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Summary. We study the law of the iterated logarithm for the partial sum
of ii.d. random variables when the r, largest summands are excluded, where
r,=o(loglogn). This complements earlier work in which the case loglogn
=0(r,) was considered. A law of the iterated logarithm is again seen to
prevail for a wide class of distributions, but for reasons quite different from
previously.

1. Introduction

Let X, X,;,X,, ... be a sequence of independent identically distributed random
variables with common distribution function F. For x>0 define

Gx)=P(X|>x), Kx=x"2 [ y*F@dy

[yl =x

Q(x)=G(x)+ K(x).

If we need to distinguish X from another random variable we will write Fy,
Gy, Ky and Qy.

Let X, ...,™X, be an arrangement of X, ..., X, in decreasing order
of magnitude, ie. |VX,|=... 2|™X,|. We will assume throughout that the distri-
bution function of X is continuous one effect of which is to make the ordering
Wx,, ..., ®X, unique except on a null set. This assumption could be dispensed
with but the ensuing technical details would only serve to obscure the main
ideas. For r=0 an integer, define @S, ="*1VX,+..."X,. We write S, for ©9§,.
We will refer to @S, as a trimmed sum.

The study of trimmed sums is motivated on the one hand by statistical
considerations, (although it is perhaps more natural to consider trimming by
the order statistics in this context) while on the other hand, probabilistically,
by a desire to better understand partial sums of iid. random variables and
in particular to understand the role played by the summands of large modulus.
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This in turn leads to a deeper understanding of the classical limit theorems
and puts them more sharply into perspective.

The present paper grew out of an attempt to answer some unreselved ques-
tions which arose in {3]. One of the main results in [3], Theorem 5.5, states
that if the distribution of X satisfies

(1.1) lim sup G(x)/K(x)< o

X0

and r, is an increasing sequence of integers satisfying

(1.2) lim inf 7, /loglog n>0
(1.3) limsupr, n~ ! <G(0),
then

. |*S, ~nEX 1(|X|<b,)
14 0<l
(14 ST (mloglogn b} K(b,)"”

where G(b,)=r,n"'. Condition (1.1), first introduced by Feller [2], is equivalent
to stochastic compactness of S, and is discussed in detail in {4] where further
references can be found. In particular (1.1) holds whenever X is in the domain
of attraction of a stable law of index «e(0,2]. The normalizer in (1.4) is the
natural one to use for the Law of the Iterated Logarithm (L.I.L.} in that Pruitt
[13] has shown that if X is symmetric, (1.1) holds, r,, 1 co and r,n~ ! -0 then

rwg,

(1) (b2 K (b,)7

S N(0,1)

where N(0, 1) is normal with mean O and variance 1. It is interesting to note
that no symmetry assumption is needed for (1.4) to hold, but (1.5) may fail
without it.

Results similar to (1.4), for other variants of the trimmed sum, have been
discovered recently by several authors, see [5] and [6] for example. In each
of these works it is also assumed that r, satisfies (1.2). In light of (1.5) one
might expect that (1.4) holds without this assumption. We will show that this
is not the case although an L.I.L. result for ®S,, is still available but for entirely
different reasons. In (1.4) the large values of *?S, arise due to the cummulative
effect of many summands as in the classical LIL, however when r,=o(loglogn)
the large values of “»S, are determined by a small number of large terms.
For example, we will show that if r, is an increasing sequence of integers tending
to oosuch that

(1.6) r,(loglogn)™ 1% -0
and if in addition to (1.1) the distribution of X satisfies

(1.7) lim inf G (x)/K (x) >0
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then the large values of “»~VS,, after centering, are due entirely to "X, and
further, that *”X, can be normalized to obtain a finite non-zero lim sup. That
is, there exist a,, d, such that

(1.8) 0 <lim sup|™X,| a, * =lim sup|*~ 1§, -4, a, ' < o0
(1.9) lim sup|®* VX, | a, * =lim sup|"S, —4,] , * =0.

If instead of (1.6) we assume only that
(1.10) r.(loglogn)™* -0
then one can still find «, such that

(1.11) 0<lim sup |™X,| o, ! < oo

n-—w

but now there may be other summands which are also comparable in size to
«,. Nevertheless by controlling these terms we will show that under (1.1) and
(1.7, there exists y, and J, such that

(1.12) 0<lim sup|™~ 1S, —38,|y, ' < 0.

n— o0

The normalizer y, is given by N, «, where N,=[rZ/loglogn]+1 ([x] denotes
the integer part of x). The way in which this arises is that roughly speaking,
the large values of “»~ VS occur because infinitely often there are N, terms
comparable in size to o, and these terms all have the same sign. This is quite
different from the way the large values arise in the classical LIL, see Sect. 5
for a further discussion.

Condition (1.7) is equivalent, by a famous result of Lévy, to X not being
in the domain of partial attraction of the normal law. Thus the class of distribu-
tions satisfying (1.1) and (1.7) is still quite large and includes all of those in
the domain of attraction of a stable law of index ae(0, 2). We should perhaps
point out here that Maller [10], extending earlier work of Kesten [7] in the
case r=0, has shown that the failure of (1.7) is necessary and sufficient for
the existence of an increasing sequence v, such that (1.12) holds with §,=median
(S,) and r, a bounded sequence.

