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Summary.  In this paper, we consider limit theorems for the asymmetric near- 
est neighbor exclusion process on the integers. The initial distribution is 
a product  measure with asymptot ic  density 2 at - oo and p at + oo. Earlier 
results described the limiting behavior  in all cases except for 0 < 2 <  1/2, 
2 + p = 1. Here we treat the exceptional case, which is more delicate. It  corre- 
sponds to the one in which a shock wave occurs in an associated partial 
differential equation. In the cases treated earlier, the limit was an extremal 
invariant measure. By contrast, in the present case the limit is a mixture 
of two invariant measures. Our theorem resolves a conjecture made by the 
third author  in 1975 [7]. The convergence proof  is based on coupling and 
symmetry considerations. 

1. The Theorem 

The asymmetric nearest neighbor exclusion process on the integers Z is the 
Markov  process t/t on X = { 0 ,  1} z which evolves in the following way: Take 
1 / 2 < p < l ,  and set q = l - p .  Sites xeZ for which ~ ( x ) = l  are considered to 
be occupied, and sites for which q (x)= 0 are vacant. At independent exponential 
times with parameter  one, a particle at x at tempts to move to y = x  + 1 with 
probabil i ty p and to y = x - 1  with probabil i ty q. The transition takes place 
if y is vacant  and is suppressed if y is occupied. A more formal description 
of this process, together with an exposition of many  of the results known about  
it, can be found in Chap. VII I  of [7]. 

The transition semigroup for t h is given by S(t)f(q)= E~f(rh), with feC(X). 
The distribution of the process at time t when the initial distribution is ;t will 
be denoted by I~S(t). For  0_<a_<l, v~ will denote the product  measure on X 
with v~{q: q (x )=  1} =a .  These product  measures are impor tant  in this context 
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because they are exactly the extremal invariant measures which are also shift 
invariant. The purpose of this paper is to complete the proof of the following 
convergence theorem. 

(1.1) Theorem. Suppose # is a product measure on X for which the following 
limits exist: 

(1.2) 2=xf im /~{q:~(x)=l } and p=xlimoo#{r/:q(x)=l}.  

T h e n  

(a) 

(b) 

(c) 

lim # S ( t )  = vl /2  
t--+ oO 

lim # S ( t )  = v o 
t-+oO 

lim # S ( t )  = vx 
t-+oO 

/f 2 > 1/2 and p < 1/2, 

if p > l / 2  and 2 + p > l ,  

/f 2_<1/2 and 2 + p < l ,  

and 

(d) /f 2 + p = 1, 0 < 2 < 1/2, and (1.2) is strengthened to 

(1.3) ~ [ p { q : q ( x ) = l } - 2 [ < o e  and Z ] # { q : ~ l ( x ) = l } - p [ < o e ,  
x < 0  x > O  

then lim # S (t) = �89 v~ + �89 vp. 
Z ---~ o:3 

Parts (a), (b) and (c) of this theorem were proved in [5]. An improved proof, 
together with an extension of this result to nonnearest neighbor systems, was 
given in [6]. Part (d) is more delicate, as can he seen from the fact that (1.3) 
is required in place of (1.2), and that the limit is not an extremal invariant 
measure. This makes part (d) more interesting as well. Without (1.3), the limit 
of l~S(t) may not exist at all, as was shown in [5]. The purpose of this paper 
is to prove part (d). It gives an affirmative answer to Conjecture 1.6 of [-5]. 
A weaker form of (d) was obtained recently by the first author in [1]. 

The following informal comments are intended to explain why a mixture 
of product measures might appear in the limit in part (d) of Theorem (1.1). 
The idea is that the configuration at any time should consist of a region which 
is not in equilibrium, surrounded on the left and right by infinite regions which 
are roughly in the equilibria v~. and v o respectively. The location of this central 
"disturbance" presumably moves somewhat like a symmetric random walk, 
while its size is of smaller order than its distance from the origin. Therefore, 
if one looks near the origin, one sees v~ if the disturbance is far to the right, 
and v o if it is far to the left. By symmetry, each of these situations should 
occur with probability 1/2. 

Section 4 explains this heuristic argument in somewhat greater detail. These 
ideas are then used to suggest several open problems, which would generalize 
part (d) of Theorem (1.1). At the same time, we will explain the connection 
between these problems and a particular partial differential equation. Part (d) 
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above corresponds to the case in which a shock occurs at zero in the solution 
of this partial differential equation, thus explaining the word "shock" in the 
title of the paper. 

We next state two results, Theorems (1.4) and (1.6), which contain the main 
ingredients of the proof of part (d) of Theorem (1.1). After that, we will show 
how (d) follows from them and some earlier results about the exclusion process. 
Theorem (1.4) is proved in Sect. 2, while Theorem (1.6) is proved in Sect. 3. 
The proofs which we give use some coupling ideas which are not entirely stan- 
dard. They also use the available symmetries in an essential way, and require 
the nearest neighbor assumption in crucial places. From now on, we will always 
take ). + p = 1 and 0 < 2 < 1/2. 

