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Summary. Let X1, X 2 . . . .  denote an i.i.d, sequence of real valued random 
variables which ly in the domain  of at traction of a stable law Q with index 
0 < c~ < 1. Under  a v o n  Mises condition we show that the sum of order statis- 
tics 

k(n) . 

ann-i--~1 X i ' n - ~ i = n ~ l - r ( n ) X i : n )  

converges to Q with respect to the norm of total variation if for instance 
min(k(n), r(n)) --* oo. 

1. Introduction 

During the last years there was much interest concerning the asymptot ic  behav- 
iour of sums of order statistics 

W,=a21 Xi:.+ ~ X~:. (1.1) 
z= 1 i=n+ 1-r(n) 

where X~:,<X2:n<=...<Xn: ~ denote the order statistics of an i.i.d, sample 
X1 . . . . .  X, .  Assume that  X1 belongs to the domain  of attraction of a stable 
law with the index c~ of stability, 0 < e < 2. Weak  limit laws for W, can be found 
in Cs6rg6 et al. [1, 2 I. Janssen [9] showed, among other results, that  for 1 < e < 2 
there exists a sequence of r andom variables Zn with the same distribution as 
Y, such that Z ,  converges in L 1. 

In the present paper  we use the technique of Janssen [9] to establish a 
limit theorem with respect to the uniform convergence over all Borel sets I/V, 
in case 0 < c~ < 1. 

Before we present the results we briefly give a motivat ion for the examinat ion 
of the convergence of W, in the variational distance. The norm of total variation 
is an essential tool used in connection with the asymptot ic  approximat ion of 
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statistical models by much simpler models, for instance see Reiss [11] in connec- 
tion with extreme value models. Below we see that in our situation it is enough 
to consider the k(n) smallest and the r(n) largest order statistics of X1 . . . . .  Xn 
where min(k(n), r(n))--* oo may converge to infinity as slow as we want. As 
an application consider for instance any statistic T on R.  Then we obtain as 
a consequence of our results always the convergence of the distributions 

o~.W ( T(W.)) --~ o,~ ( T(W))  

in the variational distance as n--* oo. Here W denotes the limit of the sequence 
I/V,. In order to give a second application consider the normalized sum of the 

whole sample namely 17V,=a~-1 ~ Xi ' which often appears as a sequence of 
i=1  

test statistics. For  any sequence ~0n: IR ~ [,0, 1] of tests we then obtain 

E ( ~ o , ( W . ) ) - E ( ~ o . ( ~ ) ) - - , 0  as n -~oo .  

The investigation of convergence results for distributions with respect to the 
variational distance has a long history as well as for extreme order statistics 
as for sums of i.i.d, random variables. In the literature also results appear which 
are concerned with the slightly stronger pointwise convergence of the underlying 
densities often labeled as local limit theorems. In connection with the uniform 
convergence of extreme order statistics we refer to de Haan  and Resnick [8], 
Sweeting [,12], Falk [,3], and further references therein. For  local limit theorems 
of sums of i.i.d, variables the reader should consult the references of Zolotarev 
[13], p. 274 ft. 

In order to explain the result we will introduce further notations. Assume 
always that Xa belongs to the domain of attraction of a stable law with index 
0 < a < 1. Then there exists a function L varying slowly at infinity such that 

and 

G(y) = P([X 1 l> y) = y-~ L(y) (1.2) 

(1-F(y)) /G(y)--*p and F ( - y ) / G ( y ) ~ q  as yToo (1.3) 

for some pc[0 ,  1], p + q =  1, where F denotes the distribution function of X , .  
Let for se(0, 1) 

G-  1 (s) = inf {t: G (t) < s} 

denote the inverse of G. Then we always choose 

a, = G-  ' (l/n). (1.4) 