To illustrate the difference between the normalizers in (1.4) and (1.12), assume
that X is symmetric stable of index a€(0,2) and the scale parameter is chosen
so that G(x)~x~% Then the normalizer in (1.5) is given by n'*(x(2
—o)" 22 and so in (1.4) it is n'*(x(2—x) " r172* loglog n)*'/% In (1.12)
if we take for example r,=[I,n] for p=3, where I,n is the p™ iterate of the
logarithm function, then

lim sup ["™X,| o, ' =lim sup|*=~ VS, | o)t =e*®

n— o0 H—> 0

where a,=n""*(l,n)" " exp((l n+... +1,—; m(ar,) ).
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If (1.7) fails then the non-classical behaviour given by (1.12) need not hold.
For example let X have bounded support, then it is easy to see that ®»S,
satisfies (1.4) no matter how slowly r, increases to infinity, indeed (1.4) holds
for r, constant. In fact it can be shown that for any random variable X in
the domain of attraction of the normal law, there exists an increasing sequence
¥,, which depends on X, such that r,=o(loglogn) and (1.4) holds, cf. [8]. On
the other hand one can also construct examples of X in the domain of attraction
of the normal law for which (1.12) holds provided r, increases sufficiently slowly,
this rate again depending on the distribution. Thus for distributions satisfying
(1.1) and (1.7) there is a single level, namely log log n, which distinguishes between
classical and non-classical LIL behaviour, while for distributions attracted to
the normal such a cut-off, if it exists, seems to depend on the distribution.

2. Preliminaries
Qur basic assumption on the underlying distribution will be

2.1) 0 <lim inf G (x)/K (x) £ lim sup G (x)/K(x) < o0

Hence for some 8>1 and all x>0
(2.2) G(x)=Q(x)=0G(x).

By (2.1) and Lemma 2.4 of Pruitt [12], there exists ¢>0 and x,>0 such
that for all x=x,

(2.3) x?Q(x) isdecreasing.

On the other hand by Lemma 2.1 of [12] x* Q(x) is always increasing, thus
for any £e(0, 1) if £x=x, then

24 E207 G SG(x)=8LG(Ex).
We will assume that r, is a sequence of integers such that
(2.5) r, increasesto o, r,(l,n) 1—0.
In order to describe the normalizing sequences o, and y, we must first intro-
duce an auxilliary sequence. Thus let a, be any sequence of positive reals satisfy-

ing the following conditions:

(2.6) a, is decreasing

@7 (n *<a,=(In)~*
<oo &<0

2.8 1 g#rn

@8) ga,,n ¢ {=oo £=0.
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In the case that r, satisfies liminf r,(I,n)"' >0 for some p=2, one can easily
check that a,=((In)(I,n)...(I,—, n))~ " satisfies (2.6)~2.8). The proof that such
an a, exists in general is not difficult but will be deferred to the appendix.

It is a simple consequence of the monotonicity of g, and r, that if b>1
then

(2.9) Y g €7
k

<o If ¢<0
= if =0

and furthermore, again by monotonicity, if n, > b*, then for every e <0

(2.10) Y. a,, e m< 0.
k

Of course the sequence a, depends on r, but note that if a, satisfies (2.6)+2.8)
then it satisfies (2.6)-(2.8) with r, replaced by the sequence r,+j for each fixed
j. Also observe that if w, is any sequence such that |r,—w,|=0(r,) then (2.9)
and (2.10) hold with w, replacing r, provided we exclude the case e=0 in (2.9).

Now let

(2.11) B.=exp((la; t—r, lr,+r,)rib).
Thus
(2.12) a,=exp(r,—r,lr,—r, 1B,

For later reference note that by (2.5) and (2.7) for any peR

(2.13) rE T (1, n)7F B2 (r/ly n)? exp (/1)) — .
Set

(2.14) N,=[ra/l,n]+1

and for 1> 0 define

(2.15) a,(Ay=min{x: G(x)=(An B,) "'}

and let

(2.16) (D) =N, 2, (4).

We will write a, for «,(1) and y, for y,(1). The sequence «, will be used to
normalize “»X,, while y, will be used to normalize *»~VS,. Note that by (2.5)
and (2.13) nf,— o, so a,(%) and y,(4) both tend to infinity for every 2>0.
Thus by (2.4) if 1, <A, and # is sufficiently large

(2.17) (21/0 220" 0y (25) Sty (1) S (024 23 )2 e (22).

In the special case that X is in the domain of attraction of a stable law
of index «€(0,2), then G(x)/K(x)—(2—a)a~ L. Thus using Lemma 2.4 of [12]
instead of (2.4) one can improve (2.17) in this case to

(2.18) %, (Ay) o (Ag) ™1 = (Ry A3 )2
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In many of our Borel-Cantelli arguments we will be using the same subse-
quence to sum along, so we will now describe this subsequence and also some
of its properties that will be needed.
Leta>1and setn,=[(a—1)"*]+1 and
(2.19) Mpiy=min{n:r,>r, or a,{a,/2}n[an].
We first note that for some be(1, a)

(2.20) n,zb* forall k.

This is because for each given k, there are [k/3] values of j for which one
of the following hold:

¥p.>F

nj

ay,<a,,_ /2, n;=[an;_].

nj- 1

In the first case, since r, is integer valued

Lk/3]1=r,,
<hn

for large k by (2.5). In the second case

k/3] -1 -1
plid ]an1 éank

<(Im)’?

by (2.7), while in the final case by the definition of n,, it is not hard to see
that for some ce(1, a), independent of k,

1y = 3],
Consequently (2.20) holds, and also by (2.19)
(2.21) Ny an.
Set my, =n, . — 1. Note that we trivially have
(2.22) r,1s constant on [n,, m,],
and since a,, is decreasing we see that
(2.23) f. and a,(4) areincreasing on [, m;].

Furthermore for some constant ¢ >0 independent of k

(2.24) Bu.Z B, -
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As a consequence of this and (2.21) we have by (2.4) that for some constant
¢>0 independent of k and 4

(2.25) % (A= cty, (4)
(2.26) V() Z €Y, (A)-

Remark. Throughout we will use the letter ¢ to denote a positive constant whose
value may change from one useage to the next.