(1.4) Theorem. Suppose # is the product measure on X with 

(1.5) /2{t/: r/(x)= 1}={~ /f x < 0  
- 2  /f x > 0 .  

I f  tn T oo and v = lim #S(tn) exists, then v is translation invariant. 
n ~ o o  

(1.6) Theorem. Let 1~ be as in the statement of Theorem (1.4). Then [(1.7) 
pltS(t){tl: t/(x) = 1, r/(x+ 1)=0} -qt~S(t){t 1 �9 t/(x) = 0, r/(x + 1)= i} <(p-q))o(1 -).)] 
for all t >= O and all x ~ Z. 

The above statement may seem somewhat mysterious. It is shown in Sect. 
3 that the difference between the right and left sides of (1.7) is 

lim d 
U = y  

Note that the rate at which particles flow to the right across any given point 
in each equilibrium v~ and vl_ ~ is (p -q )A(1 -2 ) .  Thus (1.7) asserts that the 
flow is smaller at any point and any time than it is in these equilibria. 

Proof of part (d)  of Theorem (1.I) .  First consider the case in which # has 
the marginals given in (1.5). Suppose t, T oo and v=  lira #S(t,). By Theorem 

n ~ c o  

(1.4), v is translation invariant. Therefore by Proposition (3.2) of [13, there is 
a probability measure 7 on [-2, 1-)o] such that 

The outline of the argument which leads to this conclusion is as follows: Since 
v is translation invariant and is the limit of the distribution of the process 
along a sequence of times which tend to infinity, v must be an equilibrium 
measure for the process. But all translation invariant equilibria are exchangeable 
by Theorem (3.9) of Chap. VIII of [73. By De Finetti's theorem and the fact 
that # lies stochastically between vz and vl-x,  v must therefore be a mixture 
of product measures with densities between 2 and 1 - 2. 
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Using the above representation for v, 

v{q: ~(x)= 1, ~(x+ 1)=0} =v{~: q(x)=0, q (x+ 1)= 1} =~ ~(1 - ~ )  ~(d~) 

for all x. Setting t=t ,  in (1.7), passing to the limit as n ~  o9, and using the 
assumption p > q then gives 

~a(1 - a) 7(da)  < 2(1 - 2). 

Therefore y can put mass only at 2 and 1 - 2 .  To determine how much mass 
is put at each point, a symmetry argument is needed. A basic property of the 
exclusion process is that the set of zero sites evolves according to an exclusion 
process with p and q reversed. Therefore, 

#S(t) {t/: t/(x) = 1} + #S(t){t/: t / ( - x -  1)= 1} = 1 

for all t and all x. It follows that v{t/: ~(x)= 1}--1/2, so that 7 must put mass 
1/2 at each of 2 and 1 - 2, and hence 

v = (1/2) vz + (1/2) vl - ~- 

All weak limits of I~S(t) are thus the same. Since X is compact, we conclude 
that 

(1.8) lim #S(t) = �89 + i v  1-4 
t---~ oO 

as asserted. 
It now remains to extend this result to product measures satisfying (1.3). 

The first observation is that if/~ is a product measure satisfying (1.3), then 
there is another product measure fit so that fit{q: q(x)= l} = 2  for all but finitely 
many negative x, and fit{q: q ( x ) = 1 } = l - 2  for all but finitely many positive 
x, so that the total variation distance between # and fit is arbitrarily small. 
Since the total variation distance between #S(t) and /2S(t) is decreasing in t, 
it is enough to prove (1.8) for all such product measures. For  

m:{--n, - - n + l ,  ..., n--1, n}-~ [0, I], 

let #,, be the product measure with marginals given by 

2 if x < - - n  

/~,,{~/:~/(x)=l}= m(x) if Ixl<n 

1 - 2  if x > n .  

If 2<re (x)<  1 - 2  for all x, then /~,, lies stochastically between two translates 
of the product measure with marginals given by (1.5). According to Proposition 
(2.12) of Chap. VIII of [7], these stochastic inequalities are preserved by the 
evolution, so that (1.8) is satisfied by /~=/~m in this case. To remove the con- 
straints on re(x), we proceed as in the proof of Theorem (1.8) of I-5]. Set 
N = 2  2"+1, and let ml . . . . .  mN be the N choices of m's which satisfy re(x)=0 
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or 1 for each - n  < x < n. Then any #,, can be written as a convex combination 
as follows: 

N 

#,,= ~ ktm~ f i  {m(xl'k(~)[1--m(x)]l-m~(~)}. 
k = l  x =  - n  

Applying S(t) to this identity, and using the fact that we already know that 
(1.8) holds for # = # , ,  whenever re(x) is close to 1/2 for all -n<_x<_n, it then 
follows that (1.8) holds for each/~=#, ,  with m unrestricted. [] 

2. Proof of Theorem (1.4) 

The basic idea behind the proof of Theorem (1.4) is to couple/~ together with 
a translate of # so that discrepancies between the two configurations occur 
in a certain way, and then to show that these discrepancies disappear eventually 
with probability one. We begin with two lemmas which play important roles 
in the proofs of both Theorems (1.4) and (1.6). They assert monotonicity and 
symmetry properties of an associated process with a special particle whose be- 
havior is different than that of the other particles. 

