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Summary. We show that, given a general Markov type property M, and 
a finite dimensional set of probability measures YF, the set of elements of 
Yf having M can be described by finitely many quadratic equations. We 
apply the result to the problem of the global Markov property for nonextre- 
real Gibbs states. 

O. Introduction 

We begin with two results from the theory of lattice spin systems, which have 
been motivating for our work. We are interested in the set N of so-called Gibbs 
measures (Gibbs states); these are measures that already have a certain Markov 
type property. The "interesting" states from the physical point of view are those 
Gibbs states that have a stronger version of that property, the so-called global 
Markov property (GMP). Often, G M P  is shown of states that are extremal 
in the convex set N; the two results below are dealing with nonextremal ones. 

(i) Higuchi [1] showed that for certain Gibbs states P0, P1, both having 
GMP, automatically all convex combinations of the P~ have GMP. 

(ii) Miyamoto [2] treats one dimensional spin systems, and implicitly (see 
Sect. 2) shows that ~ is a zero-, one-, or three dimensional simplex whose vertices 
all have GMP;  moreover, the nonextremal states in N with G M P  are exactly 
those on a (possibly degenerate) hyperbolic paraboloid in ~. 

Here now, we are in the case of an arbitrary measurable space, and we 
are given a general notion of Markov property. We show that inside an n- 
dimensional set our of probability measures, those having the given Markov 
property are exactly those that lie on the intersection of a certain finite set 
of quadrics. 

The proof is quite easy. Given probability measures Po, -.., P, whose affine 
hull contains 2(f, every "instance" of the Markov property for P~=~cq P/(where 
~ i  = 1, P ~ W )  gives rise to a quadratic equation in e with stochastic coefficients 
that is to hold a.s. Buth we are able to disregard of "un impor tan t"  events 
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thus transforming the equation into a system of deterministic equations. We 
then only have to run through all instances of the Markov property; the number 
of equations can be made finite using a dimensionality argument. 

This paper contains: Sect. 1 : Definitions; Sect. 2: Example (The Gibbs states 
with GMP in the case of a one dimensional spin system); Sect. 3: Proof of 
the general result; Sect. 4: Application (Conditions for the GMP to hold for 
all Gibbs states). 

1. Definitions 

For the general result of this paper (Sect. 3) we only need Definitions 1 and 
3. Definitions 2 and 4, dealing with the special case of lattice systems and Gibbs 
measures, are needed for the examples in Sect. 2 and 4. 

Definition 1. Let a measurable space (f2, d )  be given. A general Markov property 
is given by a system 5" of triples (~, cg, ~,) of sub-a-algebras of d .  Call any 
triple 5~ cg, B') with B e ~ ,  B ' e ~ '  with (~, cg, ~ , )ey- ,  a standard situation 
from 5-. A probability measure P on (f2, ~r is said to fulfil M(SQ (the "instance" 
of the Markov property given by 50 if 50 = (B, c~, B'), and B and B' are condition- 
ally independent under P, given of. p is said to have the Markov property given 
by J- if for all 5: from ~--, P has M(SQ. 

Definition 2 (Lattice systems). Let f2 = S r where S is a finite set (the "state space"), 
and F ~ R  d is a discrete locally finite set. Let U be a set of finite subsets of 
F. We call 7, 7 ' eF  neighbours if they belong to the same Ve~ .  Let ~r be 
the product-a-algebra on f2. For A_mF, put S'2a = S  a. ~r =product-a-algebra 
on f2a, and let ~ A =  s~' a x ('2r\ a be the a-algebra of sets "measurable from within 
A ". Put 

JLMe = {(~A, ~C, ~a')  : A ~ F finite, A' = F\(A ~ C), and C shields A from A'}; 

here C is said to shield A from A' iff for all V~U, Vc~A=O if Vc~A'~O. We 
call the Markov property given by ~MP the local Markov property (LMP). 
Put 

~-GMP = {(~A, ~C, ~A'): A c F, A' = F\(A • C), and C shields A from A'} ; 

Y~MP gives rise to the so-called global Markov property. 

