Non-Classical Law of the Iterated Logarithm Behaviour for Trimmed Sums

Philip S. Griffin ${ }^{1}$
Department of Mathematics, Syracuse University, Syracuse, NY 13244-1150, USA

Summary. We study the law of the iterated logarithm for the partial sum of i.i.d. random variables when the r_{n} largest summands are excluded, where $r_{n}=o(\log \log n)$. This complements earlier work in which the case $\log \log n$ $=O\left(r_{n}\right)$ was considered. A law of the iterated logarithm is again seen to prevail for a wide class of distributions, but for reasons quite different from previously.

1. Introduction

Let X, X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with common distribution function F. For $x>0$ define

$$
\begin{aligned}
& G(x)=P(|X|>x), \quad K(x)=x^{-2} \int_{|y| \leqq x} y^{2} F(d y) \\
& Q(x)=G(x)+K(x) .
\end{aligned}
$$

If we need to distinguish X from another random variable we will write F_{X}, G_{X}, K_{X} and Q_{X}.

Let ${ }^{(1)} X_{n}, \ldots,{ }^{(n)} X_{n}$ be an arrangement of X_{1}, \ldots, X_{n} in decreasing order of magnitude, i.e. $\left.\right|^{(1)} X_{n}\left|\geqq \ldots \geqq\left|\left.\right|^{(n)} X_{n}\right|\right.$. We will assume throughout that the distribution function of X is continuous one effect of which is to make the ordering ${ }^{(1)} X_{n}, \ldots,{ }^{(n)} X_{n}$ unique except on a null set. This assumption could be dispensed with but the ensuing technical details would only serve to obscure the main ideas. For $r \geqq 0$ an integer, define ${ }^{(n)} S_{n}={ }^{(r+1)} X_{n}+\ldots{ }^{(n)} X_{n}$. We write S_{n} for ${ }^{(0)} S_{n}$. We will refer to ${ }^{(r)} S_{n}$ as a trimmed sum.

The study of trimmed sums is motivated on the one hand by statistical considerations, (although it is perhaps more natural to consider trimming by the order statistics in this context) while on the other hand, probabilistically, by a desire to better understand partial sums of i.i.d. random variables and in particular to understand the role played by the summands of large modulus.

[^0]This in turn leads to a deeper understanding of the classical limit theorems and puts them more sharply into perspective.

The present paper grew out of an attempt to answer some unresolved questions which arose in [3]. One of the main results in [3], Theorem 5.5, states that if the distribution of X satisfies

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} G(x) / K(x)<\infty \tag{1.1}
\end{equation*}
$$

and r_{n} is an increasing sequence of integers satisfying

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} / \log \log n>0 \tag{1.2}\\
& \limsup _{n \rightarrow \infty} r_{n} n^{-1}<G(0), \tag{1.3}
\end{align*}
$$

then

$$
\begin{equation*}
\left.0<\limsup _{n \rightarrow \infty} \frac{\left.| | r_{n}\right)}{} S_{n}-n E X 1\left(|X| \leqq b_{n}\right) \right\rvert\,<\infty \tag{1.4}
\end{equation*}
$$

where $G\left(b_{n}\right)=r_{n} n^{-1}$. Condition (1.1), first introduced by Feller [2], is equivalent to stochastic compactness of S_{n} and is discussed in detail in [4] where further references can be found. In particular (1.1) holds whenever X is in the domain of attraction of a stable law of index $\alpha \in(0,2]$. The normalizer in (1.4) is the natural one to use for the Law of the Iterated Logarithm (L.I.L.) in that Pruitt [13] has shown that if X is symmetric, (1.1) holds, $r_{n} \uparrow \infty$ and $r_{n} n^{-1} \rightarrow 0$ then

$$
\begin{equation*}
\frac{{ }^{\left(r_{n}\right)} S_{n}}{\left(n b_{n}^{2} K\left(b_{n}\right)\right)^{1 / 2}} \rightarrow N(0,1) \tag{1.5}
\end{equation*}
$$

where $N(0,1)$ is normal with mean 0 and variance 1 . It is interesting to note that no symmetry assumption is needed for (1.4) to hold, but (1.5) may fail without it.

Results similar to (1.4), for other variants of the trimmed sum, have been discovered recently by several authors, see [5] and [6] for example. In each of these works it is also assumed that r_{n} satisfies (1.2). In light of (1.5) one might expect that (1.4) holds without this assumption. We will show that this is not the case although an L.I.L. result for ${ }^{\left(r_{n}\right)} S_{n}$ is still available but for entirely different reasons. In (1.4) the large values of ${ }^{\left(r_{n}\right)} S_{n}$ arise due to the cummulative effect of many summands as in the classical LIL, however when $r_{n}=o(\log \log n)$ the large values of ${ }^{\left(r_{n}\right)} S_{n}$ are determined by a small number of large terms. For example, we will show that if r_{n} is an increasing sequence of integers tending to ∞ such that

$$
\begin{equation*}
r_{n}(\log \log n)^{-1 / 2} \rightarrow 0 \tag{1.6}
\end{equation*}
$$

and if in addition to (1.1) the distribution of X satisfies

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} G(x) / K(x)>0 \tag{1.7}
\end{equation*}
$$

then the large values of ${ }^{\left(r_{n}-1\right)} S_{n}$, after centering, are due entirely to ${ }^{\left(r_{n}\right)} X_{n}$ and further, that ${ }^{\left(r_{n}\right)} X_{n}$ can be normalized to obtain a finite non-zero lim sup. That is, there exist α_{n}, δ_{n} such that

$$
\begin{gather*}
0<\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}\right)} X_{n}\left|\alpha_{n}^{-1}=\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}-1\right)} S_{n}-\delta_{n} \mid \alpha_{n}^{-1}<\infty \tag{1.8}\\
\left.\quad \limsup \right|^{\left(r_{n}+1\right)} X_{n}\left|\alpha_{n}^{-1}=\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}\right)} S_{n}-\delta_{n} \mid \alpha_{n}^{-1}=0 . \tag{1.9}
\end{gather*}
$$

If instead of (1.6) we assume only that

$$
\begin{equation*}
r_{n}(\log \log n)^{-1} \rightarrow 0 \tag{1.10}
\end{equation*}
$$

then one can still find α_{n} such that

$$
\begin{equation*}
0<\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}\right)} X_{n} \mid \alpha_{n}^{-1}<\infty \tag{1.11}
\end{equation*}
$$

but now there may be other summands which are also comparable in size to α_{n}. Nevertheless by controlling these terms we will show that under (1.1) and (1.7), there exists γ_{n} and δ_{n} such that

$$
\begin{equation*}
0<\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}-1\right)} S_{n}-\delta_{n} \mid \gamma_{n}^{-1}<\infty \tag{1.12}
\end{equation*}
$$

The normalizer γ_{n} is given by $N_{n} \alpha_{n}$ where $N_{n}=\left[r_{n}^{2} / \log \log n\right]+1([x]$ denotes the integer part of x). The way in which this arises is that roughly speaking, the large values of ${ }^{\left(r_{n}-1\right)} S_{n}$ occur because infinitely often there are N_{n} terms comparable in size to α_{n} and these terms all have the same sign. This is quite different from the way the large values arise in the classical LIL, see Sect. 5 for a further discussion.

Condition (1.7) is equivalent, by a famous result of Lévy, to X not being in the domain of partial attraction of the normal law. Thus the class of distributions satisfying (1.1) and (1.7) is still quite large and includes all of those in the domain of attraction of a stable law of index $\alpha \in(0,2)$. We should perhaps point out here that Maller [10], extending earlier work of Kesten [7] in the case $r=0$, has shown that the failure of (1.7) is necessary and sufficient for the existence of an increasing sequence γ_{n} such that (1.12) holds with $\delta_{n}=$ median $\left(S_{n}\right)$ and r_{n} a bounded sequence.

To illustrate the difference between the normalizers in (1.4) and (1.12), assume that X is symmetric stable of index $\alpha \in(0,2)$ and the scale parameter is chosen so that $G(x) \sim x^{-\alpha}$. Then the normalizer in (1.5) is given by $n^{1 / \alpha}(\alpha(2$ $\left.-\alpha)^{-1} r_{n}^{1-2 / \alpha}\right)^{1 / 2}$ and so in (1.4) it is $n^{1 / \alpha}\left(\alpha(2-\alpha)^{-1} r_{n}^{1-2 / \alpha} \log \log n\right)^{1 / 2}$. In (1.12) if we take for example $r_{n}=\left[l_{p} n\right]$ for $p \geqq 3$, where $l_{p} n$ is the $p^{\text {lh }}$ iterate of the logarithm function, then

$$
\left.\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}\right)} X_{n}\left|\alpha_{n}^{-1}=\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}-1\right)} S_{n} \mid \alpha_{n}^{-1}=e^{2 / \alpha}
$$

where $\alpha_{n}=n^{1 / \alpha}\left(l_{p} n\right)^{-1 / \alpha} \exp \left(\left(l_{2} n+\ldots+l_{p-1} n\right)\left(\alpha r_{n}\right)^{-1}\right)$.

If (1.7) fails then the non-classical behaviour given by (1.12) need not hold. For example let X have bounded support, then it is easy to see that ${ }^{\left(r_{n}\right)} S_{n}$ satisfies (1.4) no matter how slowly r_{n} increases to infinity, indeed (1.4) holds for r_{n} constant. In fact it can be shown that for any random variable X in the domain of attraction of the normal law, there exists an increasing sequence r_{n}, which depends on X, such that $r_{n}=o(\log \log n)$ and (1.4) holds, c.f. [8]. On the other hand one can also construct examples of X in the domain of attraction of the normal law for which (1.12) holds provided r_{n} increases sufficiently slowly, this rate again depending on the distribution. Thus for distributions satisfying (1.1) and (1.7) there is a single level, namely $\log \log n$, which distinguishes between classical and non-classical LIL behaviour, while for distributions attracted to the normal such a cut-off, if it exists, seems to depend on the distribution.

2. Preliminaries

Our basic assumption on the underlying distribution will be

$$
\begin{equation*}
0<\liminf _{x \rightarrow \infty} G(x) / K(x) \leqq \limsup _{x \rightarrow \infty} G(x) / K(x)<\infty \tag{2.1}
\end{equation*}
$$

Hence for some $\theta>1$ and all $x>0$

$$
\begin{equation*}
G(x) \leqq Q(x) \leqq \theta G(x) \tag{2.2}
\end{equation*}
$$

By (2.1) and Lemma 2.4 of Pruitt [12], there exists $q>0$ and $x_{0}>0$ such that for all $x \geqq x_{0}$

$$
\begin{equation*}
x^{q} Q(x) \text { is decreasing. } \tag{2.3}
\end{equation*}
$$

On the other hand by Lemma 2.1 of [12] $x^{2} Q(x)$ is always increasing, thus for any $\xi \in(0,1)$ if $\xi x \geqq x_{0}$ then

$$
\begin{equation*}
\xi^{2} \theta^{-1} G(\xi x) \leqq G(x) \leqq \theta \xi^{q} G(\xi x) . \tag{2.4}
\end{equation*}
$$

We will assume that r_{n} is a sequence of integers such that

$$
\begin{equation*}
r_{n} \text { increases to } \infty, \quad r_{n}\left(l_{2} n\right)^{-1} \rightarrow 0 \tag{2.5}
\end{equation*}
$$

In order to describe the normalizing sequences α_{n} and γ_{n} we must first introduce an auxilliary sequence. Thus let a_{n} be any sequence of positive reals satisfying the following conditions:

$$
\begin{gather*}
a_{n} \text { is decreasing } \tag{2.6}\\
(l n)^{-2} \leqq a_{n} \leqq(l n)^{-1} \tag{2.7}\\
\sum_{n} a_{n} n^{-1} e^{\varepsilon r_{n}} \begin{cases}<\infty & \varepsilon<0 \\
=\infty & \varepsilon \geqq 0 .\end{cases} \tag{2.8}
\end{gather*}
$$

In the case that r_{n} satisfies $\liminf r_{n}\left(l_{p} n\right)^{-1}>0$ for some $p \geqq 2$, one can easily check that $a_{n}=\left((\ln)\left(l_{2} n\right) \ldots\left(l_{p-1} n\right)\right)^{-1}$ satisfies (2.6)-(2.8). The proof that such an a_{n} exists in general is not difficult but will be deferred to the appendix.

