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Summary. Four  different location parameter models are compared within 
the sufficiency and deficiency concept. The starting is a location model of 
a Weibull type sample with shape parameter - 1  < a <  1. Here our basic 
inequality concerns the approximate sufficiency of the k lower extremes. 
In addition, the lower extremes are approximately equal, in distribution, 
to (sire/(1 +a) q_ t)m< k where S,, is the sum of m i.i.d, standard exponential ran- 
dom variables and t is the location parameter. The final step leads us to 
the model of extreme value processes (S~/(1 +") + t)m: 1, 2, 3... 

1. Introduction 

Consider a location family Pt, t e N ,  with Lebesgue densities f~ given by f(x) 
=f(x-t) where f is of Weibull type; that is, for some known value a > - 1  
we have 

(1.1) f(x)={O at(x) if x_<0x>0 

where r is a sufficiently regular function. Notice that we get Weibull densities 
if r(x)=(l+a)exp(-xl+a), and we get certain generalized Pareto densities if 
r (x)=(1 +a)  1(0 ' 1)(x). 

It is well known that the Fisher information is finite for Weibull densities 
if and only if a >  1. In this case the sequence of product experiments (IR", 
~", (P~"-l/2t)t~) is locally asymptotically normal (LAN). This result remains to 
hold for a = l  if n - 1 / 2  is replaced by (n logn) -1/2. Thus it is clear that for 
a > 1 a fixed number of extreme order statistics asymptotically does not contain 
any information about  the given experiments. The situation changes completely 
if a = 0 :  It is well known that the sample minimum XI: ,  is sufficient under 
exponential distributions with unknown location parameter. 

Let X1, ..., X ,  be i.i.d, random variables with common distribution Pt and 
let X I : , < . . .  < X , : ,  denote the corresponding order statistics. It is well known 
that the order statistic (XI:,,  ..., X,:,) is sufficient. In the present article we 
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will reduce the number of order statistics to the k(n) lower extremes 
Xt: , ,  ..., Xk(,):, and will calculate bounds for the loss of information if - 1  < a  
<1. 

These calculations will be carried out within the framework of deficiency 
of statistical experiments. Before giving a detailed outline of our central ideas 
we make a short comment about specific statistical procedures treated in litera- 
ture. 

It is necessary to distinguish between a parametric set-up (e.g., Polfeldt (1970) 
and the present paper) and a nonparametric one (e.g., Weiss (1971) and Hall 
(1982)). In the first case one evaluates the location parameter of the distribution. 
We refer to Polfeldt (1970) and Janssen (1988) for the treatment of estimation 
and testing procedures. Further references can be found in Hall (1982). In the 
second case one is only interested in the tail of the distribution which is character- 
ized by functional parameters like the endpoint and the tail index a. If a =0  
then the sample minimum properly centered is an asymptotically efficient estima- 
tor of the left endpoint. If a 4= 0 then the sample minimum still attains the optimal 
rate, however it is inefficient. The performance of estimators can be improved 
when several extremes are taken into account. Asymptotically efficient estimators 
are obtained if k-k(n)  goes to infinity as the sample size n goes to infinity. 
In this context Weiss (1971) uses a quick estimator and Hall (1982) a "maximum 
likelihood estimator" of the endpoint. The variance of estimators decreases when 
k(n) increases; our present results give some in sight in this relation. However, 
in the nonparametric set-up one also has to take into account the bias of the 
estimator leading to a different kind of problems. 

We introduce the rescaled experiment 

(I.2) E, = (IR", IB", (P~t)t~ 

where b. will be specified below; we have b.=o(n-1/2). The second statistical 
experiment is 

(1.3) E,,k =(R*, Nk, (Vt,k,,)t~R) 

for some kNn where V~,k,, is the distribution of 621(X1:, . . . .  , Xk:,) under P~",t; 
obviously, 

(1.4) Vt,k,, = 5~ (52 1 (X1 :,, ..., Xk:,) + t l Po"). 

Observe that E,,k is less informative than E,. 
Finally we introduce the statistical experiments Gk and G which arise out 

of approximations to E,,k. Let Y~, i eN,  be an i.i.d, sequence of standard exponen- 
tial random variables and put 

(1.5) s ~ =  ~, ~.  
i = 1  

Define 

(1.6) Q,,, = ~e ((S~/~ +~ t)~ <k) 
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and 

(1.7) 

Then, 

(1.8) 

and 

Qt ~- =~O ((aim/(1 +a)._~ t)m~N). 

Gk = OR k, ~k,  (Qt, k)telO 
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(1.9) G = (N. N, IB N, (Qt)t~). 

The comparison between the four different statistical experiments will be 
carried out according to the following diagram: 

E (,,.7) n ~ ~En,k 

(5.15) I I (5.8) 

G ,  ~ Gk (5.4) 

Denote by II II the variational distance between probability measures; that 
is II (2o-Q1 II = sup [Qo(A)-Q1 (A)I where A varies over the measurable sets. Giv- 

a 

en two dominated statistical experiments Hi = (f2i, d i ,  (Qi,o)o~o) with Polish Borel 
spaces (f2i, d i )  for i=  0, 1 define the deficiency 

(1.10) 6 (H1, Ho) = inf sup I[ Qo,0 - K Q 1,o L[ 
K 0~O 

where K ranges over all Markov kernels from d l  to d o  and K Q is defined 
by 

(1.11) K Q(A)=S K(A,') dQ. 

