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Summary. A new proof of Motoo's combinatorial central limit theorem (see 
Motoo 1957) is given using a method of Stein (1972) and a combinatorial 
method of Bolthausen (1984). This proof is shorter than Motoo's and other 
wellknown proofs (see e.g. Hfijek 1961). 

1. Introduction 

Let A n = (ano)l-~,j__<. be an n x n-matrix of real numbers such that 

~an~=0 forallj; ~ a.~j=0 foral l i  
i = 1  j = l  

and 
n 

2 _  anl j -- n -- 1. 
i,j=l 

Let further ~r~ be uniformly distributed on the set of permutations of {1,..., n} 
and 

TA~= ~ ania~(i)" 
i=1 

The following central limit theorem was proved first by Motoo (1957). 

Theorem. Assume that the Lindeberg type condition 

(1) lim 1 ~ 2 _ a~ij-O 
n-+m n ]a,~ol>e 

holds for all ~ > O, then TA~ is asymptotically standard normally distributed. 

We mention that under some appropriate conditions (1) is also necessary 
(see Hajek (1961), Theorem 4.1 for the special case anij= e,i dnj and Chen (1978), 
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Corollary 5.1 for the general case). Further proofs of the above theorem are 
due to e.g. Hfijek (1961) for the special case a,u=enid, j and Ho and Chen 
(1978), Chen (1978), who considered more general problems. 

The purpose of this paper is to give a new proof of the above theorem 
which is shorter than Motoo's and the above mentioned proofs. 

We use a method of Stein (1972) and a combinatorial method of Bolthausen 
(1984). Stein originally introduced his method for obtaining rates of convergence 
in a central limit theorem for sums of nearly independent random variables. 
Since, roughly spoken, this method is a refined kind of the method of moments, 
it is not surprising that it is also suitable for our theorem, whose earlier, weaker 
versions were proved by the method of moments (see e.g. Hoeffding (1951)). 
The shortness of our proof compared to the approaches of Ho and Chen (1978) 
and Chen (1978), who also use Stein's method, is on the one side due to a 
simpler and more direct application of this method and on the other side due 
to the additional use of Bolthausen's combinatorial method. 

2. Proof of the Theorem 

It suffices to show 

(2) E(h(Ta,)) ~ q)(h) as n ~ o9 

for a fixed continuous function h which can be extended continuously to ]R 
=IR u { _+ oo}. Here ~b(h) denotes the standard normal expectation of h. 

In the following we fix n>2 .  Therefore, for simplicity we drop the index 
n of A,,, ani j etc. 

In order to apply Stein's method we define the function 

f (x)  = 0(x) -1 ~ (h(y)- ~(h)) ~k(y) dy, 
- - c o  

where 0 denotes the density of the standard normal distribution. This function 
has the following properties: 

(3) 

(4) 

f ' ( x ) - x f ( x ) = h ( x ) - ~ ( h )  for all x~N.  

lira f'(x) = 0 and f '  is uniformly continuous. 

For (4) we used (3) and applied the rule of l'Hospital to xf(x). 
Next we need Bolthausen's combinatorial method (see Bolthausen (1984), 

pp. 383-384), which we repeat here for the convenience of the reader. 
We define a random element (11, 12, J1, J2) in N 4, where N={1  . . . .  , n}, 

in the following way: (I l, I2, J1) is uniformly distributed on N 3, and given 
this, one has J2=J~ on {I i=I2}  and J2 is uniformly distributed on N--{J~} 
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on {I~ 412}. Let rq be a random permutation, which is uniformly distributed 
on the permutations of N and independent of (I1, Iz, ,/1, -/2). Define 

I3 = g~- 1(J1), I4 = 7c~- 1 (J2), 

,)'3 = /~1  (I1) ,  S4. = 7c 1(12), 

and 

~ = ( I 1 , I 2 , I 3 , I 4 ) .  

