(C) Springer-Verlag 1988

Comparison of Moments for Tangent Sequences of Random Variables

Paweł Hitczenko
Department of Statistics, Academy of Physical Education, Warsaw, Poland

> Summary. It is shown that for all tangent sequences $\left(d_{n}\right)$ and $\left(e_{n}\right)$ of nonnegative or conditionally symmetric random variables and for every function Φ satisfying the growth condition $\Phi(2 x) \leqq \alpha \Phi(x)$ the following inequality holds: $E \Phi\left(\sup _{n}\left|\sum_{k=1}^{n} d_{k}\right|\right) \leqq c E \Phi\left(\sup _{n}\left|\sum_{k=1}^{n} e_{k}\right|\right)$. This generalizes results of J. Zinn and proves a conjecture of S. Kwapień and W.A. Woyczyński.

The aim of this paper is to prove the following conjecture of S. Kwapien and W.A. Woyczyński [2, Conjecture 2.1].

Let $\Phi: R_{+} \rightarrow R_{+}$be an increasing continuous function satisfying the A_{2}-condition (i.e., $\Phi(2 x) \leqq \alpha \Phi(x), x \geqq 0$) and such that $\Phi(0)=0$. Then, there exists a constant c (depending only on Φ) such that for all sequences $\left(d_{n}\right)$ and $\left(e_{n}\right)$ of adapted random variables with identical conditional distributions which are either non-negative or conditionally symmetric we have:

$$
\begin{equation*}
E \Phi\left(\sup _{n}\left|\sum_{k=1}^{n} d_{k}\right|\right) \leqq c E \Phi\left(\sup _{n}\left|\sum_{k=1}^{n} e_{k}\right|\right) . \tag{1}
\end{equation*}
$$

Such "decoupling" inequalities have been introduced in [3] as a tool in the study of multiple stochastic integrals and have been extended by several authors [4]. For example for $\Phi(x)=|x|^{p}, 0<p<1$ inequality (1) was obtained by J. Zinn [4] or [5].

Our proof is based on the techniques of D.L. Burkholder [1]. We shall use the following notation. Let (Ω, \mathscr{F}, P) be a probability space and let $\mathscr{F}_{0} \subset \mathscr{F}_{1} \subset \ldots$ be an ascending sequence of sub- σ-fields of \mathscr{F}. A sequence $\left(d_{n}\right)$ of random variables on (Ω, \mathscr{F}, P) is adapted if d_{n} is \mathscr{F}_{n}-measurable $n=1,2, \ldots$ As usual d^{*} stands for $\sup _{n}\left|d_{n}\right|, d_{n}^{*}=\max _{k \leqq n}\left|d_{k}\right|$ and if $f_{n}=d_{1}+\ldots+d_{n}$ then $S(f)$ $=\left(\sum_{k=1}^{\infty} d^{2}{ }_{k}\right)^{\frac{1}{2}}$. If $\left(d_{n}\right)$ and $\left(e_{n}\right)$ are adapted sequences of random variables, then $\left(e_{n}\right)$ is said to be tangent to $\left(d_{n}\right)$ if for each real number x we have that $P\left(d_{n}\right.$
$\left.>x \mid \mathscr{F}_{n-1}\right)=P\left(e_{n}>x \mid \mathscr{F}_{n-1}\right)$ a.s., $n=1,2, \ldots$ A sequence $\left(d_{n}\right)$ is conditionally symmetric if $\left(-d_{n}\right)$ is tangent to $\left(d_{n}\right)$. The letter c is used to denote a positive real number, not necessarily the same from one use to the next.