The symmetric deficiency of H o and H1 is defined by 

(1.12) A (Ho, H 0  = max {6(Ho, n 0, ~(H1, Ho) }. 

For  arbitrary experiments the definition of A (' ,-) can be found in Strasser (1985), 

II V o , k , . -  Qo,k II --' 0 as  n ~ oe 

p. 296. 
If 

(1.13) 

then it is clear that 

(1.14) A(E,,k, Gk)~O as n ~ o e .  
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It is well known that a v o n  Mises condition is sufficient for (1.13) (see Falk 
(1985) or Sweeting (1985)). The von Mises condition is equivalent to the condition 
that r is slowly varying at zero; i.e. 

r(xt)/r(t)--,1 as t,L0 

for each x > 0. 
Next we examine restrictions of experiments to compact sets. W.l.g. we can 

assume that the compact set is equal to the interval [0, s]. We will write As 
to indicate that O = [0, s]. 

It was pointed out in Janssen (1988) that 

(1.15) As(E , ,G)~O as n--,oo. 

Remember that E,,k is less informative than E,.  However, from Janssen (1988) 
we know that in addition to (1.15) 

(1.16) As(E,,k(,I,G)~O as n ~ o e  

whenever k(n)<n and k(n)--+ oo as n-~ oo. Combining (1.15) and (1.16) we also 
get 

(1.17) A~(E,,~(,),E,)~O as n ~ o o .  

Thus the lower extremes are asymptotical sufficient if k(n) --* oo as n --* oo. Rates 
in (1.17) can be deduced from our basic Theorem (2.8). 

Next we give some further remarks concerning the literature. Under  strong 
regularity conditions the limiting behaviour of likelihood processes in the case 
of densities with singularities was investigated in Ibragimov and Has'minskii 
(1981), Chap. V and VI (compare these results with Janssen (1988)). In connection 
with nonparametric models the approximate sufficiency of sparse order statistics 
was studied for instance by Weiss (1980) and Reiss (1986). For  the background 
concerning the comparison of statistical experiments we refer to Le Cam (1986), 
Strasser (1985) and Torgerson (1976). 

The paper is organized as follows. In Sect. 2 we establish an upper bound 
of AAE,,k, E,). A careful study of the asymptotic behaviour of the upper bound 
reveals that the bound essentially consists of two parts. The first part heavily 
depends on the number k of order statistics under consideration. The second 
part expresses the dependence on the sample sizes n. This suggests to examine 
these terms separately in the Sect. 3 and 4. The comparison to the models 
G k and G is carried out in Sect. 5. 

2. The Basic Inequality 

Let - l < a < l  and let Pt again be defined via a density f of the form (1.1) 
and the location parameter t. Moreover,  XI: , ,  .-., X,: ,  are the corresponding 
order statistics of a sample of size n. Denote by 

(2.l) K}"~(-Ix) 
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the conditional distribution of (X 1 . . . . . .  ,Xn:,) given (X l:,, . . . ,X~: , )=x  
,=(Xl . . . . .  xk) under the parameter t. It seems to us that the Markov kernel 
K(o "'k) is appropriate to calculate an upper bound for the deficiency of E, and 
E,, k as defined in Sect. 1. A moments reflection shows that it suffices to establish 
an upper bound of 

I I ~ ( ( x ~ : , , . . . ,  x,:,) I P?) - K(g, ~) ~ ((X~ . . . . . .  , X~:,)  I P#)II 

for some fixed parameter t. The upper bound will depend on three auxiliary 
functions h, g and 0: First define the U-function (w.r.t. Lebesgue measure) 
h by 

(2.2) h(x) = ( X  - -  1) a/2 l ( t  ' oo)(X) --  X a12 1(o ' oo)(x). 

Then for every t > 0 with r( t)> 0 define 

( f l / 2 ( t ( ' - - J ) ) - - L 1 / 2 ( t  ") 

(2.3) g(t)= \ rl/Z(t ) t~/2 

where H" II2 denotes the U-norm. Moreover, 

h(')) 1(1 , oo)( ' )  2 

(2.4) ~(y)=  h2(x)dx for y > 0 .  
1 y 

It is immediate that ~ is a decreasing, continuous function. 
Before formulating our basic inequality we indicate the relation of the auxilia- 

ry function g to conditions and arguments as previously given in Janssen (1988) 
and Janssen et al. (1988), w 10. Assume that the function r is positive on the 
interval (0, Xo) and slowly varying at zero. Obviously, 

(2.5) f l/z ( t (x -  1))- f l/2 (t x) 
rl/Z(t)t,/2 ~h(x) as t$O 

pointwise for x>0 .  If the U-convergence in (2.5) is valid then g ( t ) - , 0  as t+0 
and vice versa since 