It is a simple consequence of the monotonicity of a_{n} and r_{n} that if $b>1$ then

$$
\sum_{k} a_{\left[b^{k}\right]} e^{\left.\varepsilon r_{[b k]}\right]} \begin{cases}<\infty & \text { if } \varepsilon<0 \tag{2.9}\\ =\infty & \text { if } \varepsilon \geqq 0\end{cases}
$$

and furthermore, again by monotonicity, if $n_{k} \geqq b^{k}$, then for every $\varepsilon<0$

$$
\begin{equation*}
\sum_{k} a_{n_{k}} e^{\varepsilon r_{n_{k}}}<\infty \tag{2.10}
\end{equation*}
$$

Of course the sequence a_{n} depends on r_{n} but note that if a_{n} satisfies (2.6)-(2.8) then it satisfies (2.6)-(2.8) with r_{n} replaced by the sequence $r_{n}+j$ for each fixed j. Also observe that if w_{n} is any sequence such that $\left|r_{n}-w_{n}\right|=o\left(r_{n}\right)$ then (2.9) and (2.10) hold with w_{n} replacing r_{n} provided we exclude the case $\varepsilon=0$ in (2.9).

Now let

$$
\begin{equation*}
\beta_{n}=\exp \left(\left(l a_{n}^{-1}-r_{n} l r_{n}+r_{n}\right) r_{n}^{-1}\right) \tag{2.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
a_{n}=\exp \left(r_{n}-r_{n} l r_{n}-r_{n} l \beta_{n}\right) \tag{2.12}
\end{equation*}
$$

For later reference note that by (2.5) and (2.7) for any $p \in \mathbb{R}$

$$
\begin{equation*}
r_{n}^{p+1}\left(l_{2} n\right)^{-p} \beta_{n} \geqq\left(r_{n} / l_{2} n\right)^{p} \exp \left(\left(l_{2} n / r_{n}\right)\right) \rightarrow \infty \tag{2.13}
\end{equation*}
$$

Set

$$
\begin{equation*}
N_{n}=\left[r_{n}^{2} / l_{2} n\right]+1 \tag{2.14}
\end{equation*}
$$

and for $\lambda>0$ define

$$
\begin{equation*}
\alpha_{n}(\lambda)=\min \left\{x: G(x)=\left(\lambda n \beta_{n}\right)^{-1}\right\} \tag{2.15}
\end{equation*}
$$

and let

$$
\begin{equation*}
\gamma_{n}(\lambda)=N_{n} \alpha_{n}(\lambda) . \tag{2.16}
\end{equation*}
$$

We will write α_{n} for $\alpha_{n}(1)$ and γ_{n} for $\gamma_{n}(1)$. The sequence α_{n} will be used to normalize ${ }^{\left(r_{n}\right)} X_{n}$, while γ_{n} will be used to normalize ${ }^{\left(r_{n}-1\right)} S_{n}$. Note that by (2.5) and (2.13) $n \beta_{n} \rightarrow \infty$, so $\alpha_{n}(\lambda)$ and $\gamma_{n}(\lambda)$ both tend to infinity for every $\lambda>0$. Thus by (2.4) if $\lambda_{1}<\lambda_{2}$ and n is sufficiently large

$$
\begin{equation*}
\left(\lambda_{1} / \theta \lambda_{2}\right)^{q^{-1}} \alpha_{n}\left(\lambda_{2}\right) \leqq \alpha_{n}\left(\lambda_{1}\right) \leqq\left(\theta \lambda_{1} \lambda_{2}^{-1}\right)^{1 / 2} \alpha_{n}\left(\lambda_{2}\right) \tag{2.17}
\end{equation*}
$$

In the special case that X is in the domain of attraction of a stable law of index $\alpha \in(0,2)$, then $G(x) / K(x) \rightarrow(2-\alpha) \alpha^{-1}$. Thus using Lemma 2.4 of [12] instead of (2.4) one can improve (2.17) in this case to

$$
\begin{equation*}
\alpha_{n}\left(\lambda_{1}\right) \alpha_{n}\left(\lambda_{2}\right)^{-1} \rightarrow\left(\lambda_{1} \lambda_{2}^{-1}\right)^{1 / \alpha} . \tag{2.18}
\end{equation*}
$$

In many of our Borel-Cantelli arguments we will be using the same subsequence to sum along, so we will now describe this subsequence and also some of its properties that will be needed.

Let $a>1$ and set $n_{1}=\left[(a-1)^{-1}\right]+1$ and

$$
\begin{equation*}
n_{k+1}=\min \left\{n: r_{n}\right\rangle r_{n_{k}} \text { or } a_{n}\left\langle a_{n_{k}} / 2\right\} \wedge\left[a n_{k}\right] \tag{2.19}
\end{equation*}
$$

We first note that for some $b \in(1, a)$

$$
\begin{equation*}
n_{k} \geqq b^{k} \quad \text { for all } k \tag{2.20}
\end{equation*}
$$

This is because for each given k, there are [$k / 3$] values of j for which one of the following hold:

$$
r_{n_{j}}>r_{n_{j-1}} ; \quad a_{n_{j}}<a_{n_{j-1}} / 2, \quad n_{j}=\left[a n_{j-1}\right] .
$$

In the first case, since r_{n} is integer valued

$$
\begin{aligned}
{[k / 3] } & \leqq r_{n_{k}} \\
& \leqq l_{2} n_{k}
\end{aligned}
$$

for large k by (2.5). In the second case

$$
\begin{aligned}
2^{[k / 3]} a_{n_{1}}^{-1} & \leqq a_{n_{k}}^{-1} \\
& \leqq\left(l n_{k}\right)^{2}
\end{aligned}
$$

by (2.7), while in the final case by the definition of n_{1}, it is not hard to see that for some $c \in(1, a)$, independent of k,

$$
n_{k} \geqq c^{[k / 3]}
$$

Consequently (2.20) holds, and also by (2.19)

$$
\begin{equation*}
n_{k+1} \leqq a n_{k} \tag{2.21}
\end{equation*}
$$

Set $m_{k}=n_{k+1}-1$. Note that we trivially have

$$
\begin{equation*}
r_{n} \text { is constant on }\left[n_{k}, m_{k}\right] \tag{2.22}
\end{equation*}
$$

and since a_{n} is decreasing we see that

$$
\begin{equation*}
\beta_{n} \quad \text { and } \quad \alpha_{n}(\lambda) \text { are increasing on }\left[n_{k}, m_{k}\right] . \tag{2.23}
\end{equation*}
$$

Furthermore for some constant $c>0$ independent of k

$$
\begin{equation*}
\beta_{n_{k}} \geqq c \beta_{m_{k}} . \tag{2.24}
\end{equation*}
$$

As a consequence of this and (2.21) we have by (2.4) that for some constant $c>0$ independent of k and λ

$$
\begin{gather*}
\alpha_{n_{k}}(\lambda) \geqq c \alpha_{m_{k}}(\lambda) \tag{2.25}\\
\gamma_{n_{k}}(\lambda) \geqq c \gamma_{m_{k}}(\lambda) . \tag{2.26}
\end{gather*}
$$

Remark. Throughout we will use the letter c to denote a positive constant whose value may change from one useage to the next.

3. Probability Estimates

For $b>0$ and $d>0$ define

$$
\begin{align*}
& U_{n}(d)=\sum_{i=1}^{n} X_{i} 1\left(\left|X_{i}\right| \leqq d\right) \tag{3.1}\\
& J_{n}(b)=\sum_{i=1}^{n} 1\left(\left|X_{i}\right|>b\right) . \tag{3.2}
\end{align*}
$$

In order to prove our main results we will need probability estimates on the size of $J_{n}(b)$ and $U_{n}(d)$. Since we will be working outside the range for which the classical exponential bounds were designed (see p. 266 of [9]) we will use the following estimate which is an immediate consequence of Lemma 3.1 in [12].

Lemma 3.1. For any $v>0, d>0, s>0$ and all n

$$
\begin{equation*}
P\left(\left|U_{n}(d)-E U_{n}(d)\right| \geqq 2^{-1} v e^{v} n d K(d)+s d v^{-1}\right) \leqq 2 e^{-s} \tag{3.3}
\end{equation*}
$$

Given two sequences s_{n} and t_{n} we will write $s_{n} \approx t_{n}$ if $s_{n} t_{n}^{-1}$ and $s_{n}^{-1} t_{n}$ are both bounded as $n \rightarrow \infty$.

Lemma 3.2. There exist positive constants c_{1} and c_{2} such that for all $r \geqq 1$, all n and all $b \geqq 0$

$$
\begin{align*}
& c_{1} r^{-1 / 2} \exp (r-r l r+r l(n G(b))-2 n G(b)) \tag{3.4}\\
& \quad \leqq P\left(J_{n}(b) \geqq r\right) \leqq c_{2} r^{-1 / 2} \exp (r-r l r+r l(n G(b))-(n-r) G(b))
\end{align*}
$$

provided

$$
\begin{gather*}
n>r^{2} \tag{3.5}\\
n G(b)<r / 2 \tag{3.6}
\end{gather*}
$$

Proof. For any $b \geqq 0, r \geqq 1$ and $n \geqq r$

$$
\begin{equation*}
P\left(J_{n}(b) \geqq r\right)=\sum_{j=r}^{n}\binom{n}{j} G(b)^{j}(1-G(b))^{n-j} \tag{3.7}
\end{equation*}
$$

Set $u_{j}=\binom{n}{j} G(b)^{j}(1-G(b))^{n-j}$. Then for $r \leqq j \leqq n$

$$
\frac{u_{j+1}}{u_{j}}=\frac{(n-j) G(b)}{(j+1)(1-G(b))} \leqq \frac{n G(b)}{r(1-G(b))} \leqq \frac{1}{2(1-G(b))}
$$

by (3.6). Further since $1 \leqq r<n^{1 / 2}$, we have by (3.6) that $G(b) \leqq\left(2 n^{1 / 2}\right)^{-1} \leqq 2^{-(3 / 2)}$ and so $u_{j+1} u_{j}^{-1} \leqq 2^{-1 / 4}$. Hence

$$
\begin{equation*}
\binom{n}{r} G(b)^{r}(1-G(b))^{n-r} \leqq P\left(J_{n}(b) \geqq r\right) \leqq c\binom{n}{r} G(b)^{r}(1-G(b))^{n-r} \tag{3.8}
\end{equation*}
$$

where the c is independent of n, r and b. Next by Stirling's formula there exist positive constants c_{3} and c_{4} such that for all $r \geqq 1$ and all $n>r^{2}$

$$
\begin{equation*}
c_{3} r^{-1 / 2}\left(\frac{n}{n-r}\right)^{n-r}\left(\frac{n}{r}\right)^{r} \leqq\binom{ n}{r} \leqq c_{4} r^{-1 / 2}\left(\frac{n}{n-r}\right)^{n-r}\left(\frac{n}{r}\right)^{r} \tag{3.9}
\end{equation*}
$$

Now it is a straightforward exercise to check that for all r and n satisfying $1 \leqq r^{2}<n$,

$$
\begin{equation*}
e^{r-1} \leqq\left(\frac{n}{n-r}\right)^{n-r} \leqq e^{r} \tag{3.10}
\end{equation*}
$$

Also the elementary inequalities $e^{-2 x} \leqq 1-x \leqq e^{-x}$ for $0 \leqq x \leqq 1 / 2$, give

$$
\begin{equation*}
\exp (-2 n G(b)) \leqq(1-G(b))^{n-r} \leqq \exp (-(n-r) G(b)) \tag{3.11}
\end{equation*}
$$

Thus (3.4) follows from (3.8) (3.11).
Corollary 3.3. For any sequence of integers s_{n} satisfying $1 \leqq s_{n}^{2}<n$ and any sequence of real numbers $b_{n}>0$, if $n G\left(b_{n}\right) s_{n}^{-1} \rightarrow 0$ then

$$
\begin{equation*}
P\left(J_{n}\left(b_{n}\right) \geqq s_{n}\right) \rightarrow 0 . \tag{3.12}
\end{equation*}
$$

This also follows trivially from Markov's inequality. The following result is an easy consequence of a generalized Borel-Cantelli Lemma.
Lemma 3.4. Assume B_{k}, C_{k} are two sequences of events such that $B_{k} k=1,2, \ldots$ are independent and for each k, B_{k} and C_{k} are independent. If $\Sigma P\left(B_{k}\right)=\infty$ and $P\left(C_{k}\right) \rightarrow 1$ then $P\left(B_{k} C_{k}\right.$ i.o. $)=1$.
Proof. Let $E_{k}=B_{k} C_{k}$. Then $P\left(E_{k}\right)=P\left(B_{k}\right) P\left(C_{k}\right) \sim P\left(B_{k}\right)$ and so $\Sigma P\left(E_{k}\right)=\infty$. If $i<j$ then

$$
P\left(E_{i} E_{j}\right) \leqq P\left(B_{i} B_{j}\right)=P\left(B_{i}\right) P\left(B_{j}\right) \sim P\left(E_{i}\right) P\left(E_{j}\right)
$$

as $i \rightarrow \infty$. From these two facts, it easily follows that

$$
\limsup _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} P\left(E_{i} E_{j}\right)\right)\left(\sum_{i=1}^{n} P\left(E_{i}\right)\right)^{-2} \leqq 1
$$

The result now follows by $P 3$ on page 317 of [14].
We conclude this section with a simple Lemma which will prove useful later.