3. Probability Estimates

For b>0 and d>0 define

(3.1 Ud)= i X 1(X;|=d)

i=1

(3.2) J(b)= 3. 1(1X;|>D).

i=1

In order to prove our main results we will need probability estimates on
the size of J,(b) and U,(d). Since we will be working outside the range for which
the classical exponential bounds were designed (see p. 266 of [9]) we will use
the following estimate which is an immediate consequence of Lemma 3.1 in

[12].
Lemma 3.1. For any v>0,d>0,s>0and alln
(3.3) P(U,(d)—EU,d)| =2 've’ nd K(d)+sdv 1) <2e"

Given two sequences s, and t, we will write s,~x¢, if s,t, ' and s, !¢, are
both bounded as n— oo.

Lemma 3.2. There exist positive constants ¢; and ¢, such that for all r=1, all
nand all b=0

(3.4) e P exp(r—rir+rl(nG(b)—2nG(b))
SPU,(b)zrZc,r V2 exp(r—rir+rl(nG (b)) —(n—r) G(b)

provided
(3.5) n>r?
(3.6) nG(b)<r/2.

Proof. For any b=0,r=1and n=r

(3.7) PUB)2) z()) by (L —G B~
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Set uj=(r;) G(bY(1—G()" /. Then for r<j<n

upe_ (1=)GB) _ nGl) _ 1
w  G+DI=G®) " r(1-GE) " 2(1—G)

by (3.6). Further since 1 <r<n'/%, we have by (3.6) that G(h)<(2n'/*)~1 L2762
and s0 u;, 1 u; ' <274 Hence

(38) (f)G(b)'(l—G(b))"*’gm,(b)gr)gc(f)G(b)*(l—G(b»"-*

where the ¢ is independent of n,r and b. Next by Stirling’s formula there exist
positive constants c; and ¢, such that for all r>1 and all n>r?

o e )
n—r r r n—r r

Now it is a straightforward exercise to check that for all r and » satisfying
1<rt<n,

(3.10) e"lg( n ) <e"
n—r

Also the elementary inequalities e ?*<1—x<e *for 0<x<1/2, give
(311 exp(—2nG () =(1—GO)* "Sexp(—(n—1) G(b)).
Thus (3.4) follows from (3.8)3.11). [

Corollary 3.3. For any sequence of integers s, satisfying 1 <s2 <n and any sequence
of real numbers b,>0, if nG(b,) s, ' -0 then

(3.12) P(J,(b,)2s,) 0.

This also follows trivially from Markov’s inequality. The following result
is an easy consequence of a generalized Borel-Cantelli Lemma.

Lemma 34. Assume B,, C, are two sequences of events such that B, k=1,2, ...
are independent and for each k, B, and C, are independent. If X P(B,)= o0 and
P(C,)— 1 then P(B, C, i.0)=1. :
Proof. Let E,=B,C,. Then P(E,)=P(B,) P(C,)~P(B,) and so ZP(E,)=co. If
i<j then

P(E;E)<P(B;B)=P(B)P(B)~P(E)P(E)
as i —» co. From these two facts, it easily follows that

Jim sup(_z Y PE E])) (; P(Ei))f2§1.

n—co 1j=1
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The result now follows by P3 on page 317 of [14]. [
We conclude this section with a simple Lemma which will prove useful
later.

Lemma 3.5. For any x=0,e>0and N =20

(3.13) [IN+e)[x]]+1—[N[x]1=e(l+e) ' x

Proof. If ¢=0 the result is trivial, thus we may assume £>0. If x<(1+¢) ¢!

then RHS<1 while LHS>1 for all x. If x>(1+¢g)e” ! then x—1>(1+¢) ! x
and so

LHS = (N +&)[x]— N[x]
=>z(x—1)
ze(l+e) 'x. O

4. Main Results

We begin this section by describing the growth of “X,. The only consequences
of (2.1) that will be used in this paper are (2.4), (2.17), (2.25) and (2.26). Since
these are not needed in the proof of the following result, no restrictions need
be placed on the distribution of X.

Theorem 4.1. Assume that r, satisfies (2.5), then

e, (=1 if A>1
4.1 1
1) TSP L2 if A<l

Proof. Given 4> 1, choose ae(l, A) and let n, be defined by (2.19). Set my=n, .,
—1 and observe that by (2.13) and (2.21), m, G(a,, (A) r,," — 0. Thus for large
k by (2.21), (2.23) and (3.4)

4.2) P(™X,|>a,(2) forsome n,<n<my)

=P(J (¢, (A))=r, forsome n,<n=<my)

S P, (an (D) 21y,)

Sy 1y, 12 explry, — 7y L1y, 1 Lmy Gloy, (1))

=y 1,2 exp(ry, — 1y, L1y, + 1 L Gy, (1) +7,, Lim n )
Co T2 eXP(ty, — Ty, F g — T 1By, + 1o (la—12))

e * 7 g

A

=c,rp?a, exp(la—12)r,)

and this gives rise to a convergent series by (2.10) and (2.20) since a</. The
upper bound now follows by the Borel-Cantelli Lemma.
Now fix <1 and choose D, an integer, large enough that

(4.3) 1-D"'>)
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Set n, = D* and
A =14, 0, D)=, @ () Z7,, -

Now J, (0t (4) =, (2, (4)) has the same distributions as J, _, ,(«, (4)) and

one can again easily check that the conditions of Lemma 3.2 are met, so
P(A)=c, ";;1/2 cXp ("nk T l”nk +7,, (g —my— 1) G (ot (A —2(m—me— 1) G(ank )
2y T2 exXp(, — T 1y, — T 1B+ 7 (1 =D)—12)~2(28,) ")
=cy 1% ay, exp(((1 =D~ 1) =121, —2(A8,) ")
which gives rise to a divergent series by (2.9) and (4.3) since r,, f, — c© by

(2.13). Since A, k=1,2, ... are independent events, P(4, i.0.)=1 from which the
result follows. [

Of course in general o,(A) and o, need not be comparable, for example when
G is slowly varying, however in our case we have

Corollary 4.2. Assume that r, satisfies (2.5);

(a) if X satisfies (2.1) then

(4.4) 0<limsup|™X,| o, ' < o0
(b) if X isin the domain of attraction of a stable law of index ae(0, 2) then
(4.5) lim sup|™X,| o, ' =1.