[fl/2(tx)/(rl/z(t) ta/Z)--x ~/2] I(o,1)(X )--+0 as t ~ 0  

in U.  Subsequently we will find mild conditions which ensure that the 
U-convergence in (2.5) holds. Assume that 

ct~ 
(2.6)(i) . f ( f l /Z(x-t)-f l /Z(x))Zdx=o(tl+ar(t))  as t~0 

g 

for each e>0.  Secondly, the function r(x) splits in two non-negative functions 
r(x)=rl(x) l(x), where r 1 is absolutely continuous on (0, Xo), slowly varying 
at zero with 

(2.6)(ii) x(logrx(x))'~O as x$0. 
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In addition, let l(x) denote a continuous function on [0, Xo] with l(0)>0 and 

Xo/ 2 
(2.6) (iii) ~ (l 1/2 (X  -t- t)  - -  1112 (X)) 2 r 1 (X)  X ~ dx = o(t 1 +" r(t)) 

o 

as t+0. 
We remark that (2.6) (i) and (2.6) (iii) are satisfied whenever f and 1 are absolutely 
continuous on (0, oo) and [0, Xo] respectively, and 

(2.7) ~ ' f '  (x)]~ dx + i ~ ~ ~f(x)dx < oo 
f(x)  ~-1 

for some 2e(1 +a,  2] n [1, 2] and each z>0.  These implications can easily be 
checked by making use of arguments of Ibragimov and Has'minskii (1981), 
p. 282. 

(2.8) Theorem. For k e { 1, ..., n}, t > 0 and 6 > 0 such that k/n < F (6) < F (6 + t) < 1 
the following inequality holds: 

(2.9) [r ~ ( (XI : , ,  ..., X,:,)[Pt")-K(o "'k) ~ ( X l : ,  . . . .  , Xk:,)[Pt")/I 

<=(n-k)l/2 {tl+"rl/2(t)(1-F(O+ t))- l/2[g(t)+ Eps ~ (1Xk:n)] 

k 2  §162 .(., 
Before turning to the proof of Theorem (2.8) we give an upper and lower 

bound for the term involving the function O. If a = 0  then 0 = 0  whence the 

term EI,~ 0 ( 1 X k : . ) i s  equal to zero. In general, this term can be expressed 

by moments of Xk:.. We have 

=> a t 2 - a l / 2  Ee~ + X k : .  a 

<--<_ al t-r-/(2(1--a) 1/2 Ep~ Xk:. 2 . 

To prove (2.10) for a + 0 apply the mean value theorem andverify that 

0(y)__< ( x _  1).-2 d _ y 2 
2(1 - - a )  1/2 

1 

Calculate the lower bound in an analogous way. 
The proof of Theorem (2.8) is split up into several steps. 
The first auxiliary lemma concerns an arbitrary family P,, t___ 0, of probability 

measures with distribution functions Ft and Lebesgue densitiesf.  The conditional 
distribution K~ "'~) is defined as in (2.1). We know from Reiss (1986) that 
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K~"'k) (. Ix) is the product of the k Dirac measures at x 1 . . . .  , Xk and of the distribu- 
tion of the order statistic (Xl: , -k,  ..., X,-k: , -k)  of a sample of size n - k  under 
Pt,~ which is Pt truncated on the left at xk. W.l.g. we may assume that Ft(Xk) < 1. 
Then Pt,~k has the Lebesgue density 

(2.11) f~, x~ = ft/(1 -- Ft (Xk)) 1 t~, ~o)- 

Denote by d(P, Q) the Hellinger distance between the probability measures 
P and Q; that is 

(2.12) d( , ,  Q ) = ( 1 5 [ (  d ,  ~1,2 _ [  dQ ~*/212 Q)) 1,2. 
L\d(P+QI] \d(P+Q)] J d(P+ 

Remember that 

(2.13) II P - Q  ll <= V~d(n, Q) <= ]/2. 

The following lemma is in the spirit of the Theorem in Reiss (1986). 

(2.14) Lemma. 

(2.15) ]1 ~((X~ . . . . . .  , X,:,)[ Pal)-K(o "'k) 5e((Xt . . . . . .  , Xk:,)lnD[] 

= l / / ( n  - k) 1/2 ~ H (P,, ~ ,  Po, ~)  d ~ (X~:. [P,")(x0 

where by definition 

( 1  
H (P,,x~, Po,~) = d (~,xk, eo, ~) if 

Proof. Notice that the left-hand side of (2.15) equals 

(2.16) 

Ft(Xk) = 1 
otherwise. 

sup I~ [K~"" k)(B Ix) - K(on' k)(B I x)] d ~ ((X I . . . . . . .  Xk: n) l Ptt n) (x)l 

< ~ sup I K~"' k)(Blx) - K(o ~' k)(Blx)] d ~ ((X l:,, ..., Xk:,)] Pt")(x) 
BeBr, 

~ n-k n-k ][ Pt,x~ - Pd,x~ I[ d~e((Xl:, ,  ..., Xk:,)[Pt")(x). 