Lemma 3.5. For any $x \geqq 0, \varepsilon \geqq 0$ and $N \geqq 0$

$$
\begin{equation*}
[(N+\varepsilon)[x]]+1-[N[x]] \geqq \varepsilon(1+\varepsilon)^{-1} x \tag{3.13}
\end{equation*}
$$

Proof. If $\varepsilon=0$ the result is trivial, thus we may assume $\varepsilon>0$. If $x \leqq(1+\varepsilon) \varepsilon^{-1}$ then RHS $\leqq 1$ while LHS $\geqq 1$ for all x. If $x>(1+\varepsilon) \varepsilon^{-1}$ then $x-1>(1+\varepsilon)^{-1} x$ and so

$$
\begin{aligned}
\mathrm{LHS} & \geqq(N+\varepsilon)[x]-N[x] \\
& \geqq \varepsilon(x-1) \\
& \geqq \varepsilon(1+\varepsilon)^{-1} x . \quad \square
\end{aligned}
$$

4. Main Results

We begin this section by describing the growth of ${ }^{\left(r_{n}\right)} X_{n}$. The only consequences of (2.1) that will be used in this paper are (2.4), (2.17), (2.25) and (2.26). Since these are not needed in the proof of the following result, no restrictions need be placed on the distribution of X.

Theorem 4.1. Assume that r_{n} satisfies (2.5), then

$$
\limsup _{n \rightarrow \infty} \frac{\left.\right|^{\left(r_{n}\right)} X_{n} \mid}{\alpha_{n}(\lambda)} \begin{cases}\leqq 1 & \text { if } \lambda>1 \tag{4.1}\\ \geqq 1 & \text { if } \lambda<1\end{cases}
$$

Proof. Given $\lambda>1$, choose $a \in(1, \lambda)$ and let n_{k} be defined by (2.19). Set $m_{k}=n_{k+1}$ -1 and observe that by (2.13) and (2.21), $m_{k} G\left(\alpha_{n_{k}}(\lambda)\right) r_{n_{k}}^{-1} \rightarrow 0$. Thus for large k by (2.21), (2.23) and (3.4)

$$
\begin{align*}
& P\left(\left.\right|^{\left(r_{n}\right)} X_{n} \mid>\alpha_{n}(\lambda) \quad \text { for some } n_{k} \leqq n \leqq m_{k}\right) \tag{4.2}\\
& \quad=P\left(J_{n}\left(\alpha_{n}(\lambda)\right) \geqq r_{n} \quad \text { for some } n_{k} \leqq n \leqq m_{k}\right) \\
& \quad \leqq P\left(J_{m_{k}}\left(\alpha_{n_{k}}(\lambda)\right) \geqq r_{n_{k}}\right) \\
& \quad \leqq c_{2} r_{n_{k}}^{-1 / 2} \exp \left(r_{n_{k}}-r_{n_{k}} l r_{n_{k}}+r_{n_{k}} l\left(m_{k} G\left(\alpha_{n_{k}}(\lambda)\right)\right)\right) \\
& \quad=c_{2} r_{n_{k}}^{-1 / 2} \exp \left(r_{n_{k}}-r_{n_{k}} l r_{n_{k}}+r_{n_{k}} l\left(n_{k} G\left(\alpha_{n_{k}}(\lambda)\right)\right)+r_{n_{k}} l\left(m_{k} n_{k}^{-1}\right)\right) \\
& \quad \leqq c_{2} r_{n_{k}}^{-1 / 2} \exp \left(r_{n_{k}}-r_{n_{k}} l r_{n_{k}}-r_{n_{k}} l \beta_{n_{k}}+r_{n_{k}}(l a-l \lambda)\right) \\
& \quad=c_{2} r_{n_{k}}^{-1 / 2} a_{n_{k}} \exp \left((l a-l \lambda) r_{n_{k}}\right)
\end{align*}
$$

and this gives rise to a convergent series by (2.10) and (2.20) since $a<\lambda$. The upper bound now follows by the Borel-Cantelli Lemma.

Now fix $\lambda<1$ and choose D, an integer, large enough that

$$
\begin{equation*}
1-D^{-1}>\lambda \tag{4.3}
\end{equation*}
$$

Set $n_{k}=D^{k}$ and

$$
A_{k}=\left\{J_{n_{k}}\left(\alpha_{n_{k}}(\lambda)\right)-J_{n_{k-1}}\left(\alpha_{n_{k}}(\lambda)\right) \geqq r_{n_{k}}\right\} .
$$

Now $J_{n_{k}}\left(\alpha_{n_{k}}(\lambda)\right)-J_{n_{k-1}}\left(\alpha_{n_{k}}(\lambda)\right)$ has the same distributions as $J_{n_{k}-n_{k-1}}\left(\alpha_{n_{k}}(\lambda)\right)$ and one can again easily check that the conditions of Lemma 3.2 are met, so

$$
\begin{aligned}
P\left(A_{k}\right) & \geqq c_{1} r_{n_{k}}^{-1 / 2} \exp \left(r_{n_{k}}-r_{n_{k}} l r_{n_{k}}+r_{n_{k}} l\left(\left(n_{k}-n_{k-1}\right) G\left(\alpha_{n_{k}}(\lambda)\right)\right)-2\left(n_{k}-n_{k-1}\right) G\left(\alpha_{n_{k}}(\lambda)\right)\right) \\
& \geqq c_{1} r_{n_{k}}^{-1 / 2} \exp \left(r_{n_{k}}-r_{n_{k}} l r_{n_{k}}-r_{n_{k}} l \beta_{n_{k}}+r_{n_{k}}\left(l\left(1-D^{1}\right)-l \lambda\right)-2\left(\lambda \beta_{n_{k}}\right)^{-1}\right) \\
& =c_{1} r_{n_{k}}^{-1 / 2} a_{n_{k}} \exp \left(\left(l\left(1-D^{-1}\right)-l \lambda\right) r_{n_{k}}-2\left(\lambda \beta_{n_{k}}\right)^{-1}\right)
\end{aligned}
$$

which gives rise to a divergent series by (2.9) and (4.3) since $r_{n_{k}} \beta_{n_{k}} \rightarrow \infty$ by (2.13). Since $A_{k} k=1,2, \ldots$ are independent events, $P\left(A_{k}\right.$ i.o. $)=1$ from which the result follows.

Of course in general $\alpha_{n}(\lambda)$ and α_{n} need not be comparable, for example when G is slowly varying, however in our case we have

Corollary 4.2. Assume that r_{n} satisfies (2.5);
(a) if X satisfies (2.1) then

$$
\begin{equation*}
0<\limsup _{n \rightarrow \infty}| |^{\left(r_{n}\right)} X_{n} \mid \alpha_{n}^{-1}<\infty \tag{4.4}
\end{equation*}
$$

(b) if X is in the domain of attraction of a stable law of index $\alpha \in(0,2)$ then

$$
\begin{equation*}
\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}\right)} X_{n} \mid \alpha_{n}^{-1}=1 \tag{4.5}
\end{equation*}
$$

Proof. (a) follows from (2.17) and (4.1) while (b) follows from (2.18) and (4.1).
Remark. It is easy to see that (4.4) holds more generally than under condition (2.1). What is needed for (4.4) is that $\alpha_{n}\left(\lambda_{1}\right) \approx \alpha_{n}\left(\lambda_{2}\right)$ for some $\lambda_{1}<1<\lambda_{2}$. This is true for example if there exists $p>0$ and a non-increasing function f such that $x^{p} G(x) \approx f(x)$ as $x \rightarrow \infty$. In particular this is true for many random variables in the domain of attraction of the normal law.

As was pointed out earlier any sequence a_{n} satisfying (2.6) (2.8), satisfies (2.6)-(2.8) with r_{n} replaced by $r_{n}+j$. Thus defining

$$
\begin{align*}
\beta_{n}(j) & =\exp \left(\left(l a_{n}^{-1}-\left(r_{n}+j\right) l\left(r_{n}+j\right)+\left(r_{n}+j\right)\right)\left(r_{n}+j\right)^{-1}\right) \tag{4.6}\\
\alpha_{n}(\lambda, j) & =\min \left\{x: G(x)=\left(\lambda n \beta_{n}(j)\right)^{-1}\right\}
\end{align*}
$$

we have by Theorem 4.1 that for each $j \geqq 0$

$$
\limsup _{n \rightarrow \infty} \frac{\left|\left(r_{n}+j\right) X_{n}\right|}{\alpha_{n}(\lambda, j)} \begin{cases}\leqq 1 & \text { if } \lambda>1 \tag{4.7}\\ \geqq 1 & \text { if } \lambda<1\end{cases}
$$

In particular for each $j \geqq 0,\left|\left.\right|^{\left(r_{n}+j\right)} X_{n}\right| \leqq \alpha_{n}(2, j)$ eventually. Our next aim, Lemma 4.4 , is to show that this holds uniformly in j for $0 \leqq j \leqq j_{n}$, provided $j_{n}=o\left(r_{n}\right)$. Actually we will not prove quite this much, we will introduce a new sequence
$b_{n}(j)$, which is more convenient to work with and show that $\left.\right|^{\left(r_{n}+j\right)} X_{n} \mid \leqq b_{n}(j)$ for all $0 \leqq j \leqq j_{n}$ eventually. To do this set

$$
\begin{equation*}
\delta_{n}=\exp \left(-\frac{l_{2} n}{2 r_{n}^{2}}\right) \tag{4.8}
\end{equation*}
$$

and for $0 \leqq j \leqq r_{n}$ define

$$
\begin{equation*}
b_{n}(j)=\min \left\{x: G(x)=\left(2 n \delta_{n}^{j} \beta_{n}\right)^{-1}\right\} . \tag{4.9}
\end{equation*}
$$

First note that by (2.5) and (2.7)

$$
\begin{aligned}
n \delta_{n}^{r_{n}} \beta_{n} & \geqq n \exp \left(-\frac{l_{2} n}{2 r_{n}}+\frac{l_{2} n-r_{n} l r_{n}+r_{n}}{r_{n}}\right) \\
& \geqq n r_{n}^{-1} \\
& \rightarrow \infty
\end{aligned}
$$

Thus

$$
\begin{equation*}
b_{n}\left(r_{n}\right) \rightarrow \infty \tag{4.10}
\end{equation*}
$$

and since $\delta_{n}<1$ we trivially have

$$
\begin{equation*}
b_{n}\left(r_{n}\right) \leqq b_{n}(j)<b_{n}(j-1) \leqq \alpha_{n}(2) \tag{4.11}
\end{equation*}
$$

for $1 \leqq j \leqq r_{n}$. Next observe that for $0 \leqq j \leqq r_{n}$

$$
\begin{aligned}
l\left(\delta_{n}^{j} \beta_{n} \beta_{n}(j)^{-1}\right) & =-\frac{j l_{2} n}{2 r_{n}^{2}}+\frac{l a_{n}^{-1}}{r_{n}}-l r_{n}-\frac{l a_{n}^{-1}}{r_{n}+j}+l\left(r_{n}+j\right) \\
& \geqq \frac{j l a_{n}^{-1}}{r_{n}\left(r_{n}+j\right)}-\frac{j l_{2} n}{2 r_{n}^{2}} \\
& \geqq 0
\end{aligned}
$$

by (2.7). Thus

$$
\begin{equation*}
\delta_{n}^{j} \beta_{n} \geqq \beta_{n}(j), \quad 0 \leqq j \leqq r_{n} . \tag{4.12}
\end{equation*}
$$

Later we will need to compare $b_{n}(j)$ with $b_{n}(1)$ and also $b_{n}(1)$ with α_{n}. To do this we let

$$
\begin{equation*}
\alpha=[2 l(4 \theta)]+1 \tag{4.13}
\end{equation*}
$$

where θ is given by (2.2). Thus by (2.14)

$$
\begin{equation*}
\delta_{\mathrm{n}}^{-\alpha \mathrm{N}_{\mathrm{n}}} \geqq 4 \theta . \tag{4.14}
\end{equation*}
$$

Lemma 4.3. If n is sufficiently large, then for all integers $k \geqq 0$ satisfying $\alpha k N_{n}$ $+1 \leqq r_{n}$

$$
\begin{equation*}
b_{n}\left(\alpha k N_{n}+1\right) \leqq 2^{-k} b_{n}(1) \tag{4.15}
\end{equation*}
$$

Proof. If $k=0$ then the result is trivial, thus we may assume $k \geqq 1$.