Note that the normalizing constants an i are the same as in Corollary 3.1 of 
[1] which are denoted by A* in [2]. 
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Assume that Y1, Y2 . . . . .  Y1, ~'2 . . . .  are two i.i.d, sequences of exponential 
distributed random variables. Set 

k k 

Fk = ~ Y~ and ~ =  ~ ~. (1.5) 
i = 1  i = 1  

Then well-known results from extreme value theory show that 

a n l X k : n - - * - - q l / ~  -1/~ and a 2 1 X n + l _ k : , - - - ~ p l / ~  -1/~ (1.6) 

in distribution as n ~ oe. As pointed out in [1, 2] and [9] the asymptotic behav- 
iour of W, (1.1) only depends approximately on a finite number of extreme 
order statistics for 0 < c~ < 1, i.e.: 

i = 1  i = 1  

(1.7) 

in distribution as n ~ oe, whenever 0 < k(n) < n -  r(n) < n and 

q/(k (n) + 1 ) + p/(r (n) + 1) ~ 0 (1.8) 

as n ~ oo. Assume now that F is absolutely continuous with a Lebesgue density 
f such that in case q + 0 the von Mises condition 

and in case p + 0 

lim - x f (x ) /F  (x) = ~ (1.9) 
x ~ - o o  

lim x f ( x ) / ( 1  - F(x) )  = e (1.10) 
x--+ oo 

is fulfilled. Then it is well-known that under (1.9) a finite number of extreme 
order statistics is convergent uniformly over all Borel sets 

sup 15r (X~ . . . . . . .  Xk:n))(A)-~-cP(-q-1/~(I ' l -1 /~ , . . . ,  Fk-t/~))(A)l--,0 (1.11) 

as n ~  oe for each k e N ,  cf. Falk [3] or Sweeting [-12]. Thus, motivated by 
(1.11), the assertion (1.6) suggests that under a yon Mises condition uniform 
convergence over all Borel sets also holds in (1.7). Recall that by Scheff6's theo- 
rem the convergence uniformly over all Borel sets is equivalent to the )~-stochastic 
convergence of the corresponding Lebesgue densities of the Lebesgue measure )~. 

Finally, let us mention that the yon Mises condition (1.9) is a natural condi- 
tion in connection with uniform limit theorems in extreme value theory. It 
is pointed out by Sweeting [12] that the yon Mises condition (1.9) is equivalent 
to the convergence of the densities of a21 XI: ,  uniformly on compact sets, see 
also de Haan  and Resnick [8]. 
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2. Main Result 

Let  5e(X) denote  the d is t r ibut ion of a r a n d o m  var iable  X. F o r  two probab i l i ty  
measures  P and  Q on the Borel sets N" on IR" let 

[[ P -  Q [[ = sup I P ( A ) -  Q (A)[ (2.1) 
AE.~ n 

denote  the var ia t iona l  distance. 

(2.1) Theorem.  Let X 1 be a random variable belonging to the domain of  attraction 
of  a stable distribution with index 0 < ~ <  1, i.e. (1.2) and (1.3) hold. Choose W,, 
W and a, as in (1.1), (1.8), (1.7) and (1.4) respectively. Assume that ~cf(Xi) is 
absolutely continuous and that the yon Mises condition (1.9) is satisfied whenever 
q eeO and let (1.10) be satisfied whenever p 4:0. Then we obtain 

II L,f' (w~) - y ( w ) ] 1  -~ 0 (2.2) 

a s  n----> o(D. 

N o t e  tha t  the asser t ion (2.2) can not  be fo rmula ted  for 1 < e < 2 in this fo rm 
since then the sum defining W in (1.7) is no longer  convergent .  I t  is an open 
p r o b l e m  whether  the sequence W ~ - b ,  is convergent  in the n o r m  of  to ta l  var ia-  
t ion in case 1 < ~ < 2 for some center ing cons tan ts  b,.  

3. Proofs  

Let  ex denote  the po in t  mass  at x, 1A the indica tor  funct ion of a set A and 
let �9 indicate  tha t  convo lu t ion  opera t ion.  

Subsequent ly  let as a lways assume tha t  q 4= 0. First  we men t ion  a wel l -known 
consequence  of the von Mises condi t ion  (1.9). 

(3.1) L e m m a .  