Definition 3. Let (r ((2, d )  be given and P0,---, P, be affinely independent 
elements of ft. Put ~r  ..., P,)c~ff, where ~r ... denotes the affine hull. 
Given a~lR "+ 1, put P~=~a~ P~. There exists an obvious isomorphism between 
x/f and W ze= {~IR"+I  : P~e~r 

Definition 4 (Gibbs measures). Given a lattice system, we briefly describe the 
so-called Gibbs measures (more information on Gibbs measures is contained, 
e.g., in [3]). Let @=(~v)v~; be an interaction, i.e., a system of functions 
q~v: f2v~lRw{~ Given Ac_F finite, and a configuration ~ "outside A" 
(zef2r\a) there is a canonical way of defining a probability measure fla.~(" ) 
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on (g2 A, ~r by choosing its density w.r.t, counting measure proportional to 
e x p ( - ~  @v(e)-z)), A denoting concatenation. HA, ~ can be ragarded as a proba- 

VraA*O 

bility on (f2, NA) as well. PEjCll(y2, ~r now is called Gibbs iff for all finite 
A c F  and B~NA, 

P(BI~)=HA,~(B) P[ ~ r \ , t -  a.s. 

It is easy to see that all Gibbs measures have LMP, and that {P:P Gibbs} 
forms a convex subset of J~l(f2, d ) .  In our examples (Sect. 2 and 4) we let 
N = {P:P Gibbs}. 

2. The Gibbs Measures with the Global Markov Property in the case 
of a One Dimensional Lattice Spin System 

As an example, let us briefly describe the set of Gibbs measures with GMP 
in the case of a one dimensional lattice spin system (i.e., F = Z ,  S = {0, 1}) with 
nearest neighbour interaction (i.e., r = {(i, i +  1): ie2g}). 

Assume that we have to check GMP for a given Gibbs state P. By induction 
on the number of "connective components" of C inside F, and use of LMP, 
we may restrict ourselves to standard situations 6 e=(B,  Nc, B') where C has 
only one "connective component",  i.e., C={i ,  . . . , j }  for certain i, j~2g. Since 
we assumed a nearest neighbour interaction, we may further restrict to singletons 
C, C =  {i}, i~TZ. But P fulfils the Markov property given by F = { ( N  A, c~, NA,): 
~ = ~ c  for C={i}, i~;~, C shields A and A'} iff P represents a symmetrical 
Markov chain; this is just the case treated Miyamoto [2], whose results we 
are now going to apply ([2] does not consider the most general notion of 
interaction, but it is easy to generalize). 

From [2] we see that the extremal Gibbs states can be labelled P~ (where 
o-=(o-_, a+), a_ ,  a+e{0, 1}, think of a_ as of the boundary configuration 
to the "far left", a+ being that to the "far right"), and exactly one of the 
following cases holds: 1) all P~ agree; 2) Po.o=Po, l:l=Pl,o=Pl,1; 3) Po,o=Pl,o 
# Po. 1 = P1,1 ; 4) all P~ differ. So, G is a zero-, one-, or three dimensional simplex. 
Put dt~ = d(Po, o, Po,1, Pl,o, P1,1) c ~ = N .  

In [2] it is shown that {P~Ye: P represents a Markov chain} (={PEN:  
P has GMP})_-__ {P~: y ~ =  1, a 'Ya=0},  where for certain a, b>0 ,  

0 - b  
F =  0 - b  0 

0 0 

if we enumerate the a in lexicographical order. 
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So, in the case of a one dimensional lattice spin system, we find that the 
set of Gibbs states in ff having GMP is isomorphic to a (possibly degenerate) 
hyperbolic paraboloid in ~. 

3. Proof of the General Result 

Let J/d" be the set of symmetric n x n matrices, and let ~/g~ = {M6jgn" M has 
vanishing diagonal elements}. Jg" and ~ are vector spaces over N of dimension 

Given F~Jg", let Q(F)= {eelR": ~e~= 1, e~Fe =0} be the associated quadric. 
For ~___~g", put Q(~-)= ~ Q(F). 

F e ~ -  

{n + 1~ 
Lemma 1. a) Given ~ ~_ ~" ,  there exists ~o ~ ~ such that ~ ~o < ( 2 / '  and 

Q = Q. (Yo). 
b) Let A be a system of sets of matrices from J/~" that is closed under finite 

intersections. Then there exists ~1 ~ A such that Q (fro = U Q (@) (by (a), a finite 

o~ ~ ~1 has the same Q). "*~ 

Proof. (a) Q (y)  is the set of solutions of the following system of equations: 

~ i = 1 ;  (1) 

q,if~i = 0 (F ~ if), (2) 

where rhi=aizi, tlij=2~ia j (i<j). But (2) can be replaced by a maximal linearly 
independent subsystem 

thjfj=O (F~&), (2') 
i<=j 

where #o~o____dim J/Z"=(n21 ). 