It is well known that for two probability measures P and Q the subsequent 
inequality holds for each positive integer m e N .  

(2.17) II pro_ Qm IL < ~ d(P, Q). 

Thus the inequality (2.15) is a consequence of (2.16) and (2.17). 
Next we formulate a large deviation result for order statistics. 

(2.18) Lemma. Let F be the underlying distribution function and 6 such that 
F(6) > k/n. Then 

k 2 4. 
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Proof Lemma 3.3 in Reiss (1981 a) and the quantile transformation yield 

P {Xk: . > 6} < exp [ - n (F (6)-  #)2 ] 
t3(a 2 + (F(6) - #))J 

where/2 = k/(n + 1) and o -2 = #(1 - #). Now (2.19) is immediate. 
We are in the proper position to establish the 

Proof of Theorem (2.8). Since (Pt)t~R is a location family Lemma (2.14) implies 
that the left-hand side of (2.9) is less than or equal to 

(2.20) (n-  k) 1/2 ]/2 ~ H(P~,,+x~, Po,,+xk) d•(Xk:, [Po")(Xk) 

~;  [~(ftl/2 1/2 2 <=(n-k) '/2 ,t+xk(x)-fo,t+x~(x)) dx]X/2 d~(Xk:.lP~)(Xk) 
' , . 0  

+~P({Xk: ,>6})}  

where the second step is achieved by integration over [-0, (5] and (c~, oo). Lemma 
(2.18) gives an upper bound of P {Xk:n> C~}. 

Since x + y > 2 ~ y  for x, y__>O we obtain for xk<6 

1/2 (2.21) 5(f,t+~(x) 1/2 2 -fo,,+x~(x)) dx 

=2[1--((1--F(xk+t))(1--F(Xk))) -1/2 { fx/2(x-t)fx/Z(x)dx] 
xk +t 

= 2 [ I -- ( (I -- F (Xk + t))(l -- F (Xk))) -x/2 {(i -- F (Xk + t) + 1 -- F (Xk))/2 

1 ;( f l /2(x_t)_f l /2(x))Zdx} ] 
x k W t  

<(1- -F(6+ t ) )  -~ ; (f~/2(x--t)--f~/2(x))2 dx 
x k  + t  

=(1 -F ( ,~+ t ) )  -1 t ~f (fl/2(t(x-1))-fl/2(tx))2 dx. 
1 + xt, / t  

According to the definition of g and h 

(2.22) 1[ (fl/2(t(, - 1) - f l /2 ( t ' ) )1  (1 +xk/t, oo)It2 
<= rl/Z(t) t a/z [ I[ h 1(1 + x~/t, ~)1[ 2 + g(t)]. 

Combining (2.20)-(2.22) and taking into account the definition of ~ the proof 
is completed. 

Further insight into the right-hand side of our basic inequality (2.9) will 
be achieved by the asymptotic considerations made in the next section. 
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3. The Asymptotic Information Contained 
in k Smallest Order Statistics 

Theorem (2.8) will be applied to sequences (5, t of location parameters as n --+ oo 

where 3 , = F - 1 ( 1 )  and t>0 .  The results of the present section will be proved 

under particular mild conditions on the underlying density f which is of the 
form (1.1) with - 1  < a <  1. Hereafter we assume that the function r is positive 
on some interval (0, xo) and slowly varying at zero. Moreover assume that in 
(2.5) the L2-convergence holds. 

Note  that 

(3.1) 6,, = n-i/(1 +~)L(1) 
where L is a further function which is slowly varying at zero. The left-hand 
side in (2.9) will be denoted by p (n, k, t); thus we have 

(3.2) p(n, k, 6, t )= I[ S ( (XI : , ,  ..., X,:,)I P~ t ) -  K(o "'k) ~e((Xl . . . . . .  , X k : n ) l P f i n n t ) 1 1 .  

Notice that sup p(n, k, 6, t) is an upper bound of the symmetric deficiency 
O<_t<_s 

A~(~., E.,k). 

(3.3) Theorem. The following two inequalities hold: 

(3.4) lim,~N o_<t_<~sup p(n,k,g)nt)~s(l+a)/2(1-t-a)l/ZEI/j(1S~/(l+a)) 

and 

(3.5) ] = 2(1 - a) 1/2 
(1 +a))). 

(3.4) and (3,5) will be combined with the inequality 

(3.6) k - p  • E ( S k  -p) ~ ( k  - 1 - ko)  - p  

for k > p > 0 where ko is defined by 

ko={~  p] if CN 
1 P e N '  

Concerning the proof of (3.6) we refer to Janssen et al. (1988), Lemma (5.2). 
Now it is immediate that 

(3.7) lim sup p(n, k, (~, t)=O(k (a-1)/(2(~ +a))) 
n~N O<t<<_s 
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and, since p is monotone decreasing in k, we have 

(3.8) lim lira p(n, k(n), 6, t )=0  
neN O<_t<s 

i fk (n)<n satisfies k ( n ) ~  oo as n ~  ~ .  
Theorem (3.3) will be the decisive tool to establish an upper bound of 

As(G, Gk). 

