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Summary. It is shown that for all tangent sequences (d,) and (e,) of nonnega- 
tire or conditionally symmetric random variables and for every function 

satisfying the growth condition ~b(2x)< e~(x) the following inequality 

h o l d s : E ~  SUP k~=ld k <=cErb sup k~lek) .Thisgeneral izesresul tsofJ .  Zinn 

and proves a conjecture of S. Kwapiefi and W.A. Woyczyfiski. 

The aim of this paper is to prove the following conjecture of S. Kwapiefi and 
W.A. Woyczyfiski [2, Conjecture 2.1]. 

Let ~: R+--*R+ be an increasing continuous function satisfying the 
A 2-condition (i.e., q~ (2 x)<  c~ ~ (x), x > 0) and such that ~b (0)= 0. Then, there exists 
a constant c (depending only on q~) such that for all sequences (d,) and (e,) 
of adapted random variables with identical conditional distributions which are 
either non-negative or conditionally symmetric we have: 

(1) 

Such "decoupling" inequalities have been introduced in [3] as a tool in the 
study of multiple stochastic integrals and have been extended by several authors 
[4]. For  example for ~b(x)= Ix] p, 0 < p < 1 inequality (1) was obtained by J. Zinn 
[41 or [5]. 

Our proof is based on the techniques of D.L. Burkholder [1]. We shall 
use the following notation. Let (f2, N P) be a probability space and let 
~o c ~1 c . . .  be an ascending sequence of sub-~-fields of ~ A sequence (d.) 
of random variables on (f2, ~ ,  P) is adapted if d,  is ~.-measurable n = 1, 2 . . . . .  
As usual d* stands for sup ]d,I, d * = m a x  Idk] and if f , = d l  + ... + d .  then S(f) 

n k < n  

= d 2 . If (d,) and (e,) are adapted sequences of random variables, then 
\k= 1 / 

(%) is said to be tangent to (d.) if for each real number x we have that P(d. 
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> x [ ~ _ l ) = P ( e , > x ] ~ _ l )  a.s., n =  1, 2, .... A sequence (d,) is conditionally 
symmetric if ( -dn)  is tangent to (d,). The letter c is used to denote a positive 
real number, not necessarily the same from one use to the next. 

We begin with the following lemma (for a different proof  with constant 
6 instead of 2 see [2, Corollary 2.1]). 

Lemma 1. Assume that A , ,  B , ~ Y , ,  n =  1, 2 . . . .  and that there exists a positive 
number e such that P ( A ,  [ ~ _  1 ) ~ e P ( B ,  [ ~ -  a), n = 1, 2 . . . . .  Then 

In particular, i f  P ( A ,  [ ~ _  1) = P(B,, [~,~_ 1) n = l, 2, ... then 

Proof. Let C1 =A1, D1 =B1, Cn=B~ ch ... A B e _  1 chArt, D , = B ~  c~ ... ~ B ~ _  1 c~B,, 
n=2 ,  3, ... where A c denotes the complement of A. Then D,, n = l ,  2, ... are 

disjoint and 0 Dn= 0 B,. 
n = l  n = l  

P = P  A . ~  B + P  A , n  B 
n n 1 n = l  \ n = l  n 1 

_<P A . n  . 
n / n = l  n = l  / 

The second term on the right-hand side can be estimated from above as follows: 

v(nU=l Ant")nU=lBCn)~V(.O=l (A"~ in=iBCk))-'~'V(.O=l an ) 

n 1 n = l  n = l  

= ~  ~ EI(B~ c~ ... n 8,~,_ 1)" P(A, I ~ - 1 )  
n = l  

=< cE ~ EI(B~ n . . .  n B~ _ 1)" e(B,  I ~ -  1) 
. = 1  

= cE I(Dn) = c P(D,)  = cP  D, = cP B,  . 
n = l  n = l  n = l  / n -  

Thus 
co oo 
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Now, we are going to prove inequality (1) for nonnegative r andom variables. 
The case of conditionally symmetric r andom variables will be obtained as a 
corollary to the nonnegative case. 