To describe the associated process, suppose first that t/t and ~r are copies 
of the exclusion process which are coupled using the basic coupling (see Sect. 
2 of Chap. VIII of [7]). In this joint realization of t/t and ~, particles at the 
same site in the two configurations choose the same exponential times at which 
to try to move, and choose the same neighbor to which to try to move. Whether 
the attempted transition occurs or not depends, of course, on the rest of the 
configuration of each process separately. 

Suppose now that initially, t/o__<~o, and t/o(X)=0 and ~o(x)=l  at exactly 
one site xEZ. Then this situation persists at later times. Let Xt denote the 
location of this discrepancy between t/t and ~t. Then (t/t, Xt) is the associated 
Markov process on { ( q , x ) e X x Z :  t/(x)=0} which we will study. Note that 
t/t is a version of the exclusion process, and that Xt can be regarded as the 
location of a special type of particle over which all particles in t/t have priority 
in the following sense: If a particle in t/t tries to move to Xt, then that particle 
and the special particle exchange positions. 

(2.1) Lemma. Consider two copies (t/t, Xz) and (~t, Yt) of the process described 
above. I f  t/o <~o and X o> Yo, then the two processes can be coupled together 
in such a way that t/t<=(t and Xt> Yt for all t. Therefore, if f is an increasing 
function on Z which grows at most polynomially, then E("'x) f (Xt) is a decreasing 
function of t~ for fixed x~Z  and t >=0. 

Proof The second statement follows immediately from the first. The polynomial 
growth assumption on f is made simply to guarantee that the expectation is 
well defined. In order to construct the required coupling, first apply the basic 
coupling to t/t and (t. Note that t/t<(t for all t. Couple X, and Yt together 
so that the attempted movement of Xt and Y, is always the same, and is indepen- 
dent of the movement of the other particles, except in the following two cases: 
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(i) X~= Y~ with t /~(X,+l )=0  and ( t ( Y t + l ) = l  when movement is to the right, 
and (ii) X t =  Yz with t / t (X t -1 )=O and ( t ( Y t - l ) =  1 when movement is to the 
left. Clearly X t >  Y~ is preserved, except possibly in cases (i) and (ii). In case 
(i), note that Xt moves to the right at rate p and Yt moves to the right at 
rate q. Since p>q,  these transitions can be coupled so that Xt and Yt move 
together at rate q and X, moves to the right alone at rate p - q ,  thus preserving 
the inequality Xt > Yr. Case (ii) is analogous, with transitions to the left replacing 
transitions to the right. []  

(2.2) Lemma. Consider two copies (qt, X~) and (~, Yt) of  the process described 
above. I f  X o =  Yo=0 and t/o(x)= 1 - ( o ( - x )  for all x #O, then the two processes 
can be coupled together so that Y t = - X  t for all t. In particular, if X o = 0  and 
t/o is random and satisfies 

(t/o(X), x , o )  

then Xt  has a distribution which is symmetric about 0 for any t >O. (The above 
equality denotes equality in distribution.) 

Proof  First construct (t/t, X,), and then define (~t, Yt) by Yt= - X t  and ( t(Yt+x) 
= l - t / ~ ( X , - x )  for all x # 0 ,  It is then a simple matter to check that ((t, Y,) 
has the correct transition rates. []  

(2.3) Corollary. Consider two copies if/t, Xt) and ((t, Yt) of the above process. 
Set Xo = Yo = 0 and t/o (1) = (o ( -  1) = 0. I f  {t lo (x), x 4= O, 1 } are independent Ber- 
noulli random variables with 

p[t/o(X)= 1] ={21 if x < 0  
- 2  if x > l ,  

and {(o (x), x 4= 0, - 1 } are independent random variables with 

p[~o(X)= 1] = ( 2  if x < - - 1  
1--2 if x > 0 ,  

then E X t >  EYtfor  all t. 

Proof  Write 

EX,=,tE(Xtlt/o(-- 1)= 1)+(1 E(X,I t/o ( -  1)=0) 

and 

E Yt = 2E(Yt] ~o (1) = 0) + (1 --2) E(Ytt r (o (1) = 1). 

By Lemma (2.2), 

E(Xt l t /o ( - -1 )=l )=O and E ( ~ [ ( o ( 1 ) = l ) = 0 .  

On the other hand, the conditional distributions 

{ t /o(X) ,X#0] t /o( -1)=0 } and {~o(X),X#0[(o(t)=0} 
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agree, and lie stochastically below the conditional distributions 

{r /o(X),X+0lr /o(-1)=l}  and {[o(X),X+01(o(1)=l}.  