Proof. (a) follows from (2.17) and (4.1) while (b) follows from (2.18) and (4.1). O

Remark. It is easy to see that (4.4) holds more generally than under condition
(2.1). What is needed for (4.4) is that o,(1,)~a,(4,) for some 4, <1<4,. This
is true for example if there exists p>0 and a non-increasing function f such
that x? G(x)~f(x) as x — co. In particular this is true for many random variables
in the domain of attraction of the normal law.

As was pointed out earlier any sequence a, satisfying (2.6)~2.8), satisfies
(2.6)H2.8) with r, replaced by r,+j. Thus defining

(4.6) Ba(y=exp(la, ' =, + )1, +)+ 0+ +) 7Y
(4, )=min{x: G(x)=(AnB,() '}

we have by Theorem 4.1 that for each j=0

|en DX | {gl if A>1

47 i
47) 1m sup >1 if A<l

e (A ))

In particular for each j =0, |""9X,|<a,(2,)) eventually. Our next aim, Lemma
4.4, is to show that this holds uniformly in j for 0<j<j,, provided j,=o(r,).
Actually we will not prove quite this much, we will introduce a new sequence
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b,(j), which is more convenient to work with and show that |™*?X |<b,(j)
for all 0<j<j, eventually. To do this set

I,n
4.8) 0, =€xp (— 2r,%)

and for 0<j<r, define
(4.9) b,(j)=min{x: G(x)=12n s ,) " '}.
First note that by (2.5) and (2.7)

Ln Ln—r,lr,+r
ndr B2 n exp _2r 27 mlnlm
27, T,
-1
2nr,
— 0.

Thus

(4.10) b,(r,)— o

and since 0, < 1 we trivially have

(4.11) bu(r) 2b,()<b,(j—1) =, (2)

for 1<j<r,. Next observe that for 0<j<r,

jlan la;? a, * )
— + —Ir,— +I(r,+
22, TR
> jla,* _Jjhn
Tt 2r7

>0

0% B Bu()™ )=

by (2.7). Thus
(4.12) o) Bz B, OZjsr,.

Later we will need to compare b,{j) with b,(1) and also b,(1) with ¢,. To do
this we let

(4.13) a=[21(40)]+1
where 8 is given by (2.2). Thus by (2.14)
(4.14) 5, MNa>40,

Lemma 4.3. If n is sufficiently large, then for all integers k=0 satisfying akN,
+1Zr,

4.15) b (akN,+1)<27%b,(1).

Proof. If k=0 then the result is trivial, thus we may assume k> 1.
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By (2.4) if 27 b,(1) = x, then

(4.16) G(27%b,(1))<4*0G(b,(1)
<(460y(2nd, B,) "
é(zn 5ockN"+ 1 ﬂn)—l
=G(b,(xkN,+1)).

Thus if we can show that 27%b,(1) 2 x, holds whenever ak N,+ 1 <r,, provided
n is sufficiently large, we will be done. Let

(4.17) k,=max {k: 27%b,(1)= x,}.

Since b,(1) — oo by (4.10) and (4.11), we must have k, — co. Suppose that ak, N,
+1<r, infinitely often, then by (4.16) and (4.17) along some subsequence we
have both

276D (1)< x,
and
27%b,(1)2 b, (ak, N,+1)
gbn(rn)

- 0

by (4.10) and (4.11). This is a contradiction and so xk, N,+1=r, eventually
which completes the proof. [

If r,= 0((I,n)/?) then §, — 0 and so for every ¢ >0 by (2.4)

G(ea,) £ 20G(w,)
=g 20(np)""
<@2nd,B,)"
=G(b,(1)

provided » is sufficiently large. Thus if r,=o(({, n)*/?) then
(4.18) b, (1)=o(x,).

Lemma 4.4. Let j, be any sequence of integers satisfying j,r, ' =0 and set

4.19) A, ={"*"IX,|>b,(j) forsome 0<j<j,}
Then
(4.20) P(4,1.0)=0.

Proof. Iet ac(1,2) and define n; by (2.19). Set m;=n, . — 1 and let

B,={A, for some n, Sn<my}.

be()=_min b,()).

nEnsm
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By (2.22), since we may assume j, is nondecreasing, we have

.21 P(B)<P("m+t X, |>b(j) forsome 0=<j<j,,)
Sjm. max P(mIX,,[> bi(j)).
ZiZim,

We now wish to apply Lemma 3.2. By (2.5) it is clear that if k is sufficiently
large then max (r,, +j)> <m,. To check (3.6) first observe that by (4.12)

0SSy,

(4.22) Gbe(j)= max G(b,())

ne<n<my

= max (2ndiB,)"*

npEnSm

< max 2np,G)7!

e Sn<mg

é (2nk ﬂnk(j))_ !
by (2.6) and (2.22). Thus for every 0= <7,
(4.23) m, G (Bk M=amG (Bk ()

a2, (M *
la,?

=(a/2)exp (— R +1(ry +7)— 1)

e

) la, !
=(@/2)(ry, +j)exp| — P
=1/2(rm,+))

for large k, independent of j, by (2.5), (2.7) and (2.22). Consequently we can
apply Lemma 3.2 to obtain

(4.24) P(B)Sjm, max c;(ry, +/)7 2 exp((ry, +J)

0=j=ip,
= (g 1) W+ ) (g ) L G (B ()
Using (2.22) and (4.22) the exponent above can be written as
(4.25) (Fu + )~ o +) LTy 1)+ o, +) L, G B+ (P +1) Himg )

S 1) = O A D 1o+ 1) = 1) 1 B )+ (o + ) (la—12)
=la, +(, +j)la—12)

by (4.6). Thus, since a<2
P(Bk) é Czjmk rr;kl/z ank e(la—ll)rnk

and this gives rise to a convergent series by (2.10) since jo, rp.' =jm 7
The result now follows from the Borel-Cantelli Lemma. [
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In proving the lower bound in Theorem 4.8, we will, roughly speaking,
need to ensure that infinitely often the N, largest terms are all of size «, and
further that all of these terms have the same sign. This will be formulated precise-
ly, together with an additional requirement, in Lemma 4.6. To prove this we
must first introduce some further notation.