(b) Assume the contrary. Then, since A is closed under finite intersections, 
and since Q ( ~  c~ ~") ~ Q(~) u Q(.,~'), there exists a tower 

O(go)== = ... == 1)+,), 

where _ ~  ~.vizr i=0, ..., ( n21 )  But this would yield more than (n 21)  m a n y .  

linearly independent matrices FeJg".  

For the following lemma and theorem, let (O, d )  and ff___~l(O, ~ )  be 
arbitrary. Let Po, ---, P~ + 1 ~ ff be affinely independent, put 
= ff c~ d(Po,  ..., P,+ 1), and assume the existence of ~o~ W~e with all components 
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positive. Let M denote a general Markov property, given a certain ~--. For  
any standard situation 5 ~ from 3--, let M(5 p) denote the corresponding 
"instance" of the Markov property. 

Lemma 2. Given a standard situation &o from J-, there exists @c_J[  "+~ such 

that ~ < ( n 2 2  ) , - -  and 

{eeWar: P~ has M ( S Q } = Q ( ~ ) ~ W .  e. 

In case M(SQ already holds for the Pi, we may choose ~c_Jg~o+* , hence 4t = J~ 

Proof Put P=P~o" Given any measure Q, we denote its restriction QI cg to cg 
by Q~. 

Claim 1. There exists a Cg-measurable function F with values in JH "+ ~ such 
that for all ae  Wae : 

P~ has M(SQ iff c ( - F . e = 0  P~-a . s . ;  

F has values in ~ +  1 if the P/already have M(SQ. 

Proof of Claim 1. Obviously, P~ ~ P, P/~ P (all i), hence Q ~ P for Q = G, P/as 
well as Q = ( l o  P~), (1D P~) where D=B,  B' or BomB'. Now, for these D, 

P~ (O I c g) = d(1 o P~)~/dP~ ~ 

_ d(1D P~)~/dP ~ P~ - a.s. 
d  /de 

M(5 r holds for P~ 

d(1B~B, P~)~/dP ~ d(1B P~)~/dP ~ d(1 w P~)~/dP ~e 
<=> dP~/dp~ - dp~e/dp~ dPJ /dp  ~ P~ a.s. (1) 

d(1B~W P S  dP~ ~ d(1B P~)~ d(1B, P~)~ 
dp  ~ dp  ~ dp  ~ dp  ~ - 0  P ~ -  a.s. (2) 

*> cd. P .  ~ = 0 P~ - a.s., (3) 

w h e r e ~ _ d ( 1 R ~ w P J  dPff d(IBP~) ~ d ( l w P y  
dp  ~ dp  ~ dp  ~ d p  ~e , 

~:> ~t .  F .  ~ = 0 P ~  - a .s . ,  (4)  

where fij = (1/2) (~/j + ~i). 

Obviously, F has values in ~ " +  1, and F is Cg-measurable. We have to clearify 
the equivalence (1)~=>(2). Notice that 

if the equation in (1) holds outside N where P~(N)=0 ,  then the equation 
in (2) holds outside N\{dP~e/dp~e= 0}, which is a P~-zero-set, and 

if the equation in (2) holds outside N where P~e(N)=0, then the equation 
in (1) holds outside N vo {dP~/dP~=O}, which is a P~e-zero-set. 

Hence, 
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These statements yield the desired equivalence. 
If M(5 a) already holds for the P~ then the diagonal elements of F vanish 

P - a.s. Thus w.l.o.g., always FeJ/l~ + 1. This proves Claim 1. 
Now, put A={{F(co): coeUC}: P~(N)=0, N~Cg}. The system A is stable 

under (even countably infinite) intersections, hence, by Lemma 1, there exist 
~ o - ~ l  eA, ~-o finite, such that Q(~o)=Q(~ l )=  U Q(~). 

Claim 2. P~ has M(5 ~) iff e~Q(~o). 