Therefore, by Lemma (2.1), 

E(X,I~o(- -1)=O)= E(Y~I~o(1)=O)~O. 

Since 2 < 1/2, it follows that EXt  > EYe. [] 

(2.4) Lemma. There exists a joint distribution of (t h ~) with the following proper- 
ties: 

(a) {t l(x), x ~Z} are independent Bernoulli random variables with 

t 2  P[~/(x)= 1] = 1-;~ 
if x<=--i 

fix>0, 

(b) {((x), x ~ Z }  are independent Bernoulli random variables with 

21 /f x < O  
P [ ( ( x ) = l ] =  -5~ /f x > l ,  

(c) with probability one, there exists an n>O and integers Xl <X2 < . . . < x  . 
and Yl <Y2 < . . .  <Y, so that x i<yi ,  ~/(xi) = 1, ( (x3=0 ,  r/(yi)= 0, ((yi)= 1 for each 
l <_i < n, and ~l(U)=( (u) for all uC {xl . . . . .  x., Yl . . . . .  y,,}, and 

(d) conditionally on n, Xx . . . .  , x , ,  Yl,  ..., Y,, n> l, and the values of tl(U) for 
xl  < u < y . ,  {r/(u), U<Xl or u> y,} are independent Bernoulli random variables, 
with parameter 2 for  u < x l and 1 - 2 f o r  u > y, .  

Proof Start by choosing q (x)= ((x) for x < - 1, with the appropriate distribution. 
Next choose q (0 )=( (0 )=  1 with probability 2, q ( 0 ) ~ ( ( 0 ) = 0  with probability 
2, and ~/(0) = 1, ((0) = 0 with probability 1 - 2 2. If q (0) = ~ (0), continue choosing 
~/(x) = ((x) for x > 1 with the appropriate distribution. If 7(0)= 1, ( (0)= 0, com- 
plete the choice of tl(x), ((x) for x >  1 in the following way. Suppose t/(x), ((x) 
have been chosen for x < y. If 

y--1 y- -1  

Y 
x ~ O  x=-O 

let ~/(y) and ~(y) be independent Bernoulli random variables with parameter 
1 -  2, while if 

y - 1  y - 1  

(2.5/ E E 
x ~ O  x = O  

let q(y) and ~(y) be the same Bernoulli random variable with parameter 1 - 2 .  
Note  that (2.5) will happen eventually, because the random walk on z with 
increments - 1 ,  + 1 with probability 2 ( t - -2 )  each and 0 with probability 2 2 
--}- (1 - -  )~) 2 is recurrent. Once (2.5) occurs for one y, it will hold for all larger 
y's. 
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Proof of Theorem (1.4). Assign to (7o, (o) the distribution constructed in Lemma 
(2.4). Then 7o is distributed according to the measure # in Theorem (1.4), and 
fro is distributed according to a translate #1 of#. So iffeC(X), 

(2.6) Sf dpS ( t ) -S f  dlq S(t)=E f (q t ) -E  f((t). 

In order to prove the theorem, it therefore suffices to show that if (7, (t) evolves 
according to the basic coupling, then 

(2.7) lira P It h -  ~,] = 1. 
t - - ~  OO 

To see this, note that (2.7) implies that the right side of (2.6), and hence its 
left side, converges to zero as t --+ oe. 

We need to show that the 2n discrepancies identified in (c) of Lemma (2.4) 
eventually disappear with probability one. By (d) of Lemma (2.4), it is enough 
to prove (2.7) when the initial distribution (7o, (o) is of the following type: (a) 
for some N, {t/o (u) = ~o (u), l ul > N} are independent Bernoulli random variables, 
with parameter 2 for u <  - N  and 1 - 2  for u>N, and (b) there are 2n integers 
x l< . . .<x , ,  y l< . . .<y ,  in [--N,N] with xi<yi so that 7o (u) = (o (U) for 
u e [ - N , N ] \ { x l ,  . . . , x , ,y l ,  ...,y,}, 7o(Xi)=l, ~o(Xi)=0, 7o(yi)=0, and (o(Yi) 
= 1 for 1 _< i_< n. The configurations in [ -  N, N] may be assumed to be nonran- 
dom. Such a pair (t/o, (o) will be said to be good with n pairs of discrepancies. 