- 1  

b, . '= sup S a, lyl f ( a ,  ly] w)/F(a,y)--aWw]-~-l[ dw---)O (3.1) 
- y <  ~-aff  a/2 - c o  

a s  n--r  o o .  

The  p r o o f  is an easy appl ica t ion  of the theory  of regular ly  varying funct ions 
and Scheff6's l emma.  [ ]  

Firs t  consider  p:#0.  Accord ing  to (3.1) and  (1.11) we can find a sequence of 
integers s(n)<= min(k(n)), r(n) ) -  1 with 0 =< s(n) ~ oo such tha t  

and  

and 

s (n) b (n) ---, O, s (n)/a~,/2 ~ 0 (3.2) 

i [ y ( a -  1 (Xl: , ,  . . . ,  X~<,)+l:,))_Sf(_qil~(Fi-i/~ c-1/~ ~ . . . .  , ~,o,)+lJJH ~ 0  (3.3) 

]] ~0 (al~- 1 (X . . . .  Xn-s(n):n))-~f~(P-1/a(Fl-1/a ~ -  1/a ]] �9 ..,  , .  . . . .  ~(,)+ v~ P] ~ 0 .  (3.4) 
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In addition assume that s(n) increases so slow that 

s(n)  1/a a~- 1 Xs(.)+ 1:. --* - ql/~ (3.5) 

and 

s(n) 1/~ a~ 1 X,-~(n):, -+ pl/~ (3.6) 

in probability as n ~ oe. Note that the existence of s(n) with (3.5) and (3.6) 
is a consequence of (1.6) and the law of large numbers. In the case p = 0  we 
may choose O<s(n)-- ,  ov such that 

s(n) < k ( n ) -  1 (3.7) 

and the assertions (3.2), (3.3) and (3.5) are satisfied. Under these assumptions 
we prove that the extreme order statistics have a dominating influence. 

(3.2) Lemma. ( a )  For p 4:0 we obtain 

~ '~an l~ i~=lX i :n - } -  i X ~ : . } ) - - S f l a ~ l  { ~ X i : n +  i Xi:n -'~'0 (3.8) 
i=n+l-r(n) / \ i = 1  i=n-s(n) 

as n - +  oo. 

(b )  Assume p = O. Then 

5 f  a21 Xi: ,  + ~ Xi: ,  - s  a21 Xi: ,  -+ 0 (3.9) 
~= 1 i~n+ 1-r(n) i= 1 

as n---> oo. 

Proof. In a first step let us give the proof  of (3.8) in case p@0. For  w l < w  2 
denote by 

wlX 1 w'X+(,), X(1 ~'' +~) v (  . . . . . .  ) v . . . .  , ...~ ~ . . . ,  . 'Xn - -2 s (n ) -2 ,~ l  ~ . . . ,  Xs(n ) 

independent random variables such that 

*r X i ,  [ X I  ~4'1'W2), X ~  '2 , respectively], 

have the joint  density 

f 1 ( _ o~,w~l/F (w 1), I f  I t . . . . .  j/(F (w 2) -- F (w t)), f 1 t . . . .  )/(1 - F (w a)), respectively]. 

We recall from Reiss [11] that the conditional distribution of 

( X l : n ,  " " ,  Xs(n):n,Xs(n)+ z:n, . . . ,  X n -  l-s(n):n, X n +  l-s(n) . . . . . .  , Xn:n) 

given (X,(n)+ 1 :n, Xn-s(n):n)= (w1, W2) is equal i n  d i s t r i b u t i o n  to 

(WlXl.:s(n), , . . ,  w i g  y ( w l , w 2 )  ~s(n):s(n)~ ~- l :n -  2s(n)- 2~ "" 
X ( ~ ,  ~2) w2 w2 

n - 2s(n) - 2:n -- 2s(n) - 2 ,  X 1  :s(n)~ - - ' ,  Xs(n):s(n)). 
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For  Yl <Y2 we introduce the random variable 

k(n) i~ln) - 1 
Z~. y~'y~) = a.-- 1 ~..(y~,y~) /x i:n - 2s(n) - 2 

n-- 2s(n)-- 2 Yan(yl,Y2) ] 
+ 2 "cXi:n-2s(n)- 2]" 

i=n-r(n)-s(n)  