Proof of Claim 2. 
P~ has M(5 z) (1) 

r there exists N, eCg such that P(N~) =0, and 
~t" F(fD) �9 0~ -= 0 for  all  co + N, (2) 

~- ~ e Q ( ~ )  (3) 
r e e Q (~o)- (4) 

Here, in the equivalence (2)<:~(3), "=~" is obvious since Q(Yl)= U Q(~-); " '~"  
~ e A  

is obvious since also ~1 e A, which means that there exists N eSe with P(N)= O, 
and etF(o~)e=0 for all co4:N. Put N~=N. This proves the claim. 

The last remark also implies that N~ can be chosen independently of ee  Wee. 
In case the P/already have M(Se), everything happens inside ~/Zg + i. This proves 
Lemma 2. 

Now the proof of the main theorem is very easy. 

Theorem. Under the assumptions made just before Lemma 2, there exists 

~'o~d/[ "+~ with cardinality _<(n~2)- - (~o~dZ,~+t with cardinality =<(n21 ) -  - in 
\ - - !  

case the Pi already have the Markov property) such that 

{~: Po has the Markov property) c~ Wae = Q (~o) n w~. 

Proof Given 5 e, let ~o(5 P) be the finite system found in Lemma 2. Put o ~ 
=U{~o(50): 5 ~ is a standard situation from ~--}. Choose a finite ~ o ~  (~o 
has the appropriate cardinality by Lemma i) such that Q(~o)=Q(~) .  Then, 
for any ~ e W~e, 

P~ has the Markov property 
,~ for all 5 P from ~-, P~ has M(5 e) 
r for all 5 ~ from ~ ,  e e Q (Y0 (Se)) 

7ee(~)  
<=> c~ e Q (~-o). 

This shows the theorem. 

4. Application: Conditions for the Global Markov Property to hold 
for all Gibbs Measures 

We have been motivated by the random field setting. Here we have affinely 
independent Gibbs states Po . . . .  , P,, and fr is the set of all Gibbs states (for 
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a given lattice system). ~,~ = f4 c~ d(Po,  ..., P~) then is a convex set; % as needed 
in Lemma 2 exists. In the case of extremal P~, or if fq itself is finite dimensional, 

is an n-dimensional simplex; W je then is the standard n-simplex. 

4.1. Now, let n = 1, and Po, Pt already have GMP. Then there are exactly two 
possibilities: 

(i) Wc~ {Pc(q: P has GMP} = Y f  or 
(ii) ~ c ~ { P e N :  P has G M P } =  {Po, P~}- 

This is obvious since any quadratic equation in one variable with more than 
two solutions is trivial. 

Remark. Case (i) applies, e.g., in the case where for each standard situation 
~ ,  P0r 2_P~ (which implies that Po, P1 are extremal). In particular, this is the 
case where Po, P1 are the minimal, resp. maximal Gibbs states for a translation 
invariant attractive interaction, see Higuchi [1J. In the setting of Lemma 2, 
we have (with ~o=(1/2, 1/2)) for P-almost all co, either dP(~/dP~=O (hence 
d(1D Po)~/dP ~ = 0 for D = B, B', B n B'), or dPl~C/dP ~ = 0 (hence d(1D P1)~/dP ~ = 0 
for D = B, B', B c~ B'), i.e., F -  0 and Q (F)= H .  

4.2. By a straightforward generalisation to the case of n > 1, we find the following 
condition for the GMP to hold for all elements of ~:  

(+)  P~ has GMP (i = 0, ..., n), and for all pairs (i, j) from {0 . . . .  , n} there exists 
at(0,  1) such that ~P i+(1 -a )  Pj has GMP. 

It is not necessary to check GMP for arbitrary convex combinations of the 
P~. This is clear: in view of the theorem, (+)  enforces all F r  to be zero 
since any quadric in W~e that contains all ei, and e(i, j ) e ~ + ( 1 - e ( i ,  j ))ej  for 
certain a(i, j)~(0, 1) has to be trivial. 

In particular we have GMP for all elements from (r if dim (r = n, and we 
have GMP for all extremal states, and for nontrivial convex combinations of 
any pair of extremal states. It would be nice to show this even in the case 
of an infinite dimensional (r From the theorem, it would be possible to show 
GMP for all states that are finite convex combinations of extremal states, and 
the set of such states in dense in (r w.r.t, weak convergence. But we do not 
know how the "Markov equations" GMP (~)  behave under weak limits. 
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