By (2.4) if $2^{-k} b_{n}(1) \geqq x_{0}$ then

$$
\begin{align*}
G\left(2^{-k} b_{n}(1)\right) & \leqq 4^{k} \theta G\left(b_{n}(1)\right) \tag{4.16}\\
& \leqq(4 \theta)^{k}\left(2 n \delta_{n} \beta_{n}\right)^{-1} \\
& \leqq\left(2 n \delta^{\alpha k N_{n}+1} \beta_{n}\right)^{-1} \\
& =G\left(b_{n}\left(\alpha k N_{n}+1\right)\right) .
\end{align*}
$$

Thus if we can show that $2^{-k} b_{n}(1) \geqq x_{0}$ holds whenever $\alpha k N_{n}+1 \leqq r_{n}$, provided n is sufficiently large, we will be done. Let

$$
\begin{equation*}
k_{n}=\max \left\{k: 2^{-k} b_{n}(1) \geqq x_{0}\right\} . \tag{4.17}
\end{equation*}
$$

Since $b_{n}(1) \rightarrow \infty$ by (4.10) and (4.11), we must have $k_{n} \rightarrow \infty$. Suppose that $\alpha k_{n} N_{n}$ $+1 \leqq r_{n}$ infinitely often, then by (4.16) and (4.17) along some subsequence we have both

$$
2^{-\left(k_{n}+1\right)} b_{n}(1)<x_{0}
$$

and

$$
\begin{aligned}
2^{-k_{n}} b_{n}(1) & \geqq b_{n}\left(\alpha k_{n} N_{n}+1\right) \\
& \geqq b_{n}\left(r_{n}\right) \\
& \rightarrow \infty
\end{aligned}
$$

by (4.10) and (4.11). This is a contradiction and so $\alpha k_{n} N_{n}+1 \geqq r_{n}$ eventually which completes the proof.

If $r_{n}=o\left(\left(l_{2} n\right)^{1 / 2}\right)$ then $\delta_{n} \rightarrow 0$ and so for every $\varepsilon>0$ by (2.4)

$$
\begin{aligned}
G\left(\varepsilon \alpha_{n}\right) & \leqq \varepsilon^{-2} \theta G\left(\alpha_{n}\right) \\
& =\varepsilon^{-2} \theta\left(n \beta_{n}\right)^{-1} \\
& \leqq\left(2 n \delta_{n} \beta_{n}\right)^{-1} \\
& =G\left(b_{n}(1)\right)
\end{aligned}
$$

provided n is sufficiently large. Thus if $r_{n}=o\left(\left(l_{2} n\right)^{1 / 2}\right)$ then

$$
\begin{equation*}
b_{n}(1)=o\left(\alpha_{n}\right) \tag{4.18}
\end{equation*}
$$

Lemma 4.4. Let j_{n} be any sequence of integers satisfying $j_{n} r_{n}^{-1} \rightarrow 0$ and set

$$
\begin{equation*}
A_{n}=\left\{\left.\right|^{\left(r_{n}+j\right)} X_{n} \mid>b_{n}(j) \quad \text { for some } 0 \leqq j \leqq j_{n}\right\} \tag{4.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
P\left(A_{n} \text { i.o. }\right)=0 \tag{4.20}
\end{equation*}
$$

Proof. Let $a \in(1,2)$ and define n_{k} by (2.19). Set $m_{k}=n_{k+1}-1$ and let

$$
\begin{aligned}
B_{k} & =\left\{A_{n} \text { for some } n_{k} \leqq n \leqq m_{k}\right\} . \\
\hat{b}_{k}(j) & =\min _{n_{k} \leqq n \leqq m_{k}} b_{n}(j) .
\end{aligned}
$$

By (2.22), since we may assume j_{n} is nondecreasing, we have

$$
\begin{align*}
P\left(B_{k}\right) & \leqq P\left(\left.\right|^{\left(r_{m_{k}}+j\right)} X_{m_{k}} \mid>\hat{b}_{k}(j) \quad \text { for some } 0 \leqq j \leqq j_{m_{k}}\right) \tag{4.21}\\
& \leqq j_{m_{k}} \max _{0 \leqq j \leqq j_{m_{k}}} P\left(\left.\right|^{\left(r_{m_{k}}+j\right)} X_{m_{k}} \mid>\widehat{b}_{k}(j)\right) .
\end{align*}
$$

We now wish to apply Lemma 3.2. By (2.5) it is clear that if k is sufficiently large then $\max _{0 \leqq j \leqq j_{m_{k}}}\left(r_{m_{k}}+j\right)^{2}<m_{k}$. To check (3.6) first observe that by (4.12)

$$
\begin{align*}
G\left(\hat{b}_{k}(j)\right) & =\max _{n_{k} \leqq n \leqq m_{k}} G\left(b_{n}(j)\right) \tag{4.22}\\
& =\max _{n_{k} \leqq n \leqq m_{k}}\left(2 n \delta_{n}^{j} \beta_{n}\right)^{-1} \\
& \leqq \max _{n_{k} \leqq n \leqq m_{k}}\left(2 n \beta_{n}(j)\right)^{-1} \\
& \leqq\left(2 n_{k} \beta_{n_{k}}(j)\right)^{-1}
\end{align*}
$$

by (2.6) and (2.22). Thus for every $0 \leqq j \leqq j_{m_{k}}$

$$
\begin{align*}
m_{k} G\left(\widehat{b_{k}}(j)\right) & \leqq a n_{k} G\left(\hat{b}_{k}(j)\right) \tag{4.23}\\
& \leqq a\left(2 \beta_{n_{k}}(j)\right)^{-1} \\
& =(a / 2) \exp \left(-\frac{l a_{n_{k}}^{-1}}{r_{n_{k}}+j}+l\left(r_{n_{k}}+j\right)-1\right) \\
& \leqq(a / 2)\left(r_{n_{k}}+j\right) \exp \left(-\frac{l a_{n_{k}}^{-1}}{r_{n_{k}}+j_{n_{k}}}\right) \\
& \leqq 1 / 2\left(r_{m_{k}}+j\right)
\end{align*}
$$

for large k, independent of j, by (2.5), (2.7) and (2.22). Consequently we can apply Lemma 3.2 to obtain

$$
\begin{align*}
& P\left(B_{k}\right) \leqq j_{m_{k}} \max _{0 \leqq j \leqq j_{m_{k}}} c_{2}\left(r_{m_{k}}+j\right)^{-1 / 2} \exp \left(\left(r_{m_{k}}+j\right)\right. \tag{4.24}\\
&\left.-\left(r_{m_{k}}+j\right) l\left(r_{m_{k}}+j\right)+\left(r_{m_{k}}+j\right) l\left(m_{k} G\left(\hat{b}_{k}(j)\right)\right)\right)
\end{align*}
$$

Using (2.22) and (4.22) the exponent above can be written as

$$
\begin{align*}
\left(r_{m_{k}}+j\right) & -\left(r_{m_{k}}+j\right) l\left(r_{m_{k}}+j\right)+\left(r_{m_{k}}+j\right) l\left(n_{k} G\left(\widehat{k}_{k}(j)\right)\right)+\left(r_{m_{k}}+j\right) l\left(m_{k} n_{k}^{-1}\right) \tag{4.25}\\
& \leqq \\
& \left.\equiv l r_{n_{k}}+j\right)-\left(r_{n_{k}}+j\right) l\left(r_{n_{k}}+j\right)-\left(r_{n_{k}}+j\right) l \beta_{n_{k}}(j)+\left(r_{n_{k}}+j\right)(l a-l 2)
\end{align*}
$$

by (4.6). Thus, since $a<2$

$$
P\left(B_{k}\right) \leqq c_{2} j_{m_{k}} r_{m_{k}}^{-1 / 2} a_{n_{k}} e^{(l a-l 2) r_{n_{k}}}
$$

and this gives rise to a convergent series by (2.10) since $j_{m_{k}} r_{n_{k}}^{-1}=j_{m_{k}} r_{m_{k}}^{-1} \rightarrow 0$. The result now follows from the Borel-Cantelli Lemma.

In proving the lower bound in Theorem 4.8, we will, roughly speaking, need to ensure that infinitely often the N_{n} largest terms are all of size α_{n} and further that all of these terms have the same sign. This will be formulated precisely, together with an additional requirement, in Lemma 4.6. To prove this we must first introduce some further notation.

For $0 \leqq y_{1} \leqq y_{2}$, if $G\left(y_{1}\right)>G\left(y_{2}\right)$ let $X\left(y_{1}, y_{2}\right)$ be a random variable with distribution function $F_{X\left(y_{1}, y_{2}\right)}$ given by

$$
\begin{equation*}
d F_{X\left(y_{1}, y_{2}\right)}(x)=1\left(y_{1} \leqq|x| \leqq y_{2}\right)\left(G\left(y_{1}\right)-G\left(y_{2}\right)\right)^{-1} d F_{X}(x) \tag{4.26}
\end{equation*}
$$

Thus $X\left(y_{1}, y_{2}\right)$ is X conditioned to have absolute value between y_{1} and y_{2}. Note that

$$
G_{X\left(y_{1}, y_{2}\right)}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \leqq y_{1} \tag{4.27}\\
\left(G(x)-G\left(y_{2}\right)\right)\left(G\left(y_{1}\right)-G\left(y_{2}\right)\right)^{-1} & \text { if } y_{1} \leqq x \leqq y_{2} \\
0 & \text { if } x \geqq y_{2}
\end{array}\right.
$$

We will write $X\left(y_{1}\right)$ for $X\left(0, y_{1}\right)$.
For $r \geqq 2$ and $s \geqq 0$ let $H_{m, r+s, r-1}\left(y_{1}, y_{2}\right)$ denote the two-dimensional distribution function of $\left(\left.\right|^{(r+s)} X_{m}\left|,\left|{ }^{(r-1)} X_{m}\right|\right)\right.$. Observe that this distribution assigns zero probability to the complement of the set $\left\{\left(y_{1}, y_{2}\right): 0 \leqq y_{1} \leqq y_{2}\right.$ and $\left.G\left(y_{1}\right)>G\left(y_{2}\right)\right\}$. The following proposition does not appear to be in the literature, but since variants of it are well known, (see for example Lemma 1.1 of [11]), we will not prove it here.

Proposition 4.5. Let $X_{i}\left(y_{1}\right), i=1,2, \ldots$, and $X_{j}\left(y_{1}, y_{2}\right), j=1,2, \ldots$, be sequences of i.i.d. random variables with common distributions given by $X\left(y_{1}\right)$ and $X\left(y_{1}\right.$, y_{2}) respectively. Further assume that these sequences are independent. Then for all $r \geqq 2$, all $0 \leqq s \leqq u$, all bounded Borel functions $\phi_{1}: R^{u-s} \rightarrow \mathbb{R}^{1}, \phi_{2}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{1}$, and all Borel sets $B \subseteq[0, \infty) \times[0, \infty)$.

$$
\begin{align*}
& E\left[\phi_{1}\left({ }^{(r+u)} X_{m}, \ldots,{ }^{(r+s+1)} X_{m}\right) \phi_{2}\left({ }^{(r+s-1)} X_{m}, \ldots,{ }^{(r)} X_{m}\right) ;\right. \tag{4.28}\\
& \left.\quad\left(\left.\right|^{(r+s)} X_{m}\left|,{ }^{(r-1)} X_{m}\right|\right) \in B\right] \\
& =\int_{B} E \phi_{1}\left({ }^{(u-s)} X_{m-r-s}\left(y_{1}\right), \ldots,{ }^{(1)} X_{m-r-s}\left(y_{1}\right)\right) E \phi_{2}{ }^{(s)} X_{s}\left(y_{1}, y_{2}\right), \ldots, \\
& \left.\quad{ }^{(1)} X_{s}\left(y_{1}, y_{2}\right)\right) d H_{m, r+s, r-1}\left(y_{1}, y_{2}\right) .
\end{align*}
$$