For 0=y, 5y, if G(y,)>G(y,) let X(y,,y,) be a random variable with
distribution function Fy,,, ,,) given by

(4.26) dFx X)) =1y, ZIXI=y)(G(y)—G(y2)~ ' dFy(x).

Thus X(y,, ¥,) is X conditioned to have absolute value between y; and y,.
Note that

1 if x<y,
(4.27) GX(yl,yz)(x)= (G(x)_G(Yz))(G(JH)‘G(YZ))_1 if y=x=y,
0 if x=2y,

We will write X (y,) for X (0, y,).

Forrz2andsz0letH,, ,.,,-1(y:,y,) denote the iwo-dimensional distribu-
tion function of (|**9X,,|, |*~X,,)). Observe that this distribution assigns zero
probability to the complement of the set {(y,, y,): 0=y, <y, and G(y,)>G(y,)}.
The following proposition does not appear to be in the literature, but since
variants of it are well known, (sce for example Lemma 1.1 of [11]), we will
not prove it here.

Proposition 4.5. Let X;(y), i=1,2, ..., and X;(y;, y2), j=1,2, ..., be sequences
of iid. random variables with common distributions given by X (y;) and X (y,,
y,) respectively. Further assume that these sequences are independent. Then for
all r=2, all 0<s<wu, all bounded Borel functions ¢,: R* *—>R!, ¢,: R®> R,
and all Borel sets BS[0, o0) X [0, 00).

428) E[¢1("™ Xy, .., TTTVX) 9o (TTTIX,, L 0X);
("X, " VX, )eB]
:f E(pl((u_S)Xm—r—s(yl)’ ""(I)Xm—r—s(yl))E¢2((S)Xs(y1>y2)7 (RS
B

(I)Xs(yla y2)) de,r+s,r—1(y1 » J’z)

Remarks. 1. If s=0 or u=s we should explain what is meant by (4.28). If s=0
then ¢,=1, while if u=s then ¢, =1.

2. The more intuitive way of phrasing (4.28) is that the distribution of
(rrox, ..., Crstby o etseDyo ..., PX,) conditioned by |"*9X, |=y,,
l(r_l)XmlzyZ is giVCl’l by ((u_S)Xm—r—s(y1)7 cee (I)Xm*r—s(yll (S)Xs(yla y2)a s
DX, (1, y2)-

Set

(4.29) pn="[ra/ln].



LIL for Trimmed Sums 307

Lemma 4.6. For every integer N =1 there exists A,6(0,1) such that for all
2,€(0,4,) and all £€(0, 1)

(430) P(l(rn+t")an éan(ill I(rn+S")XnI z o (}“2)> En i.O.) = ]-

where s,=Np,, t,=[(N+2¢) p,]+1 and E,=E; UE,” where

(4.31) ES :{syil 19X, >0)=(1—¢) s,,}

i=0

(4.32) E; ={s"f 1 X, <0)=(1—e) s,,}.

i=0
Remark. If 5,=0, then E,, is the whole space.
Proof. Fix N 21 and choose 4,€(0, 1) so that

(4.33) 12A,)+2N+1<0

Let n,=2% and for notational convenience write r,=r,,, ;= Sus L= lny> P& =Py
and o (4)=a,, (4). Define u,=[(N+¢) p,]J+1 and v, =[ep,]. Note that u,>s,.
Let

"Z,.=r"largest random variable in absolute value from amongst
D. G ¢
Af ={"*9Z,>0 forall 0<i<s,}
Ay ={"*9Z,>0 forall 0<i<s,}
B,= {|(rk+uk)zk| Sog(4y), |(Pk+sk)Zk| Z “k(lz)}
Ci= {Jnk I AV RS Uk}'

If s, =0 then 4; and A4, are the whole space. Observe that on the event 4, B, C,
since 4, + v, =t, we have

(4.34) | X <o (Ay)
(4.35) |k TIX, | 2 o (22)
and
se—1 )
Y L(TIX, >0) 25—
i=0
Z(N—¢)py
=>(1—¢g)s,-

Similarly on the event 4, B, C, we have (4.34), (4.35) and

s~ 1
(4.36) Y 1O, <0)2(1—g) s,

i=0
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Hence to prove (4.30), it suffices to show P(A4;B,Cy i.0.)=1. To do this we
will use Lemma 3.4. First observe that 4,B,, k=1, 2, ... are independent, and
for each k, C, and 4, B, are independent. Now setting v,=uv,+1 we have by
(3.12
1=P(CY)=P(,,_ (A1) 2v})
-0

since
Me—1 Gy (A1) (W) ™ S (A4 Brvi) ™ !
S(L+e) (A feri/lam) ™t
-0

d
by (2.13) and (3.13). Next let my=n,—n,— =271, 50 {VZ,: 1<j<m}={VX,,:
1<j<m,}. Thus to compute P(4, B;) we can use Proposition 4.5 with

Gr(Xgs ooy Xy )= 1(x; | S (A1)

Y 1z>0+ ] 1(z;<0)  if %0

@2(zy, ..., 25 )=1i=1 i=1
1 if 5,=0

B={(y1,72): () Sy Sy, <0}

Recall that u, > s, so there is no need to modify the definition of ¢, to include
the case u, =s,. Observe that if G(y,)> G(y,) then

Ed)Z((Sk)Xsk(ylsyZ)a ey (I)Xsk(ylnyZ))

=E¢,(X (1, V2D --or X5, (15 12)
2275

while for any y; = a,(4,)