We begin with the following lemma (for a different proof with constant 6 instead of 2 see [2, Corollary 2.1]).
Lemma 1. Assume that $A_{n}, B_{n} \in \mathscr{F}_{n}, n=1,2, \ldots$ and that there exists a positive number c such that $P\left(A_{n} \mid \mathscr{F}_{n-1}\right) \leqq c P\left(B_{n} \mid \mathscr{F}_{n-1}\right), n=1,2, \ldots$. Then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leqq(c+1) P\left(\bigcup_{n=1}^{\infty} B_{n}\right)
$$

In particular, if $P\left(A_{n} \mid \mathscr{F}_{n-1}\right)=P\left(B_{n} \mid \mathscr{F}_{n-1}\right) n=1,2, \ldots$ then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leqq 2 P\left(\bigcup_{n=1}^{\infty} B_{n}\right) .
$$

Proof. Let $C_{1}=A_{1}, D_{1}=B_{1}, C_{n}=B_{1}^{c} \cap \ldots \cap B_{n-1}^{c} \cap A_{n}, D_{n}=B_{1}^{c} \cap \ldots \cap B_{n-1}^{c} \cap B_{n}$, $n=2,3, \ldots$ where A^{c} denotes the complement of A. Then $D_{n}, n=1,2, \ldots$ are disjoint and $\bigcup_{n=1}^{\infty} D_{n}=\bigcup_{n=1}^{\infty} B_{n}$.

$$
\begin{aligned}
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) & =P\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcup_{n=1}^{\infty} B_{n}\right)+P\left(\bigcup_{n=1}^{\infty} A_{n} \cap\left(\bigcup_{n=1}^{\infty} B_{n}\right)^{c}\right) \\
& \leqq P\left(\bigcup_{n=1}^{\infty} B_{n}\right)+P\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{\infty} B_{n}^{c}\right) .
\end{aligned}
$$

The second term on the right-hand side can be estimated from above as follows:

$$
\begin{aligned}
& P\left(\bigcup_{n=1}^{\infty} A_{n} \cap \bigcup_{n=1}^{\infty} B_{n}^{c}\right) \leqq P\left(\bigcup_{n=1}^{\infty}\left(A_{n} \cap \bigcap_{k=1}^{n-1} B_{k}^{c}\right)\right)=P\left(\bigcup_{n=1}^{\infty} C_{n}\right) \\
& \quad=P\left(\sum_{n=1}^{\infty} I\left(C_{n}\right) \geqq 1\right) \leqq E \sum_{n=1}^{\infty} I\left(C_{n}\right)=E \sum_{n=1}^{\infty} E\left(I\left(C_{n}\right) \mid \mathscr{F}_{n-1}\right) \\
& \quad=E \sum_{n=1}^{\infty} E I\left(B_{1}^{c} \cap \ldots \cap B_{n-1}^{c}\right) \cdot P\left(A_{n} \mid \mathscr{F}_{n-1}\right) \\
& \quad \leqq c E \sum_{n=1}^{\infty} E I\left(B_{1}^{c} \cap \ldots \cap B_{n-1}^{c}\right) \cdot P\left(B_{n} \mid \mathscr{F}_{n-1}\right) \\
& \quad=c E \sum_{n=1}^{\infty} I\left(D_{n}\right)=c \sum_{n=1}^{\infty} P\left(D_{n}\right)=c P\left(\bigcup_{n=1}^{\infty} D_{n}\right)=c P\left(\bigcup_{n=1}^{\infty} B_{n}\right) .
\end{aligned}
$$

Thus

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leqq(1+c) \cdot P\left(\bigcup_{n=1}^{\infty} B_{n}\right) \cdot \quad \text { Q.E.D. }
$$

Now, we are going to prove inequality (1) for nonnegative random variables. The case of conditionally symmetric random variables will be obtained as a corollary to the nonnegative case.

Theorem 2. Let Φ be as above. Then there exists a positive constant c (depending only on Φ) such that for all tangent sequences $\left(d_{n}\right)$ and $\left(e_{n}\right)$ of nonnegative random variables one has:

$$
E \Phi\left(\sum_{n=1}^{\infty} d_{n}\right) \leqq c E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right) .
$$

Proof. Let $\Phi,\left(d_{n}\right)$ and $\left(e_{n}\right)$ satisfy the required conditions. Put

$$
\begin{aligned}
& z_{n}=d_{n-1}^{*} \vee e_{n-1}^{*} \\
& a_{n}=d_{n} I\left(d_{n} \leqq 2 z_{n}\right) \\
& b_{n}=d_{n} I\left(d_{n}>2 z_{n}\right) \\
& x_{n}=e_{n} I\left(e_{n} \leqq 2 z_{n}\right) \quad n=1,2, \ldots .
\end{aligned}
$$