Remarks. 1. If $s=0$ or $u=s$ we should explain what is meant by (4.28). If $s=0$ then $\phi_{2} \equiv 1$, while if $u=s$ then $\phi_{1} \equiv 1$.
2. The more intuitive way of phrasing (4.28) is that the distribution of $\left(^{(r+u)} X_{m}, \ldots,{ }^{(r+s+1)} X_{m},{ }^{(r+s-1)} X_{m}, \ldots,{ }^{(r)} X_{m}\right)$ conditioned by $\left.\right|^{(r+s)} X_{m} \mid=y_{1}$, $\left.\right|^{(r-1)} X_{m} \mid=y_{2}$ is given by $\left({ }^{(u-s)} X_{m-r-s}\left(y_{1}\right), \ldots,{ }^{(1)} X_{m-r-s}\left(y_{1}\right),{ }^{(s)} X_{s}\left(y_{1}, y_{2}\right), \ldots\right.$, $\left.{ }^{(1)} X_{s}\left(y_{1}, y_{2}\right)\right)$.
Set

$$
\begin{equation*}
p_{n}=\left[r_{n}^{2} / l_{2} n\right] . \tag{4.29}
\end{equation*}
$$

Lemma 4.6. For every integer $N \geqq 1$ there exists $\lambda_{2} \in(0,1)$ such that for all $\lambda_{1} \in\left(0, \lambda_{2}\right)$ and all $\varepsilon \in(0,1)$

$$
\begin{equation*}
P\left(\left.\left.\right|^{\left(r_{n}+t_{n}\right)} X_{n}\left|\leqq \alpha_{n}\left(\lambda_{1}\right)\right|\right|^{\left(r_{n}+s_{n}\right)} X_{n} \mid \geqq \alpha_{n}\left(\lambda_{2}\right), E_{n} \text { i.o. }\right)=1 \tag{4.30}
\end{equation*}
$$

where $s_{n}=N p_{n}, t_{n}=\left[(N+2 \varepsilon) p_{n}\right]+1$ and $E_{n}=E_{n}^{+} \cup E_{n}^{-}$where

$$
\begin{gather*}
E_{n}^{+}=\left\{\sum_{i=0}^{s_{n}-1} 1\left({ }^{\left({ }^{(}+i\right)} X_{n}>0\right) \geqq(1-\varepsilon) s_{n}\right\} \tag{4.31}\\
E_{n}^{-}=\left\{\sum_{i=0}^{s_{n}-1} 1\left({ }^{\left(r_{n}+i\right)} X_{n}<0\right) \geqq(1-\varepsilon) s_{n}\right\} . \tag{4.32}
\end{gather*}
$$

Remark. If $s_{n}=0$, then E_{n} is the whole space.
Proof. Fix $N \geqq 1$ and choose $\lambda_{2} \in(0,1)$ so that

$$
\begin{equation*}
l\left(2 \lambda_{2}\right)+2 N+1<0 \tag{4.33}
\end{equation*}
$$

Let $n_{k}=2^{k}$, and for notational convenience write $r_{k}=r_{n_{k}}, s_{k}=s_{n_{k}}, t_{k}=t_{n_{k}}, p_{k}=p_{n_{k}}$ and $\alpha_{k}(\lambda)=\alpha_{n_{k}}(\lambda)$. Define $u_{k}=\left[(N+\varepsilon) p_{k}\right]+1$ and $v_{k}=\left[\varepsilon p_{k}\right]$. Note that $u_{k}>s_{k}$. Let

$$
\begin{aligned}
{ }^{(r)} Z_{k}= & r^{t h} \text { largest random variable in absolute value from amongst } \\
& X_{n_{k-1}+1}, \ldots, X_{n_{k}} \\
A_{k}^{+}= & \left\{{ }^{\left(r_{k}+i\right)} Z_{k}>0 \quad \text { for all } 0 \leqq i<s_{k}\right\} \\
A_{k}^{-}= & \left\{{ }^{\left(r_{k}+i\right)} Z_{k}>0 \text { for all } 0 \leqq i<s_{k}\right\} \\
A_{k}= & A_{k}^{+} \cup A_{k}^{-} \\
B_{k}= & \left\{\left|\left.\right|^{\left(r_{k}+u_{k}\right)} Z_{k}\right| \leqq \alpha_{k}\left(\lambda_{1}\right),\left.\right|^{\left(r_{k}+s_{k}\right)} Z_{k} \mid \geqq \alpha_{k}\left(\lambda_{2}\right)\right\} \\
C_{k}= & \left\{J_{n_{k-1}}\left(\alpha_{k}\left(\lambda_{1}\right)\right) \leqq v_{k}\right\} .
\end{aligned}
$$

If $s_{k}=0$ then A_{k}^{+}and A_{k}^{-}are the whole space. Observe that on the event $A_{k}^{+} B_{k} C_{k}$ since $u_{k}+v_{k} \leqq t_{k}$ we have

$$
\begin{align*}
& \left.\right|^{\left(r_{k}+t_{k_{k}}\right)} X_{n_{k}} \mid \leqq \alpha_{k}\left(\lambda_{1}\right) \tag{4.34}\\
& \left.\right|^{\left(r_{k}+s_{k}\right)} X_{n_{k}} \mid \geqq \alpha_{k}\left(\lambda_{2}\right) \tag{4.35}
\end{align*}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{s_{k}-1} 1\left({ }^{\left(r_{k}+i\right)} X_{n_{k}}>0\right) & \geqq s_{k}-v_{k} \\
& \geqq(N-\varepsilon) p_{k} \\
& \geqq(1-\varepsilon) s_{k}
\end{aligned}
$$

Similarly on the event $A_{k}^{-} B_{k} C_{k}$ we have (4.34), (4.35) and

$$
\begin{equation*}
\sum_{i=0}^{s_{k}-1} 1\left({ }^{\left(r_{k}+i\right)} X_{n_{k}}<0\right) \geqq(1-\varepsilon) s_{k} . \tag{4.36}
\end{equation*}
$$

Hence to prove (4.30), it suffices to show $P\left(A_{k} B_{k} C_{k}\right.$ i.o. $)=1$. To do this we will use Lemma 3.4. First observe that $A_{k} B_{k}, k=1,2, \ldots$ are independent, and for each k, C_{k} and $A_{k} B_{k}$ are independent. Now setting $v_{k}^{\prime}=v_{k}+1$ we have by (3.12)

$$
\begin{aligned}
1-P\left(C_{k}\right) & =P\left(J_{n_{k-1}}\left(\alpha_{k}\left(\lambda_{1}\right)\right) \geqq v_{k}^{\prime}\right) \\
& \rightarrow 0
\end{aligned}
$$

since

$$
\begin{aligned}
n_{k-1} G\left(\alpha_{k}\left(\lambda_{1}\right)\right)\left(v_{k}^{\prime}\right)^{-1} & \leqq\left(\lambda_{1} \beta_{k} v_{k}^{\prime}\right)^{-1} \\
& \leqq(1+\varepsilon)\left(\varepsilon \lambda_{1} \beta_{k} r_{k}^{2} / l_{2} n_{k}\right)^{-1} \\
& \rightarrow 0
\end{aligned}
$$

by (2.13) and (3.13). Next let $m_{k}=n_{k}-n_{k-1}=2^{k-1}$, so $\left\{{ }^{(j)} Z_{k}: 1 \leqq j \leqq m_{k}\right\} \stackrel{d}{=}\left\{{ }^{(j)} X_{m_{k}}\right.$: $\left.1 \leqq j \leqq m_{k}\right\}$. Thus to compute $P\left(A_{k} B_{k}\right)$ we can use Proposition 4.5 with

$$
\begin{aligned}
& \phi_{1}\left(x_{1}, \ldots, x_{u_{k}-s_{k}}\right)=1\left(\left|x_{1}\right| \leqq \alpha_{k}\left(\lambda_{1}\right)\right) \\
& \phi_{2}\left(z_{1}, \ldots, z_{s_{k}}\right)=\left\{\begin{array}{cl}
\sum_{i=1}^{s_{k}} 1\left(z_{i}>0\right)+\prod_{i=1}^{s_{k}} 1\left(z_{i}<0\right) & \text { if } s_{k} \neq 0 \\
1 & \text { if } s_{k}=0
\end{array}\right. \\
& B=\left\{\left(y_{1}, y_{2}\right): \alpha_{k}\left(\lambda_{2}\right) \leqq y_{1} \leqq y_{2}<\infty\right\} .
\end{aligned}
$$

Recall that $u_{k}>s_{k}$ so there is no need to modify the definition of ϕ_{1} to include the case $u_{k}=s_{k}$. Observe that if $G\left(y_{1}\right)>G\left(y_{2}\right)$ then

$$
\begin{aligned}
& E \phi_{2}\left({ }^{\left(s_{k}\right)} X_{s_{k}}\left(y_{1}, y_{2}\right), \ldots,{ }^{(1)} X_{s_{k}}\left(y_{1}, y_{2}\right)\right) \\
&=E \phi_{2}\left(X_{1}\left(y_{1}, y_{2}\right), \ldots, X_{s_{k}}\left(y_{1}, y_{2}\right)\right) \\
& \geqq 2^{-s_{k}}
\end{aligned}
$$

while for any $y_{1} \geqq \alpha_{k}\left(\lambda_{2}\right)$

$$
\begin{aligned}
& E \phi_{1}\left({ }^{\left(u_{k}-s_{k}\right)} X_{m_{k}-r_{k}-s_{k}}\left(y_{1}\right), \ldots,{ }^{(1)} X_{m_{k}-r_{k}-s_{k}}\left(y_{1}\right)\right) \\
& \quad=1-P\left({ }^{\left(u_{k}-s_{k}\right)} X_{m_{k}-r_{k}-s_{k}}\left(y_{1}\right) \mid>\alpha_{k}\left(\lambda_{1}\right)\right) \\
& \quad \rightarrow 1
\end{aligned}
$$

uniformly in $y_{1} \geqq \alpha_{k}\left(\lambda_{2}\right)$ by (3.4), since by (4.27)

$$
\begin{aligned}
\left(m_{k}-r_{k}-s_{k}\right) G_{X\left(y_{1}\right)}\left(\alpha_{k}\left(\lambda_{1}\right)\right)\left(u_{k}-s_{k}\right)^{-1} & \leqq\left(m_{k}-r_{k}-s_{k}\right) G\left(\alpha_{k}\left(\lambda_{1}\right)\right)\left(u_{k}-s_{k}\right)^{-1} \\
& \leqq\left(\lambda_{1} \beta_{k}\left(u_{k}-s_{k}\right)\right)^{-1} \\
& \leqq(1+\varepsilon)\left(\varepsilon \lambda_{1} \beta_{k} r_{k}^{2} / l_{2} n_{k}\right)^{-1} \\
& \rightarrow 0
\end{aligned}
$$

by (2.13) and (3.13). Thus by (4.28), for large k

$$
P\left(A_{k} B_{k}\right) \geqq 2^{-\left(s_{k}+1\right)} P\left(\left.\right|^{\left(r_{k}+s_{k}\right)} X_{m_{k}} \mid \geqq \alpha_{k}\left(\lambda_{2}\right)\right),
$$

and so to complete the proof we must show that this gives rise to a divergent series. Let $w_{n}=r_{n}+s_{n}$ and write $w_{k}=w_{n_{k}}$. Note that $\left|w_{n}-r_{n}\right|=o\left(r_{n}\right)$ by (2.5) thus it is easy to check that conditions (3.5) and (3.6) are met, so by (3.4)

$$
\begin{array}{r}
P\left(\left.\right|^{\left(w_{k}\right)} X_{m_{k}} \mid \geqq \alpha_{k}\left(\lambda_{2}\right)\right) \geqq c_{1} w_{k}^{-1 / 2} \exp \left(w_{k}-w_{k} l w_{k}-w_{k} l \beta_{k}-w_{k} l\left(2 \lambda_{2}\right)\right. \tag{4.37}\\
\left.-\left(\lambda_{2} \beta_{k}\right)^{-1}\right) .
\end{array}
$$

Now set $\beta_{n}^{\prime}=\exp \left(\left(l a_{n}^{-1}-w_{n} l w_{n}+w_{n}\right) w_{n}^{-1}\right)$ and $\beta_{k}^{\prime}=\beta_{n_{k}}^{\prime}$. Observe that by (2.5) and (2.7)

$$
\begin{aligned}
l \beta_{k}-l \beta_{k}^{\prime} & =\frac{s_{k} l a_{k}^{-1}}{r_{k}\left(r_{k}+s_{k}\right)}+l\left(1+s_{k} r_{k}^{-1}\right) \\
& \leqq \frac{2 s_{k} l_{2} n_{k}}{r_{k}^{2}}+o(1) \\
& \leqq 2 N+o(1)
\end{aligned}
$$

Thus for large $k, l \beta_{k}-l \beta_{k}^{\prime} \leqq 2 N+1$ and so

$$
\begin{aligned}
& P\left(A_{k} B_{k}\right) \geqq c_{1} 2^{-\left(s_{k}+1\right)} w_{k}^{-1 / 2} \exp \left(w_{k}-w_{k} l w_{k}-w_{k} l \beta_{k}^{\prime}\right. \\
&\left.\quad-w_{k}\left(l\left(2 \lambda_{2}\right)+2 N+1\right)-\left(\lambda_{2} \beta_{k}\right)^{-1}\right) \\
&=c_{1} 2^{-\left(s_{k}+1\right)} w_{k}^{-1 / 2} a_{n_{k}} \exp \left(-w_{k}\left(l\left(2 \lambda_{2}\right)+2 N+1\right)-\left(\lambda_{2} \beta_{k}\right)^{-1}\right) .
\end{aligned}
$$

Since $\left|w_{n}-r_{n}\right|=s_{n}=o\left(r_{n}\right)$ we have $S_{k}=o\left(w_{k}\right)$, and further by (2.13) that $\beta_{k}^{-1}=\circ\left(w_{k}\right)$. Thus by (4.33) and the remarks following (2.10), the above give rise to a divergent series and the proof is complete.