E¢1 ((uk_Sk)ka—r;;—sk(yl)’ vens (1)ka~rk—sk(y1))
=1—P(|“ X, o5 (V)] > 2(24))

-1
uniformly in y, = o, (A,) by (3.4), since by (4.27)

(my—r1—5) GX(yl)(‘xk(’ll))(uk —5)" < (my— 71— 84) G0 (A1) (e — 50~ !
(A Bl —s) ™1
S(1+e)(edy l)’m?/lz )~ !
-0

by (2.13) and (3.13). Thus by (4.28), for large k

P(4,B)z2 ¢V P(|" WX, |2 0 (4r)),
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and so to complete the proof we must show that this gives rise to a divergent
series. Let w,=r,+s, and write w,=w,, . Note that {w,—r,|=0(r,) by (2.5) thus
it is easy to check that conditions (3.5) and (3.6) are met, so by (3.4)

(4.37) P(l(wk)ka’ Zo(A))Z ¢ w V2 exp(wy—wy Iw, —wy 1B, —w, 1(22,)
—(42897 Y.

Now set f,=exp((la, '—w,Iw,+w,) w, ') and f;=p;, . Observe that by (2.5)
and (2.7) ’

sy lag !
re(ri+s)

lﬁk—lﬁ;(: +l(1+skrk_1)

PEL L LS
Fy

S2N+o(1).
Thus for large k, [ 8, — IS <2N +1 and so

P(AyB)Z ey 27T D w12 exp(wie— wi Lwy— wy [ B
—w(2A)+2N+1)—(A, f)™")
=c¢; 276t Dy 2 g exp(—wo(I(24) + 2N +1)— (A, B~ Y.
Since |w,—r,|=s,=o0(r,) we have s, =0(w,), and further by (2.13) that ; ! = o(w,).

Thus by (4.33) and the remarks following (2.10), the above give rise to a divergent
series and the proof is complete. [

Fix p>2 and let
(4.38) d,=min{x: G(x)=(l, n/r,)’(np,) " '}.

One easily checks that G(d,) >0 and so d, — oc. Let

2
(4.39) jn=[4p Ta ) [l ]+1.
lz n Fy
Note that by (2.5)
(4.40) jorT 0.

Let n, defined by (2.19) with a=2 and set m,=n, ., —1. Let

(4.41) dy= min d,,

meEnsmy

then
(4.42) G(d) (L My, )P (1 Br) ™.
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Observe that
G (b, ()= 211y s B, )™

=(2m B) ™" €XP U, L My (277,) ")

(L, my/ry,) 22 (2my ,Bmk)—l

=c(ly m/ry,) 2P (my B~ !
by (2.21) and (2.24) where c¢ is independent of k. Thus by (2.5) for large %,
G (b, () 2 G(dy) and so -
(4.43) B, ) S .-

Similarly one can show that for large n

(4.44) b,(in<d,.
Now let
(4.45) d,= max d,

then by (2.5), (2.21) and (2.24) for some ¢> 0, independent of k

G(Jk) 2 (L /1) "(my Bon,) ™ !
2 c(ly m/rw) P Ba) ™
=cG(d,,).

Thus by (2.4) since d, — ©
(4.46) di=cd

(0%

for large k, where ¢ is independent of k. Also note that by (2.1) for any ¢>0,
x2*% G(x)— o0 as x — oo, (this actually holds for ¢=0 also). Thus by (2.7) and
(2.11), n~*a,— oo for all s<1/2. In particular (r,/l, n}** «,— co and so by (2.4)
for large n

4.47) d, <02, /Lny% a,.

From (2.5) it then easily follows that

(4.48) dy 1, =0(ys)-

Note also that by (2.21), (2.22), (4.42) and (4.46) for some constant ¢

(4.49) Jk my G(Jk) =cd,, (, nk/rnk) pﬁr;l
=0(Yn)

by (2.13) and (4.48).
To simplify notation in the next Lemma, it is convenient to define

U,(d)=U,(d)— EU,(d).
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Lemma 4.7.

450 N L TACA

B0 ’yn

=0

Proof. Let n, be defined by (2.19) with a=2 and set m,=n, ., — 1. By (2.21)-(2.23)
it suffices to prove

limsup max IU"(ﬂz()

ks mkEnZme  Vn,

First observe that for n,<n<m,
1T =10,(d)+ Y, X 1d<|Xi| £d,)— Y EX; 1(d<|X;|=d,)
i=1 i=1

<IG@N+d, S 1@ <IX<d)+ Y EIX) 1@ <X =d)

i=1 i=1
Thus

(4.51) max |U,(d,)|s max |U,(d,)| +d, Zl(dk<|Xl<Jk)

HeEnsmy neS<nEmg
ny
+Y EIX|1(d, <X, £d)
1
=[+II+111.

Now by (4.43) for large k
11£d, J, (dy)

iy J Jmk (bmk(jmk))

while by (4.19) and (4.40) for large k we have a.s.

Jmk (bmk (Jmk)) < rmk +jmk .
Thus for large k, by (2.22), (4.40) and (4.46)
=24,

<cd, r,

=0(Vu)

by (4.48). Next
HI<d, m, G(dy)
=0(Vy,)
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by (4.49). To deal with I, first observe that for n,<n=<m, by Chebyshev and
(2.2)

P( G, (d)— T, (@) > £7,,) < (my,—n) d7 K(d)(€7,,) >
<047 m, G(d)(ey,) >
-0

by (4.48) and (4.49), uniformly in n. Thus by Skorohod’s Lemma (Breiman [1]
p.45) for large k

P( max |G,(d)>2e7,) 2P0, (@) >ev,).