Let now A be a Bore1 subset of ]R. Then we obtain 

(3.1o) 

s i s  ~ a ;  1 " ~  " " ~  t_ .,,.i:s(n)V.,.i:s(n)3cyt+y2q-z A) 
i=1  

( s,., ), ,I 
1_ .~,,i:s(n) . ~i:s(n)3 + y l  q -Y2  A 

i=1 

�9 ~(Z(."'~))(dz) ~ (a2 I(X~r X._~(.):.)) d(yl, Y2) 

< ~ g.(z, Yl) ~c:(Z~'"'~))(dz) ~CP(a; l(X~t.)+ 1:., X._~(.):.)) d(yl, Y2), 

where g. denotes the integrand 

(3.11) 

g.(z, yl)= S a; 1 Z "-"X~:~.)+ -o.<r a. -1 Z "-'~X.. ]]1 (3.12) 
~=1 ~=1 ' * ' : 1 [ "  

For  w < 0 let now WZx, wz 2, ... be an i.i.d, sequence of Pareto distributed random 
variables with the density 

(~lxl-~-llwl ~) 1(_ o~,wl(X). 

Thus for Yl < 0 

g.(z, y l ) < 2  5~ (a~ l i~= )l ""Y'Xi)-- ~ (a~ l ~= )l ""Y'Zl ) 

a;  1 E . . , l z , +  _ ~ ,~21 Z ".',z 
i~1  i=1 

=:P.(YO+G( z, Yl). (3.13) 
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First we deal with p, for Yl <0.  Notice that 

P,(Yi) < 2s(n)LI ~Q-Qfl(anYiXl)- ~Qfl (a"YlZ 1)II 
- 1  

=s(n) ~ la,[yllf(a, lyl[ w)/F(a, yl)-C~lw]-~-il dw. 
- - 0 9  

(3.14) 

Thus Lemma (3.1) together with the conditions (3.2) and (3.5) yield 

0 
p,(x/s(n) 1/~) 2a(s(n) 1/~ a2 1 X~(,)+ l:,) dx ~ O. (3.15) 

--r  

Next we will handle with the second term q,(z, YO. Recall that the Pareto random 
variable - tZt  belongs to the domain of attraction of some stable law Q and 

s -1/~ i~=~ -~ZO-Q ~ 0  (3.16) 

which is a consequence of a well-known local limit theorem, cf. Petrov [10], 
p.213 and references therein. Thus we arrive at the following upper bound for 
q,(z, y) in case y<0"  

q,(z, y)= ~q~ (s(n)- ~/" i~)i - l ZO + z/(ly[ s(n)i/~ ) 

[ s(n) 
-- ~.~ ~s(n)- l/~ i~= l -1Zi) 

<__2 ~(s(n)-l/~]~=) 1 - i z i ) - Q  + Q-Q.ez/(lyls(,)l/, ) . (3.17) 

By (3.16) the first term of (3.17) tends to zero. Define now 

h(t)= IIQ-Q*etH (3.18) 

which is a bounded continuous function. In order to prove that (3.11) converges 
to zero it is now by (3.13), (3.15) and (3.17) enough to show that 

IS h(g/w1 ) ~,Q,~(ZSn(.) - '/~'(wt,wD) dz ~ ( s ( g t )  1/~ an l(Xs(n)+ l :n,  Xn-s(n):n)) 
{wl<0) 

"d(wl, w2)---'O (3.19) 

as n---, oe. In view of (3.5) and (3.6) we may restrict ourselves to the domain 
(wl, w2)~B:=E--Ki ,  - K 2 ]  x [0, Ks]  with 0 <  K2 <ql/L Ks > 1, where the inte- 
gration (3.19) is carried out. For  these pairs (wl, w2) we will calculate the inner 
integral of (3.19). Choose 6 > 0 such that h(t) < e if It[ < 6. Then Markov's inequali- 
ty yields 