Fix $p>2$ and let

$$
\begin{equation*}
d_{n}=\min \left\{x: G(x)=\left(l_{2} n / r_{n}\right)^{p}\left(n \beta_{n}\right)^{-1}\right\} . \tag{4.38}
\end{equation*}
$$

One easily checks that $G\left(d_{n}\right) \rightarrow 0$ and so $d_{n} \rightarrow \infty$. Let

$$
\begin{equation*}
j_{n}=\left[4 p\left(\frac{r_{n}^{2}}{l_{2} n}\right) l\left(\frac{l_{2} n}{r_{n}}\right)\right]+1 \tag{4.39}
\end{equation*}
$$

Note that by (2.5)

$$
\begin{equation*}
j_{n} r_{n}^{-1} \rightarrow 0 \tag{4.40}
\end{equation*}
$$

Let n_{k} defined by (2.19) with $a=2$ and set $m_{k}=n_{k+1}-1$. Let

$$
\begin{equation*}
\hat{d}_{k}=\min _{n_{k} \leqq n \leqq m_{k}} d_{n}, \tag{4.41}
\end{equation*}
$$

then

$$
\begin{equation*}
G\left(\hat{d}_{k}\right) \leqq\left(l_{2} m_{k} / r_{m_{k}}\right)^{p}\left(n_{k} \beta_{n_{k}}\right)^{-1} . \tag{4.42}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
G\left(b_{m_{k}}\left(j_{m_{k}}\right)\right) & =\left(2 m_{k} \delta_{m_{k}}^{j_{m_{k}}} \beta_{m_{k}}\right)^{-1} \\
& =\left(2 m_{k} \beta_{m_{k}}\right)^{-1} \exp \left(j_{m_{k}} l_{2} m_{k}\left(2 r_{m_{k}}^{2}\right)^{-1}\right) \\
& \geqq\left(l_{2} m_{k} / r_{m_{k}}\right)^{2 p}\left(2 m_{k} \beta_{m_{k}}\right)^{-1} \\
& \geqq c\left(l_{2} m_{k} / r_{m_{k}}\right)^{2 p}\left(n_{k} \beta_{n_{k}}\right)^{-1}
\end{aligned}
$$

by (2.21) and (2.24) where c is independent of k. Thus by (2.5) for large k, $G\left(b_{m_{k}}\left(j_{m_{k}}\right)\right) \geqq G\left(\hat{d}_{k}\right)$ and so

$$
\begin{equation*}
b_{m_{k}}\left(j_{m_{k}}\right) \leqq \hat{d}_{k} \tag{4.43}
\end{equation*}
$$

Similarly one can show that for large n

$$
\begin{equation*}
b_{n}\left(j_{n}\right) \leqq d_{n} \tag{4.44}
\end{equation*}
$$

Now let

$$
\begin{equation*}
d_{k}=\max _{n_{k} \leqq n \leqq m_{k}} d_{n} \tag{4.45}
\end{equation*}
$$

then by (2.5), (2.21) and (2.24) for some $c>0$, independent of k

$$
\begin{aligned}
G\left(d_{k}\right) & \geqq\left(l_{2} n_{k} / r_{n_{k}}\right)^{p}\left(m_{k} \beta_{m_{k}}\right)^{-1} \\
& \geqq c\left(l_{2} n_{k} / r_{n_{k}}\right)^{p}\left(n_{k} \beta_{n_{k}}\right)^{-1} \\
& =c G\left(d_{n_{k}}\right) .
\end{aligned}
$$

Thus by (2.4) since $d_{n} \rightarrow \infty$

$$
\begin{equation*}
d_{k} \leqq c d_{n_{k}} \tag{4.46}
\end{equation*}
$$

for large k, where c is independent of k. Also note that by (2.1) for any $\varepsilon>0$, $x^{2+\varepsilon} G(x) \rightarrow \infty$ as $x \rightarrow \infty$, (this actually holds for $\varepsilon=0$ also). Thus by (2.7) and (2.11), $n^{-s} \alpha_{n} \rightarrow \infty$ for all $s<1 / 2$. In particular $\left(r_{n} / l_{2} n\right)^{p / 2} \alpha_{n} \rightarrow \infty$ and so by (2.4) for large n

$$
\begin{equation*}
d_{n} \leqq \theta^{1 / 2}\left(r_{n} / l_{2} n\right)^{p / 2} \alpha_{n} \tag{4.47}
\end{equation*}
$$

From (2.5) it then easily follows that

$$
\begin{equation*}
d_{n} r_{n}=o\left(\gamma_{n}\right) \tag{4.48}
\end{equation*}
$$

Note also that by (2.21), (2.22), (4.42) and (4.46) for some constant c

$$
\begin{align*}
\breve{d}_{k} m_{k} G\left(\hat{d}_{k}\right) & \leqq c d_{n_{k}}\left(l_{2} n_{k} / r_{n_{k}}\right)^{p} \beta_{n_{k}}^{-1} \tag{4.49}\\
& =o\left(\gamma_{n_{k}}\right)
\end{align*}
$$

by (2.13) and (4.48).
To simplify notation in the next Lemma, it is convenient to define

$$
\bar{U}_{n}(d)=U_{n}(d)-E U_{n}(d)
$$

Lemma 4.7.

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|U_{n}\left(d_{n}\right)-E U_{n}\left(d_{n}\right)\right|}{\gamma_{n}}=0 \quad \text { a.s. } \tag{4.50}
\end{equation*}
$$

Proof. Let n_{k} be defined by (2.19) with $a=2$ and set $m_{k}=n_{k+1}-1$. By (2.21)-(2.23) it suffices to prove

$$
\limsup _{k \rightarrow \infty} \max _{n_{k} \leqq n \leqq m_{k}} \frac{\left|\bar{U}_{n}\left(d_{n}\right)\right|}{\gamma_{n_{k}}}=0 \quad \text { a.s. }
$$

First observe that for $n_{k} \leqq n \leqq m_{k}$

$$
\begin{aligned}
\left|\bar{U}_{n}\left(d_{n}\right)\right| & =\left|\bar{U}_{n}\left(\hat{d}_{k}\right)+\sum_{i=1}^{n} X_{i} 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq d_{n}\right)-\sum_{i=1}^{n} E X_{i} 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq d_{n}\right)\right| \\
& \leqq\left|\bar{U}_{n}\left(\hat{d}_{k}\right)\right|+\bar{d}_{k} \sum_{i=1}^{m_{k}} 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq \breve{d}_{k}\right)+\sum_{i=1}^{m_{k}} E\left|X_{i}\right| 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq \breve{d}_{k}\right)
\end{aligned}
$$

Thus

$$
\begin{align*}
\max _{n_{k} \leqq n \leqq m_{k}}\left|\bar{U}_{n}\left(d_{n}\right)\right| \leqq & \max _{n_{k} \leqq n \leqq m_{k}}\left|\bar{U}_{n}\left(\hat{d}_{k}\right)\right|+\bar{d}_{k} \sum_{1}^{m_{k}} 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq \breve{d}_{k}\right) \tag{4.51}\\
& +\sum_{1}^{m_{k}} E\left|X_{i}\right| 1\left(\hat{d}_{k}<\left|X_{i}\right| \leqq \breve{d}_{k}\right) \\
& =I+I I+I I I .
\end{align*}
$$

Now by (4.43) for large k

$$
\begin{aligned}
I I & \leqq \breve{d}_{k} J_{m_{k}}\left(\hat{d}_{k}\right) \\
& \leqq \breve{d}_{k} J_{m_{k}}\left(b_{m_{k}}\left(j_{m_{k}}\right)\right)
\end{aligned}
$$

while by (4.19) and (4.40) for large k we have a.s.

$$
J_{m_{k}}\left(b_{m_{k}}\left(j_{m_{k}}\right)\right)<r_{m_{k}}+j_{m_{k}} .
$$

Thus for large k, by (2.22), (4.40) and (4.46)

$$
\begin{aligned}
I I & \leqq 2 d_{k} r_{m_{k}} \\
& \leqq c d_{n_{k}} r_{n_{k}} \\
& =o\left(\gamma_{n_{k}}\right)
\end{aligned}
$$

by (4.48). Next

$$
\begin{aligned}
I I I & \leqq \breve{d}_{k} m_{k} G\left(\widehat{d}_{k}\right) \\
& =o\left(\gamma_{n_{k}}\right)
\end{aligned}
$$

by (4.49). To deal with I, first observe that for $n_{k} \leqq n \leqq m_{k}$ by Chebyshev and (2.2)

$$
\begin{aligned}
P\left(\left|\bar{U}_{m_{k}}\left(\hat{d}_{k}\right)-\bar{U}_{n}\left(\widehat{d}_{k}\right)\right|>\varepsilon \gamma_{n_{k}}\right) & \leqq\left(m_{k}-n\right) \hat{d}_{k}^{2} K\left(\widehat{d}_{k}\right)\left(\varepsilon \gamma_{n_{k}}\right)^{-2} \\
& \leqq \theta \hat{d}_{k}^{2} m_{k} G\left(\hat{d}_{k}\right)\left(\varepsilon \gamma_{n_{k}}\right)^{-2} \\
& \rightarrow 0
\end{aligned}
$$

by (4.48) and (4.49), uniformly in n. Thus by Skorohod's Lemma (Breiman [1] p. 45) for large k

$$
P\left(\max _{n_{k} \leqq n \leqq m_{k}}\left|\bar{U}_{n}\left(\hat{d}_{k}\right)\right|>2 \varepsilon \gamma_{n_{k}}\right) \leqq 2 P\left(\left|\bar{U}_{m_{k}}\left(\hat{d}_{k}\right)\right|>\varepsilon \gamma_{n_{k}}\right) .
$$

We will now use Lemma 3.1 with $s=2 l_{2} n_{k}$ and $v=l_{2} n_{k}\left(2 r_{n_{k}}\right)^{-1}$. Then

$$
s \hat{d}_{k} v^{-1} \leqq 4 d_{n_{k}} r_{n_{k}}=o\left(\gamma_{n_{k}}\right)
$$

by (4.48) while

$$
\frac{1}{2} v e^{v} m_{k} \hat{d}_{k} K\left(\hat{d}_{k}\right) \leqq \theta v e^{v} d_{n_{k}} n_{k} G\left(\hat{d}_{k}\right)=o\left(\gamma_{n_{k}}\right)
$$

by (4.49). Hence by (3.3) for any $\varepsilon>0$, if k is sufficiently large

$$
P\left(\left|\bar{U}_{m_{k}}\left(\hat{d}_{k}\right)\right|>\varepsilon \gamma_{n_{k}}\right) \leqq 2 \exp \left(-2 l_{2} n_{k}\right)
$$

which gives rise to a convergent series by (2.20). The result now follows from Borel-Cantelli.