AeSn<my

We will now use Lemma 3.1 with s=21, n, and v=1, n,(2r,, )~ *. Then
sdv™ <44, 1, =0(,)
by (4.48) while
Yve'm, d K(d)<0ve’d, n, G(d)=0(y,)
by (4.49). Hence by (3.3) for any ¢ >0, if k is sufficiently large
P(1U,,, (&) >£7,) 2 exp(—21, my)

which gives rise to a convergent series by (2.20). The result now follows from
Borel-Cantelli. [

We now come to our main result describing the L.LL. behaviour of =~ 1§, .

Theorem 4.8. Assume that r, satisfies (2.5) and let y, and d, be given by (2.16)
and (4.38) respectively
(a) If (2.1) holds then

(4.52) O<limsup|™ VS, —EU,(d,)| 7, ' <

(b) If (2.1) holds and in addition r,=o({l,n)*"?) then

(4.53) 0<limsup|™X,|y, ! =lim sup|™~VS,— EU,(d,)| 7, ! <0

Further
(4.54) lim sup|[*-* VX [y, 1=0
(4.55) lim sup|*~S,— EU,(d,)| y, =0

(c) If ry=0((l,n)*'*) and X is in the domain of attraction of a stable law of
index a.€(0, 2), then (4.54) and (4.55) hold and (4.53) can be strengthened to

(4.56) lim sup|*™X, |y, ! =lim sup|™~ VS, —EU,(d,)|y, ! =1.

n— n—o
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Proof. First note that to prove (4.54), it suffices by (4.7) to show that «,(4, 1)
o, 1 >0 for some A>1. To do this it suffices by (24) to show that
G (0, (A, 1))/G (o) = B, (A B(1) "' — c0. But by (2.7)

-1 ~1
la, la,

-1
O e
In
ALY
- 00
if r,=o((l,n)*?).

Next observe that (4.56) is an immediate consequence of (4.53) and (4.5).
Further (4.53) follows from (4.55) and (4.4). Thus we only have to prove (4.52)
and (4.55). We begin with the proof of (4.55) and the upper bound in (4.52),
which will be proved simultaneously. Observe that to prove the upper bound
in (4.52), it suffices by (4.4) to show that

(4.57) lim sup|™S,— EU,(d,)| 7, ' < .
Fix n; if |"* VX, | <d, then
l(rn)Sn - [j;t(dn)l § dn ¥y

and so by (4.48) and (4.50)
(4.58) 7S, — EU, (d,)| = 0(7,).

If " VX, |>d, then

(4.59) |8, ~ EU, ()| =| Zn DX, (X > d))
ji=1
=J+1I

By (4.50), 1I = o(y,), thus we have left to estimate I. Let j, be as in (4.39), then
by (4.20), (4.40) and (4.44) we have that |"»* X |<d, eventually. Thus for large
n, using (4.11), (4.15) and (4.20) we have a.s.

Jn—1
(4.60) ISy [ex,|

ji=1

Jn—1

< T b0

LinfaNgl (+ 1jaN,
<Y Y b
k=0 j=kaN,+1
Un/aNxl
< Y aNb,kaN,+1)
k=0
Lin/aNx]
<aN,b,(1) Y 27
0]

<2aN, b,(1).
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Thus by (4.59) and (4.60)
"8, — EU,(d)| S 7,20 by(1) o +0(1))

Now by (2.17) and (4.11), b,(1)«, *=0(1) which proves (4.57), while if r,
=o((I,n)'"?) then b, (1) o, * — 0 by (4.18) which proves (4.55).

To prove the lower bound in (4.52) we begin by letting N=4 in Lemma
4.6 and choosing 4,€(0, 1) to satisfy (4.30). By (2.17) we have
(4.61) 0, (A2) 2 (22/20)%" 0, (2).
Next choose M an integer, large enough that

(4.62) 27M<(8a) (420"

and set A, =(160 «*> M?)~! 1,. Observe that A,€(0, 1,) and by (2.17)

(4.63) t,(A)S(@aM)™ " o, (2,).
Set
(4.64) e=(8(1+(20/4,)7 )~ *

in Lemma 4.6 and let
D,={|" "X, [Sa,(Aq), |7 X | Z a0, (A2), En}-

Thus P(D, i.0)=1. If weD, and n is sufficiently large then | "X |>d, since
o,(4,)>d, for large n by (2.17) and (4.47). Thus for infinitely many n, D, occurs
and

=S, — EU,(d,) 2| Y. ""”’Xn\‘ 3K LK, > d,)

j=0 j=sn+1
—1U,(d,)—EU,(d,)]
=]—H—-1ll
Now by (4.20) and (4.44) for large n
jn =
II< Z |(rn+.l)X"|
j=sat1l
t,—1 aMN,, Jn .
= Z l(r"+j)Xn|+ z '(rn+j)Xn|+ Z I(rn+J)X"|
j=snt1 J=tn aMNp+1

=II,+1I,+II,.



LIL for Trimmed Sums 315
Now for large n by (4.1)

I £(t,—s,— )| =T VX |
=2ep,|"™X,|
<2é&p, %,(2)
S(1/4) pu 2a(42)

by (4.61) and (4.64). Since weD,

I, <aM N, a,(y)
é (1/4) Nn OCn()'Z)

by (4.63). By (4.15) and (4.20)

;= }Z b,(j)

aMN,+1

LinfaNa] (k+ DNy,

<)Y X b

k=M kaN,+1

Lin/aNy]
<aN, Y, bykaN,+1)

k=M

Lin/a Ny}
<aN, 3 27¥b,(1)

k=M
SaN,27M* 1, (1)
<aN, 27" o, (2)
=(1/4) N, o, (22)

by (4.11), (4.61) and (4.62). Thus for large n, if weD,
(4.65) IT=(3/4) N, 2, (42)-
Next for weD,, if p,=0 then

(4.66) I=]"X,|
Z0,(45)
=N, %,(%>)

while if p, 40 then s,=4 and so

S,— 1 S,— 1

I= Z (rn+j)Xn1((rn+j)Xn>0)+ z (rn+j)Xn1((rn+j)Xn<0)+(rn+sn)Xn_
ji=0 ji=0
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Now since weD, we have that weE, UE, . If weE, let j,e[0,s,~1] be such
that ¥»*4 X >0, Then " ¥/ X +¢=*sdX >0 and so for large n by (4.1)

(4.67) IZ((1—¢s,—a,(d)—es, a,(2).