~h(z/wl) 5r (Z~, (")-'/~(wl'w2)) dz<e+ ElZ~J ")-~/'( . . . .  2)l/(6wl). (3.20) 
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From the definition of Z ,  (cf. (3.10)) we obtain 

E IZ ~<")- ~'=<~' ~)1 < n a21 ~ I xl dF (x)/(F (a, w2 s (n)- t/~) 
[-a~Kls(n)-  i/%anKls(n) - 1/~] 

--F(an wl s(n)- 1/=)). (3.21) 

Note that the denominator  of (3.21) is for large n uniformly bounded below 
by some constant c > 0  for all (Wa,Wz)EB. From Feller E6], p. 283 we recall 
that for some K > 0 

Ixl dV(x)~KzG(z) (3.22) 
[ - z , z ]  

as z --+ az. Combining (1.4), (3.4) and (3.22) we see that (3.21) converges uniformly 
to zero as n-+ oo for all (wl, w2)eB and thus the assertion is proved for pq:~O. 
In case p = 0  we need a modification of the proof  above. Assume first that 
r(n)q=O or k(n)=n. As in (3.11) we obtain 

[ a ~ - ~ | ~  + ,_, (A)--~~ a~-1 ~ Xi.., (A) 
\ i = l  " i=n+l--r (n)  " i = 1  

<_fIg.(z+y~,yO2e(z~.'.'2~)clzS(ay~(x~(.~+~:.,x.:.))d(y~,y~) (3.23) 

where now 

k(n) - r  - 2 n -  s(n) - 2 v a n  (Yl, Y2) 1 
Z~yl,y2) = a,- i va,(yl,y2) ~X i:n-s(") - 2"37 Z ~ i : . - s ( n ) -  2]" 

,-'1 i=n-s (n) - r (n )  

As in (3.13) we split g, in various parts, namely 

g, (z + Y2, Y ~) < P, (Y ~) + q,(z, Y O + q, (Y2, Y,). (3.24) 

The first term of (3.24) is treated in (3.15). Note that similar to (3.17)-(3.19) 
we obtain 

S q.(y~, yl) ~'(a;l(x~.~+ ~:., Xn:n)) a(Yl, y~)-~ 0 (3.25) 
since 

h(w2/wl)s Xs(,)+l:, ,a~l X,:,)d(wl,w2)--+O (3.26) 
{wl < O} 

because of 221 X,: ,  --, 0. 
Next we prove similarly as in (3.19)~3.22) that 

I I  h ( z / w l )  ~(Z(nS(n)-W=w>w2))  d z  ~ ( s ( n )  1#* a n  1 Xs(n)+ l:n , a n  1 Xn:n)  

�9 d(wl,  w2) --+ 0 (3.27) 

as n -+ oo. Assume first that F(0) < 1 which implies 

P(a~ 1 X,: ,  > 0) --+ 1. 
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Thus we may restrict ourselves to the domain B as above. For (w~,wa)cB 
we see that 

[ -anKhs (n ) -  l/%a~K1] 

�9 dF(x)/(F(a, we) -  F(a, 142 1 s ( n ) -  1/c~)) (3.28) 

Note that for p = 0 

n an -1 ~ IXl dF(x) ~ 0 (3.29) 
[O,anK1] 

which is a consequence of (1.3) and (3�9 (Consider measures Fdx)=(F(x ) 
+ tF(--x))/(1 + t) and choose t$0.) 

As in (3.20) and (3.21) we see by (3.29) that (3.28) converges to zero for 
n ~ oo which now yields the assertion (3.27). 

In the case F(0)= 1 the largest order statistic X,: ,  converges to the upper 
endpoint d_-< 0 of the distribution�9 Thus we may restrict ourselves to the domain 
(W1, W2) E/~.----[--K1, - K 2 ]  x {w2:w2 > (d-1)/G}. Observe now that (3.28) con- 
verges uniformly for all sequences (w l, w2)-= (wl, wz(n))~Bn to zero. Thus (3.27) 
follows. If we now take (3.24), (3.25) and (3.27) into account we see that (3.9) 
is proved. In the case r (n)=0 and k(n)<n the integrand g,(z+y2,y 0 of (3.23) 
must be substituted by g, (z, y 0- Then the proof obviously carries over. [] 

(3.3) Lemma. Assume that T,, S,, Tand S are real-valued random variables such 
that 

and 
/ S ( T . ) - - f ( T ) / - - + 0  

L/~e(%, s . ) -  ~e (T.) | S(S.)I[ - - ,  0 
holds as n ~ oo. 