Proof of Theorem (3.3). Fix 6 > 0 and note that 

(3.9) (1 + a) F (x)~,, x f ( x ) =  x "+1 r(x) 

as x$0. Since F ( F - l ( x ) = x  we get 

(3.10) (6, t) l +a r(6, t)~(1 +a)  tl  +a/n 

as n ~ co. Recall from Seneta (1976) that 

(3.11) r(6, t ) / r (6 , )~ l  as n ~ o o  

uniformly in t on compact sets D ~ (0, oo). Moreover we make use of 

(3.12) 1+~ t. r(b.t.)/r(8.)~O as t .+0 

which is a well-known property of slowly varying functions. Combining (3.10)- 
(3.12), 

(3.13) lim sup (n - -  k) l /2  (6 n t) (i +a)/2 ri/2(6n t)= s (1 +a)/2(1 q- a) 1/2. 
hen O<=t<=s 

From (1.13) we conclude that for fixed k 

[ \ [ 1 \ 1  
(3.14) 

From the discussion in Sect. 2, (2.5), we know that 

(3.15) g( t )~O as t J,0. 

Inequality (3.4) is immediate from (3.13)-(3.15) and the basic inequality (2.9). 
The proof of (3.5) is analogous to that of (2.10). 

Notice that the right-hand side of (3.4) is equal to zero for k = 1 if a = 0. 
Thus the sample minimum is asymptotically sufficient under our present condi- 
tions if the shape parameter a is equal to zero. 

Under the present conditions we are also able to prove the following inequali- 
ty which will further be pursued in Sect. 4. 

(3.16) Lemma. Let 0 < ) , <  1 and e>O. There exists a constant C>O such that 

(3.17) sup p(n, k, 8, t)< C[k ("- 1)/(2(1 +a))+e_j_ sup g(t6,)] 
O<t<=s O<-t<=s 
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for all n~N and k<=n2. Moreover, (3.17) holds with e = 0  /f, in addition, the 
slowly varying function r satisfies the condition 

(3.18) r(x)~c~(O,o~) as x$0.  

Proof Throughout  C > 0  denotes a generic constant which does not depend 
on n and k<n2. According to (3.13), 

(3.19) sup sup nl/2((~nt)(l+a)/2 F1/2((~ n t ) ~ C .  
ne~q O<--t<--s 

Inequality (2.10) yields, 

(3.20) sup Ep~d ~l ( 1~ Xk  n~ < C (~ (l-a)/2 17; (~I(a-1)[2] 
o<t__<s \ 5 .  t : ] = " ~ e ~ " ~ k : .  ~- 

Write Xk:, = F -  1 (Uk:,) where Uk:, is the kth order statistic of i.i.d. (0, 1)-uniformly 
distributed random variables. Note that 

(3.21) H(t/) = F -  1 (t/)(a- 1)/Z 

is regular varying at zero with the index of variation (a - i ) / (2 (1  +a)). F rom 
Janssen et al. (1988), Lemma (5.2), we recall that 

for every n e N  and ko<-k<_n with ko being fixed. In addition, the term e can 
be omitted if H(r/) ,-~ ct/("- lt/(z(l +a)l as t/$0. 

Since ~5(~ 1 -a)/z = 1/H(1/n) the assertions (3.20) and (3.22) yield 

(3.23) sup Ee~O(~ 1 Xk.,~<<_C k (a-1)/(2(l+a))+e. 
o--~<-s \0 ,  t " ] -  

Moreover  notice that for each k < 2 n 

(3.24) e x p ( -  n(F(6)- k/n)2/3) < e x p ( -  k(F(6)- 2)2/3 2). 

Next we choose 6 > 0 such that 2 <  F(6)<  1. If n is large enough we may apply 
the inequality (2.9). If we take now (3.19), (3.23) and (3.24) into account we 
obtain (3.17) where C is a constant depending only on e and 2. In addition 
we see that under (3.18) we may choose e=0 .  

(3.25) Remark. If a = 0  then we find a constant d > 0  such that Lemma (3.16) 
holds with (3.17) replaced by 

(3.26) sup p(n, k, 6, t)<C[exp(-dn)+ sup g(t6,)]. 
O<t<_s O<_t<_s 

The proof  of (3.26) runs along the lines of the preceding proof  if we observe 
that ~0 - 0 i f  a - -  0 .  
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Our present method also enables us to treat the following problem. Let 
f be a density of the form (1.1) with support  [-0, b] having a second singularity 
at the upper endpoint of the distribution such that f is absolutely continuous 
inside (xl,  b), 0<Xx <b,  and 

(3.27) (i) lim f ( b  - x) = c e (0, co), 
xso f ( x )  

(3.27) (ii) x ( l o g r ( x ) ) ' + ( b - x ) ( l o g ( f ( b - x ) ( b - x ) - a ) ) ' ~ O  as x],O. 