Then

$$
E \Phi\left(\sum_{n=1}^{\infty} d_{n}\right) \leqq c E \Phi\left(\sum_{n=1}^{\infty} a_{n}\right)+c E \Phi\left(\sum_{n=1}^{\infty} b_{n}\right) .
$$

To estimate the second term on the right-hand side observe that on the set $\left\{d_{n}>2 z_{n}\right\}$

$$
d_{n}+2 z_{n} \leqq 2 d_{n} \leqq 2 z_{n+1}
$$

hence

$$
b_{n} \leqq 2\left(z_{n+1}-z_{n}\right)
$$

and

$$
\sum_{n=1}^{\infty} b_{n} \leqq 2 z^{*} \leqq 2\left(d^{*} \vee e^{*}\right)
$$

Consequently,

$$
E \Phi\left(\sum_{n=1}^{\infty} b_{n}\right) \leqq c E \Phi\left(d^{*} \vee e^{*}\right) \leqq c E \Phi\left(d^{*}\right)+c E \Phi\left(e^{*}\right) .
$$

The quantity $E \Phi\left(\sum_{n=1}^{\infty} a_{n}\right)$ can be estimated in the following way: let $\delta>0, \beta>1$ $+\delta$. For a positive number λ define the stopping times μ, v and τ as follows:

$$
\begin{aligned}
& \mu=\inf \left\{n: \sum_{k=1}^{n} a_{k}>\lambda\right\}, \\
& \nu=\inf \left\{n: \sum_{k=1}^{n} a_{k}>\beta \lambda\right\}, \\
& \tau=\inf \left\{n: \sum_{k=1}^{n} x_{k}>\delta \lambda \text { or } z_{n+1}>\delta \lambda\right\} .
\end{aligned}
$$

If $v_{k}=I(\mu<k \leqq v \wedge \tau)$ then v_{k} is \mathscr{F}_{k-1}-measurable, $k=1,2, \ldots$. Note that

$$
\{\tau \geqq k\} \subset\left\{z_{k} \leqq \delta \lambda, \sum_{j=1}^{k-1} x_{j} \leqq \delta \lambda\right\}
$$

Since $z_{k} \leqq \delta \lambda \Rightarrow x_{k} \leqq 2 \delta \lambda$, we have

$$
\sum_{n=1}^{\infty} v_{n} x_{n} \leqq 3 \delta \lambda I(\mu<\infty)=3 \delta \lambda I\left(\sum_{n=1}^{\infty} a_{n}>\lambda\right\} .
$$

On $\{\nu<\infty, \tau=\infty\}$, since $a_{\mu} \leqq d_{\mu} \leqq \delta \lambda$ we have

$$
\sum_{k=1}^{v} a_{k}>\beta \lambda \quad \text { and } \quad \sum_{k=1}^{\infty} v_{k} a_{k}=\sum_{k=1}^{v} a_{k}-\sum_{k=1}^{\mu-1} a_{k}-a_{\mu}>\beta \lambda-\lambda-\delta \lambda .
$$

Therefore

$$
\begin{aligned}
& P\left(\sum_{n=1}^{\infty} a_{n}>\beta \lambda,\left(\sum_{n=1}^{\infty} x_{n}\right) \vee z^{*} \leqq \delta \lambda\right) \\
& \quad \leqq P\left(\sum_{n=1}^{\infty} v_{n} a_{n}>(\beta-1-\delta) \lambda\right) \\
& \quad \leqq \frac{1}{(\beta-1-\delta) \lambda} E \sum_{n=1}^{\infty} v_{n} a_{n}=\frac{1}{(\beta-1-\delta) \lambda} E \sum_{n=1}^{\infty} v_{n} E\left(a_{n} \mid \mathscr{F}_{n-1}\right) \\
& \quad=\frac{1}{(\beta-1-\delta) \lambda} E \sum_{n=1}^{\infty} v_{n} E\left(x_{n} \mid \mathscr{F}_{n-1}\right) \\
& \quad=\frac{1}{(\beta-1-\delta) \lambda} E \sum_{n=1}^{\infty} v_{n} x_{n} \leqq \frac{3 \delta}{\beta-1-\delta} P\left(\sum_{n=1}^{\infty} a_{n}>\lambda\right) .
\end{aligned}
$$