We next note that it suffices to take n = 1. To see this, suppose that (t/o, (o) 
is good with n pairs of discrepancies, and define t/o, ..., 7" via 7 k ( x i )  = 1 and 
7g(Yi)=O if i<k, t/k(xi)=0 and t/k(yi)= 1 if i>k, and t/k(u)=qo(u)=(o(U) for all 
u(s{xl, ..., x,, Yl . . . .  , y,}. Then 7~ =(o ,  7"=7o, and for each O<k<n, (7 k+l, 7 k) 
is good with one pair of discrepancies. Of course, (2.7) for the original good 
pair (7o, (o) with n pairs of discrepancies follows from 

lira P(~+ 1,~)[t/t -= (,] = 1 
t ---~ 09  

for each k. 
Finally consider the coupled process which has the following initial distribu- 

tion: {7o (u)= (o (u), u 4= - 1, 0} are independent Bernoulli, with parameter 2 for 
u < - 1 and parameter 1 - 2 for u > 0, 7o ( -  1) = 1, 7o (0) = 0, (o ( -  1) = 0, (o (0) = 1. 
It is not hard to see that the distribution of the process at any time t > 0  has 
the property that any distribution which is good with one pair of discrepancies 
is absolutely Continuous with respect to it. Hence it suffices to prove (2.7) for 
the above initial distribution. 

Now regard the extra particles in the 7 and ( configurations respectively 
as being the special particles in the associated processes which were discussed 
at the beginning of this section, and denote their locations by X t and Yr. The 
key observation is that on the event {7t4= (t), t/,(X,)= 1, t/~(Y~)=0, (t(X~)= 0, and 
(t(Yt)= 1, with X t <  Yt, while on the event {7t=~t}, Xt = Yr. By Corollary (2.3), 
EYt<EXt+I. So, the distribution of Yt-X~ remains tight. Since {Xt= Y~} is 
an increasing event, it is a simple matter to check that lim P [Xt < YJ = 0. The 

t ~ o o  

idea is that if Xt and Yt are a certain distance apart, then it is easy to give 
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lower bounds, which depend only on that distance, on the probability that 
Yt+ 1 -X~+ 1 < Y~- Xt with ~+ 1 having no particles between X~+ a and Yt+ 1, and 
therefore also on the probability that X~ + 2 = Y~ + 2. Consequently, lira P [qt + ~t] 

t--+ oO 

= 0, which completes the proof of Theorem (1.4) []  

3. Proof  of  Theorem (1.6) 

The first step in the proof of Theorem (1.6) is to identify the difference between 
the right and left sides of (1.7) as a limit of time derivatives. Then we will 
evaluate these time derivatives by coupling the product measure # having mar- 
ginals given by (1.5) with #S(t) for infinitesimally small t. 

To carry out this program, we will need to use the generator f2 of the 
exclusion process: 

(2 f (t/) = p ~ [ f (G,~+ ~) - f (t/)] + q ~ [f(q~,x- , ) -  f (t/)]. 
~/(x) = 1, ~/(x+ 1) = 0 ~(x) = 1, ~ / (x-  1) = 0 

Here qx,y is obtained from q by interchanging the x and y coordinates. For  
more on the generator and its relation to the evolution, see Chaps. I and VIII 
of [7]. 

(3.1) Lemma. For any xeZ  and t~O, 

(p--q) 2(1--)~)-pl~S(t){rl: ~(x)=l ,  l/(x +1 )=0}  + q#S(t){t/: q(x)=0,  q(x +1) = 1} 

= lira d 
U = y  

Proof For fixed x and y in Z, let 

f (t/) --- ~ q (u). 
U = y  

By semigroup theory, 

ddt ~ #S(t){q:  t/(u) = 1} =d ~s(t)f d#=~ f2f d#S(t). 
u = y  

Therefore, the evaluation of f2 f  yields 

d •  #S(t){rl: q(u)= 1} =p#S(t){rl :  t / ( y -  1)= 1, q(y) =0} 
d U = y  

1)=0, 1)=0, 1} 
+q#S(t){rl: tl(x+ 1)= 1, t/(x) = 0}. 
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Since vz is invariant  for  the process by Theorem (2.1) of Chap.  VIII  of  [7], 

lim # S(t) {rl : r 1 ( y -  1) = 1, t/(y) = 0} = vz {t/: t/(u) = 1, t/(u + 1) = 0} = 2 (1 - 2), 

and 

lim #S(t){t/ :  q ( y -  1)=0 ,  t/(y) = 1} =v).{tl 'q(u } = 1, q(u- -  1) =0}  = 2 ( 1 - 2 } .  
y--~ - - o 3  

The required result now follows by passing to the limit as y --, - oo. [ ]  

Theo rem (1.6) will follow once we show that  the limit in L e m m a  (3.1) is 
nonnegative.  The  idea is that  since vz and va-~ are invariant  for the exclusion 
process, it should be possible to couple  # and #S(t) together  in such a way 
that  discrepancies occur  only at - 1  and 0, at least to first order  in t. It should 
then be possible to s tudy the derivative in L e m m a  (3.1) by following the dis- 
crepancies. 