Theorem 2. Let ~b be as above. 7hen there exists a positive constant c (depending 
only on ~b) such that for all tangent sequences (d.) and (%) of nonnegative random 
variables one has: 

n C e . 

n \ ; ~ =  1 / 

Proof. Let r (d.) and (%) satisfy the required conditions. Put 

z.=d*-l veL1 
a.=d.I(d.<2z.) 
b.=d.I(d.> 2z.) 
x.=e.I(e.<2z.) n =  1, 2, . . . .  

Then 
c~ Ec])(n~-ldn)~cE~D(~an)~-cEI1)(n~=lbn)'- n = l  / = 

To estimate the second term on the right-hand side observe that on the set 
{d.>2z.} 

d. + 2z.< 2d.< 2z.+ 1, 
hence 

b.< 2(z.+ l--z.) 
and 

~ b.<2z*<=2(d* re*) .  
n - 1  

Consequently, 

Ec~ b. <cE,I~(d*ve*)<cEq~(d*)+cE~(e*). 
\ t l =  JL / 

The quantity E ~  a, can be estimated in the following way: let ~5 > 0,/~ > 1 
1 

+ 6. For  a positive number  2 define the stopping times/~, v and ~ as follows: 

/~=inf n: ~ ak> , 
k = l  J 

v=inf{n: ~ak>13@, 
k = l  

z:inf{n: ~xk>62orz .+l>62} .  
k = l  
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If  v k = I (# < k < v ^ z) then  v k is O~k_ 1-measurable ,  k = 1, 2 . . . . .  N o t e  tha t  

{z } 
j = l  

Since z k < 62 ~ Xk < 262,  we have  

v , x , < 3 6 2 1 ( # < ~ ) = 3 6 2 1  ~ a , > 2  . 
n : l  t ~ = l  

On {v< ~ ,  z =  ~ } ,  since a u < d u < 6 2  we have  

s ak>f i2  a n d  vkak= a k -  ~, a k - - a u > f i 2 - - 2 - - 6 2 .  
k = l  k = l  k = l  k = l  

Therefore  

n \ t l =  I l 

<=P v , a , > ( / 3 - - 1 - - 6 ) 2  
tl 

=( / 3 -1 -6 )2  E v.a.  E v . E ( a . l ~ - 0  . :1 ( /3-1-8)2 .:1 

1 
E Z ~,,E(x.l~._l) 

( f l -  1 - 6 ) 2  ,=1 

1 

(/3-1-6);~ 
E 35 p a . >  . 

. = :  1 - 6  , . : ,  

By L e m m a  7.1 of  [-1] we o b t a i n  

r t = l  / 

Consequen t l y  

= < C  e n q - c  * c e *  

n 1 

\ n = 1  / - -  \ n = 1  ! 
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By Lemma 1 applied to the sets A, 
that for each positive number t 

P (d* > t)__< 2P (e* > t), 
hence 

E~(d*)<cE~(e*)  
and finally 

E ~  d. <=cEcl) +cEq~(e*)< 
n 1 

which completes the proof. 
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= {d, > t}, B, = {e, > t}, n = 1, 2 . . . .  we infer 

cE~  ~=le 

Remark 3. For functions ~(x)=[xl v, 0 < p <  1 Theorem 2 has been obtained by 
J. Zinn [-5, Theorem 1.4(ii)] under the assumption that 

vt>0 Z Z e(e.AtL _,) 
n = l  n = l  

which is weaker than ours. We would like to indicate another proof of this 
result briefly; which also allows us to replace concave powers by any concave 
function q~. As was observed by D.L. Burkholder [-1, the proof  of Theorem 
20.1], in order to prove that 

E~(X)  < cEqg(Y) 

for concave function ~ and nonnegative random variables X and Y, it suffices 
to show that for each positive number t, one has 

EX /x t < c E Y A  t. 

Let (x,) and (Yn) be adapted sequences of nonnegative random variables such 
that y~<= I, n= l, 2, ... and 

~, E ( x . [ ~ . - 1 ) <  ~ E ( Y . ] ~ - I ) -  
n = l  n = l  

Then, by [1, Theorem 20.1] and our assumption 

E ( , ~ x , ) / x I < = 2 E ( ~ E ( x , ] o ~ - I ) ) A 1  
1 ",n= 1 

= < , -1 A 1, 
n 1 
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a n d i f ~ = i n f { n :  ~ y k > l } , t h e n  
k = l  

Hence 

=E E(y . l~_0+e(~<oo)=EE y.+e(~<oo) 
n ~ l  a = l  

oo oo 

E x. A I < 6 E  A1. 
n 1 n 1 Y n  

A1. 