We now come to our main result describing the L.I.L. behaviour of ${ }^{\left(r_{n}-1\right)} S_{n}$.
Theorem 4.8. Assume that r_{n} satisfies (2.5) and let γ_{n} and d_{n} be given by (2.16) and (4.38) respectively
(a) If (2.1) holds then

$$
\begin{equation*}
0<\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}-1\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \gamma_{n}^{-1}<\infty \tag{4.52}
\end{equation*}
$$

(b) If (2.1) holds and in addition $r_{n}=o\left(\left(l_{2} n\right)^{1 / 2}\right)$ then

$$
\begin{equation*}
0<\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}\right)} X_{n}\left|\gamma_{n}^{-1}=\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}-1\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \gamma_{n}^{-1}<\infty \tag{4.53}
\end{equation*}
$$

Further

$$
\begin{gather*}
\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}+1\right)} X_{n} \mid \gamma_{n}^{-1}=0 \tag{4.54}\\
\underset{n \rightarrow \infty}{\lim \sup ^{\left(r_{n}\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \gamma_{n}^{-1}=0} \tag{4.55}
\end{gather*}
$$

(c) If $r_{n}=o\left(\left(l_{2} n\right)^{1 / 2}\right)$ and X is in the domain of attraction of a stable law of index $\alpha \in(0,2)$, then (4.54) and (4.55) hold and (4.53) can be strengthened to

$$
\begin{equation*}
\left.\underset{n \rightarrow \infty}{\limsup }\right|^{\left(r_{n}\right)} X_{n}\left|\gamma_{n}^{-1}=\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}-1\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \gamma_{n}^{-1}=1 \tag{4.56}
\end{equation*}
$$

Proof. First note that to prove (4.54), it suffices by (4.7) to show that $\alpha_{n}(\lambda, 1)$ $\alpha_{n}^{-1} \rightarrow 0$ for some $\lambda>1$. To do this it suffices by (2.4) to show that $G\left(\alpha_{n}(\lambda, 1)\right) / G\left(\alpha_{n}\right)=\beta_{n}\left(\lambda \beta_{n}(1)\right)^{-1} \rightarrow \infty$. But by (2.7)

$$
\begin{aligned}
l\left(\beta_{n} \beta_{n}(1)^{-1}\right) & \geqq \frac{l a_{n}^{-1}}{r_{n}}-\frac{l a_{n}^{-1}}{r_{n}+1} \\
& \geqq \frac{l_{2} n}{r_{n}\left(r_{n}+1\right)} \\
& \rightarrow \infty
\end{aligned}
$$

if $r_{n}=o\left(\left(l_{2} n\right)^{1 / 2}\right)$.
Next observe that (4.56) is an immediate consequence of (4.53) and (4.5). Further (4.53) follows from (4.55) and (4.4). Thus we only have to prove (4.52) and (4.55). We begin with the proof of (4.55) and the upper bound in (4.52), which will be proved simultaneously. Observe that to prove the upper bound in (4.52), it suffices by (4.4) to show that

$$
\begin{equation*}
\left.\limsup _{n \rightarrow \infty}\right|^{\left(r_{n}\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \gamma_{n}^{-1}<\infty \tag{4.57}
\end{equation*}
$$

Fix n; if $\left|{ }^{\left(r_{n}+1\right)} X_{n}\right| \leqq d_{n}$ then

$$
\left.\right|^{\left(r_{n}\right)} S_{n}-U_{n}\left(d_{n}\right) \mid \leqq d_{n} r_{n}
$$

and so by (4.48) and (4.50)

$$
\begin{equation*}
\left.\right|^{\left(r_{n}\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid=o\left(\gamma_{n}\right) \tag{4.58}
\end{equation*}
$$

If $\left.\right|^{\left(r_{n}+1\right)} X_{n} \mid>d_{n}$ then

$$
\begin{align*}
&\left|\left.\right|^{\left(r_{n}\right)} S_{n}-E U_{n}\left(d_{n}\right)\right| \leqq \mid \sum_{j=1}^{n-r_{n}}\left(r_{n}+j\right) \tag{4.59}\\
& n \\
& 1\left(\left.\right|^{\left(r_{n}+j\right)} X_{n} \mid>d_{n}\right) \mid \\
&+\left|U_{n}\left(d_{n}\right)-E U_{n}\left(d_{n}\right)\right| \\
&=I+I I .
\end{align*}
$$

By (4.50), $I=o\left(\gamma_{n}\right)$, thus we have left to estimate I. Let j_{n} be as in (4.39), then by (4.20), (4.40) and (4.44) we have that $\left|{ }^{\left(\boldsymbol{r}_{n}+j_{n}\right)} X_{n}\right| \leqq d_{n}$ eventually. Thus for large n, using (4.11), (4.15) and (4.20) we have a.s.

$$
\begin{align*}
I & \leqq\left.\sum_{j=1}^{j_{n}-1}\right|^{\left(r_{n}+j\right)} X_{n} \mid \tag{4.60}\\
& \leqq \sum_{j=1}^{j_{n}-1} b_{n}(j) \\
& \leqq \sum_{k=0}^{\left[j_{n} / \alpha N_{n}\right]} \sum_{j=k \alpha N_{n}+1}^{(k+1) \alpha N_{n}} b_{n}(j) \\
& \leqq \sum_{k=0}^{\left[j_{n} / \alpha N_{n}\right]} \alpha N_{n} b_{n}\left(k \alpha N_{n}+1\right) \\
& \leqq \alpha N_{n} b_{n}(1) \sum_{0}^{\left[j_{n} / \alpha N_{n}\right]} 2^{-k} \\
& \leqq \alpha N_{n} b_{n}(1) .
\end{align*}
$$

Thus by (4.59) and (4.60)

$$
\left.\right|^{\left(r_{n}\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \leqq \gamma_{n}\left(2 \alpha b_{n}(1) \alpha_{n}^{-1}+o(1)\right)
$$

Now by (2.17) and (4.11), $b_{n}(1) \alpha_{n}^{-1}=O(1)$ which proves (4.57), while if r_{n} $=o\left(\left(l_{2} n\right)^{1 / 2}\right)$ then $b_{n}(1) \alpha_{n}^{-1} \rightarrow 0$ by (4.18) which proves (4.55).

To prove the lower bound in (4.52) we begin by letting $N=4$ in Lemma 4.6 and choosing $\lambda_{2} \in(0,1)$ to satisfy (4.30). By (2.17) we have

$$
\begin{equation*}
\alpha_{n}\left(\lambda_{2}\right) \geqq\left(\lambda_{2} / 2 \theta\right)^{q^{-1}} \alpha_{n}(2) . \tag{4.61}
\end{equation*}
$$

Next choose M an integer, large enough that

$$
\begin{equation*}
2^{-M} \leqq(8 \alpha)^{-1}\left(\lambda_{2} / 2 \theta\right)^{q^{-1}} \tag{4.62}
\end{equation*}
$$

and set $\lambda_{1}=\left(16 \theta \alpha^{2} M^{2}\right)^{-1} \lambda_{2}$. Observe that $\lambda_{1} \in\left(0, \lambda_{2}\right)$ and by (2.17)

$$
\begin{equation*}
\alpha_{n}\left(\lambda_{1}\right) \leqq(4 \alpha M)^{-1} \alpha_{n}\left(\lambda_{2}\right) \tag{4.63}
\end{equation*}
$$

Set

$$
\begin{equation*}
\varepsilon=\left(8\left(1+\left(2 \theta / \lambda_{2}\right)^{q^{-1}}\right)\right)^{-1} \tag{4.64}
\end{equation*}
$$

in Lemma 4.6 and let

$$
D_{n}=\left\{\left|\left.\right|^{\left(r_{n}+t_{n}\right)} X_{n}\right| \leqq \alpha_{n}\left(\lambda_{1}\right),\left.\right|^{\left(r_{n}+s_{n}\right)} X_{n} \mid \geqq \alpha_{n}\left(\lambda_{2}\right), E_{n}\right\} .
$$

Thus $P\left(D_{n}\right.$ i.o. $)=1$. If $\omega \in D_{n}$ and n is sufficiently large then $\left.\right|^{\left(r_{n}+s_{n}\right)} X_{n} \mid>d_{n}$ since $\alpha_{n}\left(\lambda_{2}\right)>d_{n}$ for large n by (2.17) and (4.47). Thus for infinitely many n, D_{n} occurs and

$$
\left.\begin{aligned}
&\left.\right|^{\left(r_{n}-1\right)} S_{n}-E U_{n}\left(d_{n}\right) \mid \geqq \mid \sum_{j=0}^{s_{n}}\left(r_{n}+j\right) \\
& n
\end{aligned}\left|-\sum_{j=s_{n}+1}^{n-r_{n}}\right|^{\left(r_{n}+j\right)} X_{n} \right\rvert\, 1\left(\left.\right|^{\left(r_{n}+j\right)} X_{n} \mid>d_{n}\right) .
$$

Now by (4.20) and (4.44) for large n

$$
\begin{aligned}
I I & \leqq \sum_{j=s_{n}+1}^{j_{n}}\left|{ }^{\left(r_{n}+j\right)} X_{n}\right| \\
& =\sum_{j=s_{n}+1}^{t_{n}-1}\left|r^{\left(r_{n}+j\right)} X_{n}\right|+\sum_{j=t_{n}}^{\alpha M N_{n}}\left|\left(r_{n}+j\right) X_{n}\right|+\sum_{\alpha M N_{n}+1}^{j_{n}}\left|{ }^{\left(r_{n}+j\right)} X_{n}\right| \\
& =I I_{1}+I I_{2}+I I_{3} .
\end{aligned}
$$

Now for large n by (4.1)

$$
\begin{aligned}
I I_{1} & \leqq\left.\left(t_{n}-s_{n}-1\right)\right|^{\left(r_{n}+s_{n}+1\right)} X_{n} \mid \\
& \leqq 2 \varepsilon p_{n}{ }^{\left(r_{n}\right)} X_{n} \mid \\
& \leqq 2 \varepsilon p_{n} \alpha_{n}(2) \\
& \leqq(1 / 4) p_{n} \alpha_{n}\left(\lambda_{2}\right)
\end{aligned}
$$

by (4.61) and (4.64). Since $\omega \in D_{n}$

$$
\begin{aligned}
I I_{2} & \leqq \alpha M N_{n} \alpha_{n}\left(\lambda_{1}\right) \\
& \leqq(1 / 4) N_{n} \alpha_{n}\left(\lambda_{2}\right)
\end{aligned}
$$

by (4.63). By (4.15) and (4.20)

$$
\begin{aligned}
I I_{3} & \leqq \sum_{\alpha M N_{n}+1}^{j_{n}} b_{n}(j) \\
& \leqq \sum_{k=M}^{\left[j_{n} / \alpha N_{n}\right]} \sum_{k \alpha N_{n}+1}^{(k+1) \alpha N_{n}} b_{n}(j) \\
& \leqq \alpha N_{n} \sum_{k=M}^{\left[j_{n} / \alpha N_{n}\right]} b_{n}\left(k \alpha N_{n}+1\right) \\
& \leqq \alpha N_{n} \sum_{k=M}^{\left[j_{n} / \alpha N_{n}\right]} 2^{-k} b_{n}(1) \\
& \leqq \alpha N_{n} 2^{-M+1} b_{n}(1) \\
& \leqq \alpha N_{n} 2^{-M+1} \alpha_{n}(2) \\
& \leqq(1 / 4) N_{n} \alpha_{n}\left(\lambda_{2}\right)
\end{aligned}
$$

by (4.11), (4.61) and (4.62). Thus for large n, if $\omega \in D_{n}$

$$
\begin{equation*}
I I \leqq(3 / 4) N_{n} \alpha_{n}\left(\lambda_{2}\right) \tag{4.65}
\end{equation*}
$$

Next for $\omega \in D_{n}$, if $p_{n}=0$ then

$$
\begin{align*}
I & =\left|{ }^{\left(r_{n}\right)} X_{n}\right| \tag{4.66}\\
& \geqq \alpha_{n}\left(\lambda_{2}\right) \\
& =N_{n} \alpha_{n}\left(\lambda_{2}\right)
\end{align*}
$$

while if $p_{n} \neq 0$ then $s_{n} \geqq 4$ and so

$$
I=\left|\sum_{j=0}^{s_{n}-1}\left({ }_{n}+j\right) X_{n} 1\left({ }^{\left(r_{n}+j\right)} X_{n}>0\right)+\sum_{j=0}^{s_{n}-1}{ }^{\left(r_{n}+j\right)} X_{n} 1\left(^{\left(r_{n}+j\right)} X_{n}<0\right)+{ }^{\left(r_{n}+s_{n}\right)} X_{n}\right|
$$

Now since $\omega \in D_{n}$ we have that $\omega \in E_{n}^{+} \cup E_{n}^{-}$. If $\omega \in E_{n}^{+}$let $j_{0} \in\left[0, s_{n}-1\right]$ be such that ${ }^{\left(r_{n}+j_{0}\right)} X_{n}>0$. Then ${ }^{\left(r_{n}+j_{0}\right)} X_{n}+{ }^{\left(r_{n}+s_{n}\right)} X_{n} \geqq 0$ and so for large n by (4.1)

$$
\begin{equation*}
I \geqq\left((1-\varepsilon) s_{n}-1\right) \alpha_{n}\left(\lambda_{2}\right)-\varepsilon s_{n} \alpha_{n}(2) . \tag{4.67}
\end{equation*}
$$

