X. l((~"+J)X,>O)+ 
j = o  j = o  

(rn + J ) X  n 1 ((~ + i)X~ < O) + (~" + ~")X, . 

315 
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Now since toeD. we have that coeE + ~ E ~ .  If coeE, + let Joel0, s . --1]  be such 
that (~- +J~ > 0. Then ~'- +J~ + ~'" +~")X. > 0 and so for large n by (4.1) 

(4.67) I ~ ((1 - e) s. - 1) e. (22) - e s. e. (2). 

If coeE~- then the analogous argument shows that (4.67) still holds. Thus by 
(4.61) and (4.64) 

(4.68) I > ((3/4) s . -  1) ~.(2a). 

Now if p . + 0  then (3 /4 )s . -1  >N.  thus combining this with (4.66) gives that 
for large n, if co~D. 

(4.69) I > N. ~.(2z). 

Thus by (4.50), (4.65) and (4.69), for infinitely many n 

[(~"- 1 )S . -  EU.(d.)I > (1/4 + o(1)) N. e. (22) 

cNn an 

where c > 0 by (2.17) and this completes the proof of the lower bound. [] 

As an example assume that X is symmetric stable of index ee(0, 2) with 
scale parameter chosen so that G (x) ~ x - ' .  If r, = o (12 n) and lira inf r, (lp n)- 1 > 0 
for some p > 3, then as mentioned in section 2 we may take a, = ((l n)... (lp_ 1 n))- t 
and so 

(4.70) 7. = N. n 1/~ e xp ((la n + . . .  + Ip n - r. I t .  + r.)(~ r.)-  1). 

In particular if r . =  [lpn] for some p > 3 then it's easy to see that 

(4.71) ~. ~ e2/~ n~/~(lpn)- 1/~ exp ((/2 n + . . .  + l._ ~ n)(er.)-  1) 

As we remarked in the introduction, the assumption of continuity on the 
distribution of X is not needed. The general case can be dealt with using the 
techniques described in [3]. In particular take for the definition of c")S. the 
one given in Sect. 6 of [3]. Next with ~ given by (6.1) of [3], let ~.=G((n~. )  1) 
and ~{.=G((lzn/r.)P(nfl.) -1) where p>2.  Then Theorem 4.8 holds with ~. and 
~. replacing ~. and d. respectively. The proof follows along the lines given 
here but the technical details are made more complicated. 

5. Classical and Non-Classical L.I.L. Behaviour 

We would like to explain a little further the remarks made in the introduction 
about the different ways in which the large values arise in (1.4) and (1.12). 
For simplicity assume that X is symmetric, else what we are really talking 
about is fluctuations of (r-)S, from some centering sequence. We also assume 
(2.1), so (1.4) and (1.12) both hold without need for centering. 
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If r.(12n) -1--*0 let N. and c% be given by (2.14) and (2.15) respectively. If 
r . (12n)- l~  oe let N.=r .  and define e.  by G(e. )=r .n  -1. Then as we have seen, 
in the first case, the large values of (r-)X. are comparable to e. ,  and the large 
values of (r"-~)S. arise because infinitely often there are N. terms comparable 
in size to e. and these terms have the same sign. If r.(/2 n) - 1 ~  o% then by 
(4.1) of [3], we can again show that the large values of (~-)X. are comparable 
to ~. and again there are N. terms comparable in size to e. .  However the 
correct normalization for <~',-~S. (or ~ in this case is not N. c%= r. c~., but 
(r. 12 n) ~/2 c~.. There are two things to notice about  this. First, the minimal number 
of summands required to make ~"- a)S. as large as (r. lzn) 1/2 o~., is greater than 
Izn , more precisely there exists a sequence s. such that s . ( l i n ) - ~ o o  and 
(l(~")Xnl+ ...+[(~"+s")xnl)=o((r n Izn) 1/2 ~Xn). Secondly, since there are r.  terms of 
size c~., there needs to be a lot of cancellation amongst terms in order that 
(r n 12n) 1/2 o: n be the correct normalizer for (~"-~)S.. Both of these properties are 
typical of classical L.I.L. behaviour. For  example if E X 2 <  o% one can show 
that there exists a sequence s., depending on X, such that (lzn)=o(s.) and 
([(1)X.I + . . .  + I~")X.[) = o((nl 2 n)1/2). Furthermore,  despite the paradoxical sound- 
ing nature of the statement, there has to be a lot of cancellation in order for 
S. to take values of order (hi2 n) 1/z. One way of expressing this for example, 
is that if t. is any sequence such that 

then 

lim sup (0 . nl2n )-1/2>0 
n~oo  i 

l i m  s u p  nl2n ) 1/2 = (30. 

n--* co i 

The idea that classical L.I.L. behaviour is due to many moderate summands 
rather than a few large summands is a common (though often well hidden) 
theme; see Klass [15] for a nice discussion. 

The borderline case  rn~[2n is not included in (1.12) but is included in (I.4). 
This might lead one to think of it as giving rise to classical L.I.L. behaviour. 
However it may be that the techniques used in this paper can be extended 
to cover this case. Notice that the two definitions of e, do agree up to constants 
when r.~12n , since we may take a.=(In) -1. Thus the large values in this case 
may arise in both ways! 

Acknowledgements. The author would like to thank the referee for his careful reading of the paper. 

Appendix 

Given a sequence of integers r,  increasing to infinity, we construct a sequence 
a, satisfying (2.6}-(2.8). Let 

n l = m i n { n >  lO:r,= l } 
ml = max {n: (In) <= (In0 z} 

nk+l=min{n>mk:r,+rmk} 
ink+ a =max{n :  (ln)<(lnk+ 1)2}. 
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Clearly n k < mk < nk + 1 and since r, is integer valued 

(A1) r.k>=k. 

Define 

a,, = ~(1 rig) _2 nk <= n < m k  

( ( I n ) -  ~" m k <  n <--_ nk + ~. 

Clearly a, satisfies (2.6) and (2.7). To check (2.8) first observe that  

y a.n-l__> a on 1 
n n k 

m k  

= Z (tnk)- 2 ,, - 
k n k  

>= ~ (l rig)- 2 (l(mk + 1) -- lnk) 
k 

> 2 (lnk) - 2 ((1 nk) 2 - (1 nk)) 
k 

which diverges. Next  let e < 0, then by (A 1) 

~ a , , n - l  e~",~< a,,n-l e,r.+ ~, a , ,n- l  e ~" 
n k \ n k  m k + l  

m k 

< Z e ,  k Za,,  n-1 +Z(n( ln )2 ) - t .  
k n k  n 

Now the latter series converges while 

m k  m k 

Z a , , n - l = ( l n k ) - 2 ~ n  -1 
n k  tlgc 

N ( I n k ) -  Z i m  k 

<1, 

thus (2.8) holds. 
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