Replace condition (2.6) (i) by 

(3.27) (iii) ~ ( f t / 2 ( x -  t ) -  f~/2(x)) 2 dx  = o(t ~ +a r(t)) 

for each e>0 .  Then the lower and upper extremes Xx:, , . . . ,Xk(, ,1): , ,  
X,-k(,,  2) . . . . . .  , X,: ,  are asymptotically sufficient in the sense of this section when- 
ever rain {k(n, 1), k(n, 2)} --+ ov as n --+ oo whenever - 1 < a < 1. Thus we are able 
to extend and to strengthen results of Weiss (1979) who only considered the 
case a--0.  The details are omitted in order not to overload the present paper. 

4. The Rate of Convergence When n Tends to Infinity 

The upper bound (3.17) of sup p(n, k, 8, t) involves the term sup g(t6,) which 
O<t<_s O < t < s  

converges to zero as n ~ oo. In the present section we will establish the rate 
of convergence of sup g(t6,,). 

ONt<--s 

Throughout  this section we assume that the function r in (1.1) is bounded 
and can be written in the form 

~ 

(4.1) r ( x ) = c e  h(x) for 0 < X < X o  

where c~(0, oo) and ~" satisfies the condition 

(4.2) ]~(x)] =< L x  ~ 

for some constant L > 0 and 7 > 0. 
Notice that in the case of the Weibull density with shape parameter a we 

have ~(x)= - x  1 +a and thus (4.2) is satisfied with y = 1 + a. 
(4.1) implies that 

(4.3) r ( x ) - , c  as x$O 
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Under  condit ion (4.3) it is convenient  to replace the rate of local alternatives 
6, by 

(4.4) 3", = n -  1/(1 +,). 

We remark that  5, ~ (c/(1 + a)) ~/~1 +"3 6,. 

(4.5) Theorem. Let - l < a <  1 and a+O. Assume in addition to condition (4.1) 
that f is absolutely continuous inside (0, oo), and that 

(4.6) ; (r'(x))2 x" dx < oo. 
o r(x)  

Then, for every 2LE(O, 1) there exists a constant C > 0  such that for every positive 
integer n and k < n 2 the following inequality holds: 

(4.7) sup p(n,k, tn  1/(l+~))<=C[k(a l>/(2(l+a))+nm~X{a--l'--2~}/(20+")}]. 
O<_t<~s 

Proof. Define 

(4.8) g ( t ) - - I I ( f t / 2 ( t ( ' - l ) ) - f l / 2 ( t ' )  c 1/2 
ta/2 - ] l(1,co) 2 

with h as in (2.2). We remark that  (3.17) holds with g and c5, replaced by 
and 3,. Thus (4.7) is valid if 

(4.9) ~ (t) = 0 (t min{1 - , ,  2 ~}/2). 

Assume first that  a > 0. Then, 

(4.10) 
/ _  co \1/2 

g(t)~---[ }" [ (X--  1) a/2 r l /2 ( t (X - 1))--x "/2 rl/2tx)--c'/2 {(x--1)a/2--xa/2}] 2 d x )  

Jo 

=:  g l  (t) + g2 (t). 

Note that  by Fubini 's  theorem 

(4.11) g~(t)= ; xa[rl/2(tx)--rt /2(tx+ 0] 2 dx 
0 

;(7 ) : t--  1 --a ya rt ('F) 2 
o y 2rl/2(r) d r  dy 

1--a co <t- ! y~ 
= 4 o 

< t 1 - ~  ~ (r '(~)) 2 ~ ~  

4 o 
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since a is non-negative. Condi t ion  (4.2) yields 

(4.12) I r l /2(x) -c l /21  < Z' x 7 

for some L' > 0 whenever x > O. On the other hand  observe that  

(4.13) [ ( x -1 ) " /2 -x" /2 ]  2 1(1, ~)(x)__< ( x - 1 )  a 111, t +N2 ] ( x ) + ( ~ )  2 

�9 ( x -  1) "-2 10 +~,~)(x).  

Let us introduce 

h(x, t )= [ (r l /2 ( tx ) - -c l /2 ) ( (x  - 1) "/2 -- x"/2)] 2. 

If we take (4.12) and (4.13) into account we obtain for a > 0 

(4.14) h(x , t )  d x = O ( t 2 7 )  
1 

and 

(4.15) 
1 + 1/t 1 + 1/t 

j h ( x , t ) d x = t 2 ' K '  j ( x - 1 ) " - 2 + 2 ' d x  

1 +]a_] 1 +[~- 2 .  

= 0 (train(2 v, 1 - a ) ) ,  

The boundedness  of rX/2(x) yields 

(4.16) ~ h(x,t)dx<CO2(1)=O(P-"). 
1 + 1/t  

A. Janssen and R.-D. Reiss 

( x -  1) "/2 r l / 2 ( t ( x -  1))--x "/2 r i / 2 ( t x ) - - c  1/2 {(X- 1) a/2 - - X  a/2} 

= x "/2 [r 1/2 (t (x - 1)) - r 1/2 (t x)] 

+ [r 1/2 (t (x - 1) ) -  c] [ ( x -  1) "/2 - x"/2]. 