To  make  this idea precise, consider the basic coupling (~t,~, ~t,~) of two copies 
of the exclusion process. Time is denoted  by t as usual. The  parameter  s is 
assumed to satisfy 

(3.2) 0 < s < (1 - 2) 2 
- - ( l - 2 2 ) [ q + ( p - q ) ( 2 2 - 2 2 ) ] "  

The dis tr ibut ion of ~o,~ is chosen so that  for  small s, it is approximate ly  equal 
to llS(s). Specifically, the initial distr ibution (r/o.~,~0,s) is chosen as follows: 
{qo,~(x)=~o,~(x), x : 4 : -  1, 0} are independent  Bernoulli  r a n d o m  variables, with 
pa ramete r  2 if x < - 1 and  pa ramete r  1 - 2 if x > 0. Independent ly  of  these vari- 
ables, 

( r 1) r 
~o , .d-  1) ~o,~(o)/ 

takes the following values, with the probabili t ies shown below: 

Value Probabi l i ty  
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(o ~ o) 

(00 11) (1--2)2--S(1--22)[q+(P--q)(22--22)] 

The last probability is nonnegative by (3.2). Note that qo,~ has distribution 
# for each s, and that (~0,s(-1),~o,~(0)) takes the following values, with the 
probabilities shown below: 

Value Probability 

(1, 1) 2 ( 1 - 2 ) +  s 2 ( 1 - 2 ) ( 1 -  22) (p-  q) 
(1,0) 22+s(1--2)O[q+(p--q) 22] 
(0, 1) ( l -2)2-s(1-22)[q+(p-q)(22-)~2)]  
(0,0) ) , (1-2)+s2(1-)O(1-22)(p-q) 

Up to first order in s,(_~o,~(-1), ~0,s(0)) has the same distribution as does 
(t/(-1), t/(0)) under #S(s). This is what lies behind the next lemma, whose proof 
is basically a generator computation. As in Chap. I of [7], let 

D(X) = {f~C(X): ~ sup, [f (t/x)-.f(~)l < oo}, 
x 

where t/x is obtained from 1/by flipping the coordinate t/(x). This class of functions 
is important because it is a core for the generator ~2 and has the property 
that f e  D (X) implies S (t) f e  D (X). 

(3.3) Lemma. For any feD(X), 

lira E f (~~ ~ f d #S(s) _ O. 
s$O S 

Proof. By the definition of the generator, 

lim ~f  d#S(s)-~ f d# =~f2 f d#. 
sJ, O S 

Using the explicit expression for the distribution of ~o,s, we also see that 

lim E f (~o,s)-- ~f d # = ~fh d #, 
sJ.O S 

where h is the following function: 

(1--22)(p--q) if q ( - -1)=l ,  q(0)=l  

h01) = (1-2)O[q2-2+(p-q)] if t / ( - 1 ) = l ,  q(0)=0 
- ( 1 - 2 2 ) [ q + ( p - q ) ( 2 2 - 2 2 ) ] ( 1 - 2 )  -2 if q ( -  1)=0, ~(0)= 1 

( 1 - 2 2 ) ( p - q )  if q ( -  1)=0, t/(0) = 0. 
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We therefore need to show that 

~2f  d#=~fhd# 
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for all feD(X). 

For  x < - 2 or  x > 0, # is invariant  under  the permuta t ion  of the coordinates  
t/(x) and t/(x + 1). So for these values of x, 

~f(tlx,~+O{ptl(X)[1 --rl(X+ 1)] +qq(x+ 1)[1 -- t/(x)]} d#  

= ~f(q) {p tl (x + i) [1 - r/(x)] + q t/(x) [1 - q (x + 1)3} d#. 

We therefore obtain  

f [f(t/x,x+ 1)--f(r/)] {pr/(x) [1 - t/(x + 1)] +qtl(x + 1)[1 - t/(x)~} d#  

= (p - q) ~f(rl) [tl (x + 1) - q (x)] d#.  

On the other  hand,  for x = - 1, 

~f01-1 ,0)  {Pq(--  1)[1 -- q(0)] + qq(0) [1 - -q ( - -  1)]} d#  

= ~ f (q )  {pq(0) [1 - q ( -  1)1 2 2 ( 1 - 2 )  -2 + q q ( -  1)[1 - ~/(0)] ( 1 - 2 )  2 2 -2} d#. 

Consequently,  

~ I f ( q _  1,o)--f(t/)] { p q ( -  1)[1 -- t/(0)] + qq(0) [ i  - q ( -  1)]} d#  

= (p - q) ~ f  (q) [q (0) - q ( - 1)] d # 

+ ~f(q) { q ( 1 - 2 2 )  2 -2  q ( -  1)[1 - q(0)] 

+ p ( 2 2 -  1)(1 - 2)-  2~/(0) [1 - q ( -  1)]} dp. 

It follows that  

~2fd#=~[f(rlx,x+ 1 ) - f  (t/)] {pq(x)[1 -tl(X+ 1)] +qtl(x+ 1)[1 - q(x)]} a #  
x 

= lim (p - q) S f  (t/) [ t / ( N ) -  '7 ( - N)] d # 
N - ~ c o  

+ff(tl){q(1 - -22)  2 - 2  q(--  1)[1 -- t/(0)] 

+ p ( 2 2 - - 1 ) ( i  --2) -2  q(0)[1 - -q ( - -  I)]} d#. 