(a) I f  I15P(S,)-s162 ~ 0  then 

I~L#(T~ + S.)-- S ( T +  S)II ~ 0  
a s  n---~ oo .  

(b) Assume that 
Then we obtain 

(3.30) 

(3.31) 

(3.32) 

~.qf(T) is absolutely continuous and S,-~O in probability. 

II S (T, + S , ) -  &o (T)II ~ 0 (3.33) 
a s  n----~ oo .  

Proof. (a) Notice that (3.32) is trivial whenever T= and S~ are independent. The 
assumption (3.31) yields the desired result. 

(b) Let S= be a copy of S, which is independent with respect to T,. Thus 

]l ~L-q~(T, + S.)-G~ G~ ds 

< I1 ~(Z~)--5~(r)l[ +~ []5~(r+s)--sf(r)H 2~'(S,)ds--*O 

since s~-* II ~e(T+ s)-  Y(T)II is continuous�9 Now the assertion (3�9 follows from 
(3.31)�9 [] 

Lemma (3.1) has an immediate consequence�9 
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(3.4) Lemma. Assume that 0 < ~ < 1. Then we obtain 

,3 4, 
i=1 i=1 

as n----~ oo. 

Proof Assume first that pq#O. Then we may choose X~ = Wand k(n)=n-r(n) 
with min(r(n), k(n)) ~ oo. There exists a sequence s(n) such that the assumptions 
of Lemma (3.1) are satisfied with {s(n): n sN}  = N .  It is well-known that the 
density f of the stable distribution satisfies the yon Mises condition. For  instance 
note that f is increasing on some interval ( -  0% y], which is by de Haan [7] 
sufficient for the validity of (1.9). It is also possible to prove (1.9) using the 
exact decay of the density f as well as the decay of F at - o% which is well- 
known. 

In addition we choose s(n) small enough such that 

II ~ ( x ~ : , ,  ..., x~(,)+ ~:,, x,_~(,):,, ..., X,:.) 

- - ~ ( X , :  . . . . .  , Xs(,)+ 1:,) | &~ .... X,:,) II ~ 0  (3.35) 

as n-* Go. The validity of (3.35) was for instance proved by Falk and Kohne 

[4] or Falk and Reiss [5]. Note that a~-1 ~ X~ has a stable distribution and 

obviously i= 1 

~ ( a : '  ~ X ) - S Y ( W )  ~ 0  (3.36) 
i=1 

holds as n ~ oe. Consequently (3.36) and (3.8) yield 

i 
s(n) + 1 

On the other hand we obtain from (3.3), (3.4) and Lemma (3.3) 

~O ( a n  1 [ s(n)+ 1 

s(n)+ 1 s(n)+ 1 ) 
-~LP _ql/~ E FI-a/~+P 1/~ E Fii-t/~ -~0. (3.38) 

i=l  i=1 

Thus the desired result is a consequence of (3.37) and (3.38). The case p = 0  
can be treated similarly if we choose k(n)=n and consider (3.9) instead of 
(3.8). [] 

Proof of Theorem (2.1). Assume first that pq+O. Then we choose a sequence 
of non-negative integers s(n) --* oo which increases slow enough such that (3.2)- 
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(3.6) and (3.35) hold. If we now combine (3.8), (3.34) and (3.38) then the assertion 
(2.2) follows. In the case p = 0  we use (3.9), (3.34) and the subsequent assertion 

~LP[a21~("~+l~ /--" Xi'"J\ l/ ~(~)+1 A - E r , - , / .  - .  o, (3.39) 
i = 1  " / \ i = 1  / 

which is a consequence of (3.3). All together we see that then the desired assertion 
(2.2) follows. [~ 
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