Then the proof  carries over and can easily be completed. 
We remark that  for a < 0  condi t ion (4.6) implies that  r is bounded since 

oo 

(4.6) implies that  S Ir'(x)l x ~ d x <  oe. 
0 

The case of a = 0 will be treated in Theorem (4.22). 

Thus, (4.9) is proved for a > 0. The case a < 0 can be treated similarly. Instead 
of (4.10) we use the identi ty 
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(4.17) Example. Let f ( x ) =  (1 + a) x" e x p ( - x  1 +") 1(0, co)(x) be the Weibull density 
for a s ( -  1, 0)w(0, 1). Then for some C > 0  

(4.18) sup p(n, k, t n -  1/(1 +~)) 
O<_t<_s 

.QfC [k (a- 1)/(2(1 + a)) ..[_ n ( a -  1)/(2(1 +a))] 

= ( C  [k (" - 1)/(2(1 + a)) ..1_ n -  1] 
if a 

_>_ - 1 / 3  

< -- 1/3 

whenever k < 2 n with 2 < 1. 
The second example concerns the generalized Pareto densities for a<0 .  

Notice that for a > 0 there is another jump at the left-hand side of the range 
of the distribution so that we have to include the upper extremes into our 
considerations. 

(4.19) Example. Consider the generalized Pareto distribution with the density 

(4.20) f (x)  = (1 + a) x" 1(o, 1)(x) 

for -- t < a < 0. Then f is not absolutely continuous inside (0, oo) but (2.5) still 
holds. We obtain 

(4.21) sup p (n, k, t n-  1/(1 + a)) ~ C (/s 1)/<2 (1 + a)) .~_ ha~(2 (i + a))) 
O<_t<_s 

whenever k__<2 n with 2<  1. Notice that ~,(t)~d t -a/z as t$0 for some d > 0  where 
is defined in (4.8). 

(4.22) Theorem. Assume that for a = 0  f is an arbitrary density of the form (1.1) 
such that (4.3) holds for some c>0.  In addition let f be absolutely continuous 
inside (0, oo) and 

co 

(4.23) ~ (if,(x)ln/f(x)~- l) dx < co 
0 

for some t/e(1,2]. Then, for every 2e(0, 1) there exists a constant C > 0  such 
that for every positive integer n and k < n 2 the following inequality holds" 

(4.24) s u p  p (n, k, t n -  i)  = C n (1 - n)/2. 
O<=t<s 

Proof We recall from Ibragimov and Has'minskii (1981), p. 284, that 

(4.25) 
co  co  

(fl/2 (x -- t )-- f l /2 (x))2 dx <= ~ ( f  t/"(x - t ) - f  t/n(x))" dx 

co 
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which yields 

(4.26) ~ (t)= O (t ("- 1)/2). 

At this stage we may apply the same arguments used in the proof of Theorem 
(4.5) which yield the inequality (4.24). 

5. Comparison of (7, Gk, E. and E,~,k 

Remember that a bound of the symmetric deficiency A~(E,, E,,k) was established 
in (4.7). In the present section we will include the statistical experiments Gk 
and G into our considerations. It is easy to see that for a =~ 0, 

(5.1) As(G, Gk)>0 

since G and G k have different likelihood processes. Moreover, if a = 0, then 

(5.2) A s ( G ,  G1) = 0. 

Theorem (3.3) enables us to calculate a bound in (5.1). 

(5.3) Theorem. For --1 < a <  1 and s>O: 

(5.4) As(G, Gk)<=s(l +a)/z(l +a)t/Z E t ~ ( )  S~/(l +a)) 

= O(lal k (a- 1)/(2(1 +a))). 

Proof The triangle inequality yields for arbitrary n > k 

A~(G, Gk)< A~(G, E,)+ A~(E,, E,.k)+ A(E,,k, Gk). 

According to (1.15), A~(G, E,) ~ 0 as n -~ oo. In addition, A (E,, k, Gk) ~ 0 as n ~ oo 
under conditions such that (1.13) holds. Thus an application of Theorem (3.3) 
and (3.6) immediately leads to (5.4). 

The link between the statistical experiments E,,k and G k will be established 
by means of the following lemma which is a modification of Corollary 2.48 
in Falk (1986). A detailed proof  of Lemma (5.5) is given in Reiss (1988). 

(5.5) Lemma. Assume that for some a > - 1  condition (4.1) holds with c= l +a. 
Then there exists C > 0 such that for every n and k < n: 

(5.6) l] ~,cP (( hi/(1 +a ) ( /1  . . . . . .  , Xk :n ) ) lPo  n) - -  ~ ( (  S)/(1 +a))j<k)11 

< C [(k/n) '/(1 +") k 1/2 + k/n]. 

We remark that the right-hand side of (5.6) can be replaced by kin if f 
is a generalized Pareto density (see Reiss (1981 b)). It was proved in Weiss (1971) 
that the left-hand side of (5.6) converges to zero if k(n)= O (n ~) for every tc > 0. 
As an immediate consequence of Lemma (5.5) we obtain 
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(5.7) Theorem. I f  (4.1) holds then for a > - i  there exists C > 0  such that for 
every n and k < n the following inequality holds: 

(5.8) 

For  Weibull densities we have y--(1 +a )  whence (5.8) holds with the upper 
bound C k3/2/n. 