Of course, 11 - 1 2  holds if and only i f /3  = 14. For each fixed i = (il, i2, i3, i , ) e N  4 
which satisfies the condition i 1 = i2r 3 = i4, we fix once for all a permutation 
t(/) of N, which maps i~ to i4 and i2 to i 3 and which leaves the numbers outside 
{il, i2, i3, i,} fixed. Let further s(il ,  ia) be the transposition of i 1 and i2. Then 
we put 

rC 2 = TC t ~ t C[), :re 3 = re2 o S(I1, I2). 

We note the following simple results: 

(5) rc2(I1)=J2, u2(I2)=J~, rc3(I1)-=J1, 7r3(I2)=J 2. 

(5) ul ,  re2, re3 are independent o f ]  and have the same law. 

(7) re2 and (11, J1) are independent. 

(8) (It, rh(Ik) ) is uniformly distributed on N 2 for all 1 _<k_<4, 1 _< 1_<3. 

For (6) and (7) one may consult Bolthausen (1984), Lemma, and (8) follows 
from (6) and the fact that all I k are uniformly distributed on N. 

Furthermore let 

T~=~aj~(~); i=1 ,2 ,3  and AT~=Ti+t-Tz;  i=1 ,2 .  
J 

Then (5) gives that AT2 depends on (I1, 12, J1, ./2). With this notations we 
obtain using (5) and (6) 

E ( T A f  (Ta) ) = E ( T 3 f  (T3) ) = n E ( a i i j , f  (T3) ) 

= nE(a1,s, f(T2))  + nE(al,  j ,  A Tzf ' (T1) ) ( 1 ) 
+ h E  a,,s,  A T  2 ~ ( f ' (T t  + ATl + t A T 2 ) - - f ' ( T l ) ) d t  . 

0 

From (7) we see that the first summand is zero and from the independence 
of ~1 and (I1, 12, J~, J2) we get that the second summand equals 
nE (a~lj1 A T2) E ( f '  ( T,)) = E ( f '  ( TA)). 

Therefore, using (3) we get 

]E (h( TA))-  q~(h)] = [E ( f '  ( TA))-- E ( TAf  ( T4)) [ 

< n g  [axlj, AZ2l ~ [f'(7~ + A r l  + t A r 2 ) - - f ' ( r t ) l d  . 
0 



252 W. Schneller 

N o w  we fix 0 > 0 .  Then  (4) gives 6 > 0  a n d  0__<K<oo such tha t  If'(x)J<=K for 
all x s ] R  a n d  [ f ' ( x ) - f ' ( y ) [  < 0 whenever  I x - y [  <6. Thus  we o b t a i n  fur ther  

<_ 2 K  nE([aiij1 A T2I I([ATI[ + IAT21 >O}) 

+OnE(Jab j, AT2[ l(lar~f+lar~l__<o~)=A~ + A 2 ,  say. 

In  o r d e r  to  e s t ima te  A1 we r e m a r k  tha t  A T  1 is the  sum of  8 s u m m a n d s  of  
the form + a , ~  and  AT2 is the  sum of  4 s u m m a n d s  of  the  form _+au~, where  
~, /~e{11 . . . .  , I4}  and  fl, ve{rcZ(Ik): 1--<l<3,  l < k _ < 4 ) .  Thus,  def ining e = 6 / 1 2 ,  
we have  to es t imate  

nE([ahs I l laud l{i,~al >~}) < n [g2 E(l~la=a I >e}) + eE(lahs, [ l{lalI, jll >e} l{la=al >,}) 

+ eE(lau~l l(la.~ I >~) l(l~=a I >=l) 

<4nE(lahj~l  2 l ~ l . h s~ l>~)=4n-~  ~ a~j--*0. 

F o r  the  las t  i nequa l i t y  we used the inequa l i ty  of  Schwarz  and  (8). 
F ina l l y  we l o o k  at  A2 : 

A2 <OnE(Jat~j~ AT2[) 

< 4 0  nE(lalij~] 2) = 4 0  n - t Z a~ <40.  
i,,j 

Since 0 > 0 was a rb i t r a ry ,  this p roves  the theorem.  
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