If weE, then the analogous argument shows that (4.67) still holds. Thus by
(4.61) and (4.64)

(4.68) 12(3/4) s,—1) ().

Now if p,+0 then (3/4)s,— 1= N, thus combining this with (4.66) gives that
for large n, if weD,

(4.69) 12N, o,(4,).
Thus by (4.50), (4.65) and (4.69), for infinitely many n

|t== 1S, ~ EU(d)| Z2(1/4+0(1)) N, 2, (2,)
2cN, a,

~where ¢>0 by (2.17) and this completes the proof of the lower bound. []

As an example assume that X is symmetric stable of index ae(0,2) with
scale parameter chosen so that G(x)~x"% If r,=o(l, n) and lim inf r,(I,n) "' >0
for some p > 3, then as mentioned in section 2 we may take a,=((In)...(l,—; n)) ™"
and so

4.70) Ya=N,n'* exp((yn+ ...+ ,n—r, Ir,+1,)(ar,) ")
In particular if r,=[I,n] for some p >3 then it’s easy to see that
4.71) Ya~ e e (L) Ve exp((lyn+ ...+ 1, m)ar) ™)

As we remarked in the introduction, the assumption of continuity on the
distribution of X is not needed. The general case can be dealt with using the
techniques described in [3]. In particular take for the definition of 'S, the
one given in Sect. 6 of [3]. Next with G given by (6.1) of [3], let &,=G((nB,) )
and d,=G((l,n/r,)?(nB,)” 1) where p>2. Then Theorem 4.8 holds with &, and
d, replacing o, and d, respectively. The proof follows along the lines given
here but the technical details are made more complicated.

5. Classical and Non-Classical L.I.L. Behaviour

We would like to explain a little further the remarks made in the introduction
about the different ways in which the large values arise in (1.4) and (1.12).
For simplicity assume that X is symmetric, else what we are really talking
about is fluctuations of “»S, from some centering sequence. We also assume
(2.1), so (1.4) and (1.12) both hold without need for centering.
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If r,(I,n)"* >0 let N, and «, be given by (2.14) and (2.15) respectively. If
ra(ln) ™t > oo let N,=r, and define «, by G(x,)=r,n" . Then as we have seen,
in the first case, the large values of "X, are comparable to «,, and the large
values of ®»~ S, arise because infinitely often there are N, terms comparable
in size to o, and these terms have the same sign. If r,(l,n)"* - oo, then by
(4.1) of [3], we can again show that the large values of "X, are comparable
to a, and again there are N, terms comparable in size to «,. However the
correct normalization for =~ 1§, (or ¢»S,) in this case is not N, a,=r,q,, but
(r, 1, n)*/? a,,. There are two things to notice about this. First, the minimal number
of summands required to make ™~ VS, as large as (r,[,n)*/? a,, is greater than
I,n, more precisely there exists a sequence s, such that s,(I,n)"'—> oo and
("X, + ... + | X, N=0((r, I,n)*/* a,). Secondly, since there are r, terms of
size a,, there needs to be a lot of cancellation amongst terms in order that
(rn I;n)*? &, be the correct normalizer for "=~ 1S, . Both of these properties are
typical of classical L.I.L. behaviour. For example if EX*< o, one can show
that there exists a sequence s,, depending on X, such that ([,n)=o0(s,) and
(VX + ... +1%X )= 0((nl, n)*/?). Furthermore, despite the paradoxical sound-
ing nature of the statement, there has to be a lot of cancellation in order for
S, to take values of order (nl, n)"%. One way of expressing this for example,
is that if ¢, is any sequence such that

tn
lim sup ( ¥ ‘i)X,,>(nlzn)‘ 1250

n— oo j=1

then

t
lim sup ( Y I(i)X,,I)(nlz n) Y2=o0,
o \i=1

The idea that classical L.I.L. behaviour is due to many moderate summands
rather than a few large summands is a common (though often well hidden)
theme; see Klass [15] for a nice discussion.

The borderline case r,~[,n is not included in (1.12) but is included in (1.4).
This might lead one to think of it as giving rise to classical L.I.L. behaviour.
However it may be that the techniques used in this paper can be extended
to cover this case. Notice that the two definitions of a, do agree up to constants
when r, &1, n, since we may take a,=(In)"'. Thus the large values in this case
may arise in both ways!

Acknowledgements. The author would like to thank the referee for his careful reading of the paper.

Appendix

Given a sequence of integers r, increasing to infinity, we construct a sequence
a, satisfying (2.6)}-(2.8). Let
ny=min{n=10:r,=1}
my=max {n:(In)<(In,)*}
My =min{n>mr,+r, }
My, =max{n:(In)<(In.4,)*}.
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Clearly n, <my <n,, , and since r, is integer valued

(A1) o 2 k.

Ry =

Define

n

In) % n.<n<m
— k. k k
(Iny™% me<nZn.,.

Clearly a, satisfies (2.6) and (2.7). To check (2.8) first observe that
Ya,n ! ;Z(Zan nl)
n k \ny

=>(nm)~? in‘l
k "y

23 ()~ > (Amy+1)—1ny)
k

= (Ing~*((Um)* —(Iny)
k

which diverges. Next let ¢ <0, then by (A1)

™y g
Zann_l e”"§Z(Zann_1e“n+ il ann_1eern)
n k \nx

my+1
nye
<>e*Ya,n '+ (n(ln)*) 7.
k ny n
Now the latter series converges while

e My
Yagn”t=(In) "2y n™?
LG% - Ny

(In)~%1m,

=
=1,

thus (2.8) holds.
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