For  f e D  (X), 

and 

lim ~f(q)  q(N) d#  = ( l  - 2 )  ~fd#,  
N ~ a o  

t i m  Sf  (q) ~l ( -  N) d # = 2 Sfd  #. 

Substi tut ing this above,  we obtain  Sf2fd#=Sfhd# as desired. [ ]  
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Define (tlt, l ,~t ,  1),(l~t, 2, ~t,2), and (/~t, 3, ~t, 3) by conditioning (th, ~, ~t,s) on the 
events 

(~~ ~~ 01), (~ 11)and (~ ~) 
~o,~(- 1) ~o,A0)] 

respectively. (After conditioning, the distributions no longer depend on s.) Note 
that these initial configurations are the only ones in which ~o,s and ~o,s differ. 

(3.4) Lemma. 

d ~ itS(t){t/: t/(u) = 1} = ( 1 - 2  s + (p-q)~23 E ~ [~t, 1 (U)--t/t, 1 (U)] 
dt U = y  u = y  

+)~(1 --2)(1 -- 2 2) (p -- q) E ~ [ ( t ,2 ( /2 ) - -q t ,2 ( I / ) ]  
U ~ y  

+2(1 --2)(1 --22)(p--q) E ~ [~t ,3(bt)-- / / t ,3(U)] .  
u ~ y  

Proof Let 

g(~) = ~ n (u). 
u = y  

Then geD(X), so f =  S(t) gsD(X) by Theorem (3.9) of Chap. I of [.7]. Therefore, 
letting #t = I~ S (t), we can compute 

d ~ #,{t/" ~/(u)= 1) =lim -1 ~ [-tt,+~{t/: t/(u)= l}-#t{q' q(u)= 1}] 
dt s~o s 

U = y  U ~ y  

= lim _1 [,~fd #~-  ~fd l~] 
s~O S 

= lim Ef(~o,~)-- ~fd  tt 
s$O S 

where the last equality follows from Lemma (3.3). This in turn equals 

lim E f (~~ E f (tl~ lira E g ((,,~) -- E g (rh,s) 
s$O S s.~O S 

=lim-i  E ~ [~t,s(u)--th, s(u)]. 
s~O S U = y  

The assertion of the lemma now follows from the specified distribution of 
(~o, ~o)- [] 
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Proof  o f  Theorem (1.6). Combining  Lemmas  (3.1) and (3.4), it now suffices 
to show that  

Iim E ~ [(,,1 (u)-- t/t, 1 (u)] >= 0 
y - - ~  - -  o9 

u = y  

(3.s) 

and 

(3.6) lim E ~ [(t, 2 (u)-  tit, 2 (u) + (t, 3 ( u ) -  tit, 3 (u)] > 0. 
y - *  - -  oo 

u = y  

For  the first inequality,  note  that  either ( t ,~=ti t ,~ or for some u < v ,  (t,a(u) 
= 1, (t, ~ (v) = 0, tit, t (u) = 0, t/t, x (v) = 1. Therefore  

[(,,1 (u)-  tit,1 (u)] 
u ~ - c o  

equals 0 or  1 with probabi l i ty  one for each x ~ Z  and t__>0. 
To  prove  (3.6), we need to re turn  to Lemmas  (2.1) and (2.2). Let  (tit, Xt) 

and ((t, Yt) be defined by tit = th, 2, (~ = (t, 3, 

Xt  = that  z for  which (t, 2 (z) = 1, tit, 2 (z) = 0, 

and 

Yt = that  z for  which (t, 3 (z) = O, tit, 3 (z) = I. 

Then (r h, Xt) and ((t, Yt) evolve according to the mechanism described at the 
beginning of Sect. 2. Fur the rmore ,  

and 

E ~ [~,,z(u)-t/,,2(u)]=e[y<-_Xt<x], 
u = y  

E L [~,,3(u)- t/,,3(u)] = - P [ y = <  g__<x]. 
g = y  

It therefore suffices to show that  

e(x,<=x)>P(~<x). 

Now,  L e m m a  (2.2) implies that  

P(Xl<__x)=P(Yt> - l - x ) .  