(5.9) Remark. Let XI: , ,  ..., X,: ,  be the order statistic of standard Weibull ran- 
dom variables with shape parameter a > -  1. Denote by d again the Hellinger 
distance. Put 

~,, = ~ e ( n  ~/~ +a~(x~. . , ,  . . . ,  x~ : , ) )  

and let Qo,k be the distribution as defined in (1.6). Direct computations show 
that 

(5.1o) 
"' 

' ( n - k ) ! n  k]  i = 1 ,  , , , 

By straightforward computations we obtain for k < n/3 

(5.11) ( ( exp l~2nZn 2 j < l--dZ(Pk,,, Qo,k)<exp -- . 

This yields 

(5.12) II P~( ,~ , , -  Qo,k(,o II --' 0 iff k ( n ) 3 / 2 / n  - ,  0 

as n ~ oe. Moreover,  if k < n/3 then 

(5.13) 1 5 1/2 A(Gk, En,k)<=~(~) k3/Z/n 

in accordance with the result of Theorem (5.7). 
At the present stage of our investigations we already have a chain of relations 

at our disposal which leads from E, over E,,k and Gk to G. Thus we also 
can evaluate an upper bound of As(G, E,). 

(5.14) Theorem. Assume that the density f satisfies the conditions (1.i), (2.5), (4.1), 
(4.2) and (4.6) for a t ( -  1, 1). Consider the corresponding sequence of experiments 
(En),~ N given in (1.2) where 3, is specified in (3.1). Then we obtain 

(5.15) A~(G, E,)= O(n ~(~'a)) 
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where 

(5.16) /3(7, a)=. 

A. Janssen and R.-D. Reiss 

a - -  1 2(1 + a) 
3 + a  7 > - - ' a : # O ' =  1 - a  

7 ( a -  1) if O < 7 < 2 ( l + a ) , a + O ,  
2(1 +a)(1 +7) 1--a 

max(  1) a ~ 0 .  

Proof Without restrictions we may substitute 6, by n-1/(1 +,) since we can enlarge 
the interval [0, s], see (4.4). Assume first a =4= 0. 

Combining (4.7), (5.4) and (5.8) we obtain 

(5.17) As(G, En) <= As(G, Gk) + As(Gk, E,,k) + As(E,,k, E,) 

[ ,ni/k\r/(l+a)'l/2 k max'a- -27}/(2(1+a)'] 0 k("-x)/(2('+a)'+[• k + - + n  ~ 1, n 
uniformly over all k__< 2 n if 2 < 1. 
Now choose 

(5.18) k(n) = In ~/(1 +7)]. 

Then we see that for 0 < 7 < 7o ,=2 ,1 ]a , (  + the following inequality holds: 
1 - a  

(~) 'g/( 1 +a)  
(5.19) k(n)(~- 1)/(2(1 + a)) .~_ k(n)l/2 + k(n) + n-  ~/(1 + a) = 0 (n "8(7' a)) 

n 

which yields the desired bound (5.15). Note that in the case 7 > 70 the assumption 
(4.2) also holds for 7o instead of 7. Thus we obtain a bound of the order O (n p(r~ 
whenever - a < 7o. 

For  a = 0 and k = 1 we deduce from (4.24), (5.4) and (5.8) the upper bound 

(5.20) K[n-~  +n-1  +n-l/Z] 

in (5.17). Thus (5.15) is proved. 
Finally, we will give a proof of (1.15) which uses the arguments developed in 
this paper. 

(5.21) Lemma. Assume that condition (1.1) holds where r is positive on (0, Xo) 
and slowly varying at zero such that g (t)--+ 0 as t ~ O. Then, 

(5.22) A~(E,, G) ~ O. 

Proof First we prove that (E,),~N is a Cauchy sequence w.r.t.A. For e > 0 choose 
k and no such that 

A~(E,, E, k)<e 
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for all n>no.  In addition, choose nl >no such that for all n, m>na 

As (E.,k, Era,k) <= ek (n) + gk (m) <__ e 

where ek(n) = I[ Vo,k,,-- Qo,k ]1. Hence 

As(E,,Em)<=3e 

whenever n, rn > n 1 . 
By Le Cam (1986) the sequence En is convergent to some experiment in 

view of the completeness of the distance A s. On the other hand one can choose 
k (n) __< n, k (n) ~ oo such that 

(5.23) 

Note  that  also 

A~( Gk(,), E,,k(,)) < O:k(,)(n) ~ O. 

(5.24) As(E,, E,,k(,)) ~ 0 

as n ~ oo. It  is easy to see by a martingale argument,  compare  for instance 
with Janssen (1988), L e m m a  6.4, that  

Gk ~ G  

weakly as k ~ oo in the topology of the weak convergence for experiments. 
Thus (5.23) and (5.24) show that 

En --~ G 

weakly and the assertion is proved. 
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