If $\omega \in E_{n}^{-}$then the analogous argument shows that (4.67) still holds. Thus by (4.61) and (4.64)

$$
\begin{equation*}
I \geqq\left((3 / 4) s_{n}-1\right) \alpha_{n}\left(\lambda_{2}\right) . \tag{4.68}
\end{equation*}
$$

Now if $p_{n} \neq 0$ then (3/4) $s_{n}-1 \geqq N_{n}$ thus combining this with (4.66) gives that for large n, if $\omega \in D_{n}$

$$
\begin{equation*}
I \geqq N_{n} \alpha_{n}\left(\lambda_{2}\right) \tag{4.69}
\end{equation*}
$$

Thus by (4.50), (4.65) and (4.69), for infinitely many n

$$
\begin{aligned}
& \mid\left(r_{n}-1\right) S_{n}-E U_{n}\left(d_{n}\right) \mid \\
& \geqq(1 / 4+o(1)) N_{n} \alpha_{n}\left(\lambda_{2}\right) \\
& \geqq c N_{n} \alpha_{n}
\end{aligned}
$$

where $c>0$ by (2.17) and this completes the proof of the lower bound.
As an example assume that X is symmetric stable of index $\alpha \in(0,2)$ with scale parameter chosen so that $G(x) \sim x^{-\alpha}$. If $r_{n}=o\left(l_{2} n\right)$ and $\lim \inf r_{n}\left(l_{p} n\right)^{-1}>0$ for some $p \geqq 3$, then as mentioned in section 2 we may take $a_{n}=\left((l n) \ldots\left(l_{p-1} n\right)\right)^{-1}$ and so

$$
\begin{equation*}
\gamma_{n}=N_{n} n^{1 / \alpha} \exp \left(\left(l_{2} n+\ldots+l_{p} n-r_{n} l r_{n}+r_{n}\right)\left(\alpha r_{n}\right)^{-1}\right) \tag{4.70}
\end{equation*}
$$

In particular if $r_{n}=\left[l_{p} n\right]$ for some $p \geqq 3$ then it's easy to see that

$$
\begin{equation*}
\gamma_{n} \sim e^{2 / \alpha} n^{1 / \alpha}\left(l_{p} n\right)^{-1 / \alpha} \exp \left(\left(l_{2} n+\ldots+l_{p-1} n\right)\left(\alpha r_{n}\right)^{-1}\right) \tag{4.71}
\end{equation*}
$$

As we remarked in the introduction, the assumption of continuity on the distribution of X is not needed. The general case can be dealt with using the techniques described in [3]. In particular take for the definition of ${ }^{(r)} S_{n}$ the one given in Sect. 6 of [3]. Next with \tilde{G} given by (6.1) of [3], let $\tilde{\alpha}_{n}=\widetilde{G}\left(\left(n \beta_{n}\right)^{-1}\right)$ and $\widetilde{d}_{n}=\widetilde{G}\left(\left(l_{2} n / r_{n}\right)^{p}\left(n \beta_{n}\right)^{-1}\right)$ where $p>2$. Then Theorem 4.8 holds with $\tilde{\alpha}_{n}$ and \tilde{d}_{n} replacing α_{n} and d_{n} respectively. The proof follows along the lines given here but the technical details are made more complicated.

5. Classical and Non-Classical L.I.L. Behaviour

We would like to explain a little further the remarks made in the introduction about the different ways in which the large values arise in (1.4) and (1.12). For simplicity assume that X is symmetric, else what we are really talking about is fluctuations of ${ }^{\left(r_{n}\right)} S_{n}$ from some centering sequence. We also assume (2.1), so (1.4) and (1.12) both hold without need for centering.

If $r_{n}\left(l_{2} n\right)^{-1} \rightarrow 0$ let N_{n} and α_{n} be given by (2.14) and (2.15) respectively. If $r_{n}\left(l_{2} n\right)^{-1} \rightarrow \infty$ let $N_{n}=r_{n}$ and define α_{n} by $G\left(\alpha_{n}\right)=r_{n} n^{-1}$. Then as we have seen, in the first case, the large values of ${ }^{\left(r_{n}\right)} X_{n}$ are comparable to α_{n}, and the large values of ${ }^{\left(r_{n}-1\right)} S_{n}$ arise because infinitely often there are N_{n} terms comparable in size to α_{n} and these terms have the same sign. If $r_{n}\left(l_{2} n\right)^{-1} \rightarrow \infty$, then by (4.1) of [3], we can again show that the large values of ${ }^{\left(r_{n}\right)} X_{n}$ are comparable to α_{n} and again there are N_{n} terms comparable in size to α_{n}. However the correct normalization for ${ }^{\left(r_{n}-1\right)} S_{n}$ (or ${ }^{\left(r_{n}\right)} S_{n}$) in this case is not $N_{n} \alpha_{n}=r_{n} \alpha_{n}$, but $\left(r_{n} l_{2} n\right)^{1 / 2} \alpha_{n}$. There are two things to notice about this. First, the minimal number of summands required to make ${ }^{\left(r_{n}-1\right)} S_{n}$ as large as $\left(r_{n} l_{2} n\right)^{1 / 2} \alpha_{n}$, is greater than $l_{2} n$, more precisely there exists a sequence s_{n} such that $s_{n}\left(l_{2} n\right)^{-1} \rightarrow \infty$ and $\left(\left.\right|^{\left(r_{n}\right)} X_{n}\left|+\ldots+\left.\right|^{\left(r_{n}+s_{n}\right)} X_{n}\right|\right)=o\left(\left(r_{n} l_{2} n\right)^{1 / 2} \alpha_{n}\right)$. Secondly, since there are r_{n} terms of size α_{n}, there needs to be a lot of cancellation amongst terms in order that $\left(r_{n} l_{2} n\right)^{1 / 2} \alpha_{n}$ be the correct normalizer for ${ }^{\left(r_{n}-1\right)} S_{n}$. Both of these properties are typical of classical L.I.L. behaviour. For example if $E X^{2}<\infty$, one can show that there exists a sequence s_{n}, depending on X, such that $\left(l_{2} n\right)=o\left(s_{n}\right)$ and $\left(\left.\right|^{(1)} X_{n}\left|+\ldots+\left.\right|^{\left(s_{n}\right)} X_{n}\right|\right)=o\left(\left(n l_{2} n\right)^{1 / 2}\right)$. Furthermore, despite the paradoxical sounding nature of the statement, there has to be a lot of cancellation in order for S_{n} to take values of order $\left(n l_{2} n\right)^{1 / 2}$. One way of expressing this for example, is that if t_{n} is any sequence such that

$$
\limsup _{n \rightarrow \infty}\left(\sum_{i=1}^{t_{n}}{ }^{(i)} X_{n}\right)\left(n l_{2} n\right)^{-1 / 2}>0
$$

then

$$
\limsup _{n \rightarrow \infty}\left(\sum_{i=1}^{t_{n}}| |^{(i)} X_{n} \mid\right)\left(n l_{2} n\right)^{-1 / 2}=\infty .
$$

The idea that classical L.I.L. behaviour is due to many moderate summands rather than a few large summands is a common (though often well hidden) theme; see Klass [15] for a nice discussion.

The borderline case $r_{n} \approx l_{2} n$ is not included in (1.12) but is included in (1.4). This might lead one to think of it as giving rise to classical L.I.L. behaviour. However it may be that the techniques used in this paper can be extended to cover this case. Notice that the two definitions of α_{n} do agree up to constants when $r_{n} \approx l_{2} n$, since we may take $a_{n}=(l n)^{-1}$. Thus the large values in this case may arise in both ways!
Acknowledgements. The author would like to thank the referee for his careful reading of the paper.

Appendix

Given a sequence of integers r_{n} increasing to infinity, we construct a sequence a_{n} satisfying (2.6) (2.8). Let

$$
\begin{aligned}
n_{1} & =\min \left\{n \geqq 10: r_{n}=1\right\} \\
m_{1} & =\max \left\{n:(\ln) \leqq\left(\ln _{1}\right)^{2}\right\} \\
n_{k+1} & =\min \left\{n>m_{k}: r_{n} \neq r_{m_{k}}\right\} \\
m_{k+1} & =\max \left\{n:(l n) \leqq\left(\ln _{k+1}\right)^{2}\right\} .
\end{aligned}
$$

Clearly $n_{k}<m_{k}<n_{k+1}$ and since r_{n} is integer valued

$$
\begin{equation*}
r_{n_{k}} \geqq k . \tag{A1}
\end{equation*}
$$

Define

$$
a_{n}=\left\{\begin{array}{ll}
\left(l n_{k}\right)^{-2} & n_{k} \leqq n \leqq m_{k} \\
(l n)^{-2} & m_{k}<n \leqq n_{k+1}
\end{array} .\right.
$$

Clearly a_{n} satisfies (2.6) and (2.7). To check (2.8) first observe that

$$
\begin{aligned}
\sum_{n} a_{n} n^{-1} & \geqq \sum_{k}\left(\sum_{n_{k}}^{m_{k}} a_{n} n^{-1}\right) \\
& =\sum_{k}\left(l n_{k}\right)^{-2} \sum_{n_{k}}^{m_{k}} n^{-1} \\
& \geqq \sum_{k}\left(l n_{k}\right)^{-2}\left(l\left(m_{k}+1\right)-l n_{k}\right) \\
& \geqq \sum_{k}\left(l n_{k}\right)^{-2}\left(\left(l n_{k}\right)^{2}-\left(l n_{k}\right)\right)
\end{aligned}
$$

which diverges. Next let $\varepsilon<0$, then by (A1)

$$
\begin{aligned}
\sum_{n} a_{n} n^{-1} e^{\varepsilon r_{n}} & \leqq \sum_{k}\left(\sum_{n_{k}}^{m_{k}} a_{n} n^{-1} e^{\varepsilon r_{n}}+\sum_{m_{k}+1}^{n_{k+1}} a_{n} n^{-1} e^{\varepsilon r_{n}}\right) \\
& \leqq \sum_{k} e^{\varepsilon k} \sum_{n_{k}}^{m_{k}} a_{n} n^{-1}+\sum_{n}\left(n(l n)^{2}\right)^{-1}
\end{aligned}
$$

Now the latter series converges while

$$
\begin{aligned}
\sum_{n_{k}}^{m_{k}} a_{n} n^{-1} & =\left(l n_{k}\right)^{-2} \sum_{n_{k}}^{m_{k}} n^{-1} \\
& \leqq\left(l n_{k}\right)^{-2} l m_{k} \\
& \leqq 1
\end{aligned}
$$

thus (2.8) holds.

References

1. Breiman, L.: Probability. Reading, Mass.: Addison-Wesley 1968
2. Feller, W.: On regular variation and local limit theorems. Proceedings Fifth Berkeley Symposium Math. Statist. Probab. Vol. II, Part 1, pp. 373-388 1967
3. Griffin, P.S.: The influence of extremes on the law of the iterated logarithm. Prob. Th. Rel. Fields 77, 241-270 (1988)
4. Griffin, P.S., Jain, N.C., Pruitt, W.E.: Approximate local limit theorems for laws outside domains of attraction. Ann. Probab. 12, 45-63 (1984)
5. Haeusler, E., Mason, D.M.: Laws of the iterated logarithm for sums of the middle portion of the sample. Math. Proc. Camb. Philos. Soc. 101, 301-312 (1987)
6. Hahn, M.G., Kuelbs, J.: Asymptotic normality and the L.l.L. for trimmed sums: the general case. Preprint (1986)
7. Kesten, H.: Sums of independent random variables - without moment conditions. Ann. Math. Stat. 43, 701-732 (1972)
8. Kuelbs, J., Ledoux, M.: Extreme values and the law of the iterated logarithm. Prob. Th. Rel. Fields, 74, 319-340 (1987)
9. Loeve, M.: Probability Theory I, 4th edn., Berlin Heidelberg New York: Springer Verlag 1977
10. Maller, R.A.: Some almost sure properties of trimmed sums. Preprint (1984)
11. Maller, R.A., Resnick, S.I.: Limiting behaviour of sums and the term of maximum modulus. Proc. London Math. Soc. III Ser. 49, 385-422 (1984)
12. Pruitt, W.E.: General one-sided laws of the iterated logarithm. Ann. Probab. 9, 1-48 (1981)
13. Pruitt, W.E.: Sums of independent random variables with extreme terms excluded. Preprint (1986)
14. Spitzer, F.: Principles of Random Walk. Wokingham New York Toronto Melbourne: Van Nostrand 1964
15. Klass, M.J.: An interpretation of the finite mean L.I.L. norming constants. Theory Probab. Appl. 29, 599-601 (1984)

Received April 1, 1986; received in revised form January 8, 1988

[^0]: ${ }^{1}$ Research supported in part by NSF Grant DMS-8501732