Now, an application of the above inequality to the sequences x . =  d"/x 1 and 
t 

en 
Y " = t  A 1 yields 

as required. 
Now we turn our attention to the case of conditionally symmetric random 

variables. The following theorem is a simple corollary to the proof of the two- 
sided convex function inequality between the square function and the maximal 
function of a martingale [-1, the proof of Theorem 15.1]. We include the proof 
for the sake of completeness. Recall that if �9 is an increasing, continuous function 
satisfying A2-condition and O(0)=0, then there exists a constant c such that 
for every martingale (f.) with difference sequence (d.) such that ]d.I <w. ,  where 
w. is ~ ._  1-measurable, n = 1, 2 . . . .  the following inequalities hold: 

and 
E O(f*)  < c E O(S(f))  + c E O(w*) 

E r  < cEO( f* )  + cEr  

(2) 

(3) 

(see Sect. 12 of [1]). 

Theorem 4. Let �9 be as in Theorem 2. Then there exists a constant c (depending 
only on O) such that for every adapted and conditionally symmetric sequence 
(d.) the following inequality holds: 

c-a EO(S( f ) )  < EO( f*)  < cEO(S(f)) ,  

where f .=d l  + ... +d . ,  n =  1, 2 . . . . .  
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Proof Let (d,) be a conditionally symmetric sequence and f , = d l  + . . .+d, ,  n 
= 1, 2, .... Following Burkholder [1, the proof of Theorem 15.1] write 

where 

Then 

and 

f , = g , + h ,  

g .=  ~ a k :  ~ dkI(ldkh<2d*-t), 
k = l  k = l  

k = l  k = l  

f * < g *  +h*<__g* + ~ lb,1, (4) 
n = l  

S(g)<=S(f)+ S ( h ) ~ S ( f ) +  ~ Ib.I (5) 
n = l  

E r  Ib,, . 
\ n =  1 

Applying inequality (2) to the martingale (g,) and using (5) we get 

E e(g*) < eEq,(S(g)) + cEe(2d*) 

oo  

Since d* <S( f )  and ~ [b,I <2d* <2S( f )  we conclude that 
n = l  

E q)(f *) <= c E ~(S (f)). 

The proof of the reverse inequality is the same" use S( f )<S(g )+  ~ Ib,,I instead 

03 

of(4), g*<=f*+ ~ lb,] instead of(5) and (3) instead of(2). Q.E.D. 
n = l  

Corollary 5. Let ~b be as in Theorem 4. Then there exists a positive number 
c (depending only on 4 )  such that for all tangent and conditionally symmetric 
sequences (d.) and (e.) we have that 

E q)(f *) < c E q)(g* ), 

where f ,  = d I +.. .  + d, and g, = el +. . .  + e,, n = 1, 2, .... 
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Proof By T h e o r e m  4 we h a v e  

E#O c*) < cEeb(S(f)), 

E~(S(g)) < cE4,(g*), 

a n d  b y  T h e o r e m  2 a p p l i e d  to  the  f u n c t i o n  7*( t )=  q~(t+), a n d  s e q u e n c e s  (d,  2) a n d  
(e~) we ge t  

Ecb(S(f))<cEq~(S(g)). Q . E . D .  

References 

1. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19-42 (1973) 
2. Kwapiefl, S., Woyczyflski, W.A.: Semimartingale integrals via decoupling inequalities and tangent 

processes. Case Western Reserve University, preprint, (1986) 
3. McConnell, T., Taqqu, M.: Double integration with respect to symmetric stable processes. Preprint 
4. Seminar notes on multiple stochastic integration, polynomial chaos and their applications. Case 

Western Reserve University, preprint (1985) 
5. Zinn, J.: Comparison of martingale difference sequences. In: Beck, A., Dudley, R., Hahn, M., 

Kuelbs, J., Marcus, M. (eds.). Probability in Banach spaces V. (Lect. Notes Math., vol. 1153, 
pp. 453-457.) Berlin Heidelberg New York: Springer 1985 

Received November 3, 1986; received in revised form December 9, 1987 