It is therefore enough to show that  P ( Y ~ > - x ) - P ( Y ~ < x ) > O .  To check this, 
apply L e m m a  (2.1) to the increasing funct ion 

f (u )  = 1{,,~ _,,}-- l{,,<=x} 

to conclude that  Ef(Yt )  (with ( o ( - 1 ) = 0 )  is greater  than it would be if ( o ( - 1 )  
were instead Bernoulli  with pa ramete r  2. But in that  case, since f is odd, Ef(Yt )  
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would be zero by Lemma (2.2). It follows that Ef(Yt)>O in the present case, 
and so 

P(Yt>= - x ) -  P(Y~ < x)>O 
as desired. [] 

4. Open Problems 

In this section we introduce several open problems which, if solved, could be 
viewed as generalizations of part (d) of Theorem (1.1). We begin by defining 
rx: X--+X by zx(rl)(y)=rl(y-x ). The corresponding mapping on the set of all 
probability measures on X will also be denoted by %. Suppose that # is the 
product probability measure on X with marginals given by 

/~{q: q(x)= 1} = { ~  if x < 0  
if x > 0 .  

where 0 < 2, p __< 1. In [2] and [3], it has been shown that 

(4.1) lim #S(t/~) ~x/,l=v,(~,~) if 2 >  0 or x = ~ ( 1 - ; t - p ) ( p - q )  t, 
e$O 

when [--] denotes the integer part. The parameter u(x, t) of the limiting product 
measure is the weak entropy solution of the partial differential equation 

(4.2) 
0u 

+(p -q) =:- [u (1 -u)] ~ 0  
ON 

with initial condition 

u(x, 0 ) = ~  if x < 0  
if x > 0 .  

The solution to this equation exhibits a shock wave if 2 <p.  For this fact 
and relevant definitions and results concerning weak solutions, the reader is 
referred to [-9]. In the present case, the shock wave travels at the velocity 
(1-)L-p)(p-q) .  Hence, it should not be surprising that the limit in (4.1) is 
not known only when 2 < p  and x = ( 1 - 2 - p ) ( p - q ) t .  Our first open problem 
is therefore to determine the limit in this case. We have settled the special 
case p = 1 - 2  > 1/2 and x = 0 in this paper. Some of the techniques used in 
[1] and the present paper are likely to be helpful in the general case. New 
ideas will probably be required as well. The first result concerning the limit 
in (4.1) was obtained in [8], and is described and somewhat generalized in 
Sect. 5 of Chap. VIII of [7]. 

Our second problem is also related to the behavior of the process in the 
presence of a shock wave. We will present it in its simplest context. Let # 
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be the above product measue with p = 1 - 2. Is it the case that for some increasing 
function f (t) 

(4.3) lim # S(t) ztc.r~t)l = ~ (c) v~ + (1 - c~(c)) vl - 
t--~ co 

for all - o e < c < o e ,  where e(.) is a strictly increasing continuous function? 
Something like this is true in the symmetric case, when p =  1/2 (see Theorem 
5.2 of Chap. VIII of [7]). This result in the symmetric case, together with the 

corollary to Theorem 1 in [10], suggest that f ( t )=  ~/t is the right choice. Showing 
the existence of the limit in (4.3), and then identifying the function e(c) are 
problems which appear to require a new approach. The case c = 0  in (4.3) is 
just part (d) of Theorem (1.1). 

There is a heuristic argument based on coupling which explains why one 
might expect (4.3) to hold for some choice of f(t). Consider the basic coupling 
of three copies of the exclusion process rh, 7t and ~, in which t/0 has distribution 
vz, Go has distribution v~_~, 7o is distributed according to the product measure 
/~ with marginals given by (1.5), and qt(X)~Tt(X)~t(X) for all x e Z  and t__>0 
(see Sect. 2 of Chap. VIII of [7] for a description of the basic coupling). Then 
th has distribution vx for all t, ~t has distribution v~_4 for all t, and 7, has 
distribution ltS(t). Consider the leftmost x so that 7t(x)= 1 and th(X)=0, and 
call its position Xt. Similarly, let Yt be the rightmost x so that (t(x)= 1 and 
7t(x) = 0. If p = 1, then Yt =< Xt for all t. One might expect that even if 1/2 < p < 1, 
the drift to the right of the particles would be strong enough so that (Yt-X~) + 
would not be too large. So, it may be that Xt and Yt move more or less together 
approximately like a Brownian motion. By definition, 7t(x)=t/t(x) for x<X~  
and 7t(x)= ~t(x) for x > Yt. Therefore, if g is a function on X which depends 
only on the coordinates t/(x) for a-< x _< b, it follows that 

fgdpS(t)=Eg(7,)=E[gffh), Xt>b] + E[g((t), Xt<=b, Yt<a] 

+ E [g(Tt), Xt<b,  Yt>a]. 

While it appears difficult to construct a rigorous argument based on these ideas, 
they do suggest that (4.3) is probably true. 

Since the first three parts of Theorem (1.1) and (4.1) have been proved for 
systems in which the nearest neighbor assumption is replaced by a first moment 
assumption on p(x, y) (see [6] and [2], respectively), our third open problem 
is to remove the nearest neighbor hypothesis in part (d) of Theorem (1.1) as 
well. Again, a new technique seems to be needed. 

It is of course possible to combine two or three of the above problems, 
or to state them for other processes, such as those studied in [4]. For many 
of these processes, the limit in (4.1) is known, except in the presence of a shock 
wave (see [2]). These shock waves occur when the initial condition is "increas- 
ing". As far as we know, the only progress on these problems that has been 
made is in [10], which deals with the zero range process. 
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