By Lemma 7.1 of [1] we obtain

$$
\begin{aligned}
E \Phi\left(\sum_{n=1}^{\infty} a_{n}\right) & \leqq c E \Phi\left(\sum_{n=1}^{\infty} x_{n}\right)+c E \Phi\left(z^{*}\right) \\
& \leqq c E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right)+c E \Phi\left(d^{*}\right)+c E \Phi\left(e^{*}\right) .
\end{aligned}
$$

Consequently

$$
E \Phi\left(\sum_{n=1}^{\infty} d_{n}\right) \leqq c E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right)+c E \Phi\left(d^{*}\right)+c E \Phi\left(e^{*}\right)
$$

By Lemma 1 applied to the sets $A_{n}=\left\{d_{n}>t\right\}, B_{n}=\left\{e_{n}>t\right\}, n=1,2, \ldots$ we infer that for each positive number t

$$
P\left(d^{*}>t\right) \leqq 2 P\left(e^{*}>t\right)
$$

hence

$$
E \Phi\left(d^{*}\right) \leqq c E \Phi\left(e^{*}\right)
$$

and finally

$$
E \Phi\left(\sum_{n=1}^{\infty} d_{n}\right) \leqq c E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right)+c E \Phi\left(e^{*}\right) \leqq c E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right)
$$

which completes the proof.
Remark 3. For functions $\Phi(x)=|x|^{p}, 0<p<1$ Theorem 2 has been obtained by J. Zinn [5, Theorem 1.4(ii)] under the assumption that

$$
\forall t>0 \quad \sum_{n=1}^{\infty} E\left(d_{n} \wedge t \mid \mathscr{F}_{n-1}\right) \leqq \sum_{n=1}^{\infty} E\left(e_{n} \wedge t \mid \mathscr{F}_{n-1}\right)
$$

which is weaker than ours. We would like to indicate another proof of this result briefly; which also allows us to replace concave powers by any concave function Φ. As was observed by D.L. Burkholder [1, the proof of Theorem 20.1], in order to prove that

$$
E \Phi(X) \leqq c E \Phi(Y)
$$

for concave function Φ and nonnegative random variables X and Y, it suffices to show that for each positive number t, one has

$$
E X \wedge t \leqq c E Y \wedge t
$$

Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be adapted sequences of nonnegative random variables such that $y_{n} \leqq 1, n=1,2, \ldots$ and

$$
\sum_{n=1}^{\infty} E\left(x_{n} \mid \mathscr{F}_{n-1}\right) \leqq \sum_{n=1}^{\infty} E\left(y_{n} \mid \mathscr{F}_{n-1}\right)
$$

Then, by [1, Theorem 20.1] and our assumption

$$
\begin{aligned}
E\left(\sum_{n=1}^{\infty} x_{n}\right) \wedge & 1 \leqq 2 E\left(\sum_{n=1}^{\infty} E\left(x_{n} \mid \mathscr{F}_{n-1}\right)\right) \wedge 1 \\
& \leqq 2 E\left(\sum_{n=1}^{\infty} E\left(y_{n} \mid \mathscr{F}_{n-1}\right)\right) \wedge 1,
\end{aligned}
$$

and if $\tau=\inf \left\{n: \sum_{k=1}^{n} y_{k}>1\right\}$, then

$$
\begin{aligned}
& E\left(\sum_{n=1}^{\infty} E\left(y_{n} \mid \mathscr{F}_{n-1}\right)\right) \wedge 1 \\
& \leqq E \sum_{n=1}^{\tau} E\left(y_{n} \mid \mathscr{F}_{n-1}\right)+P(\tau<\infty)=E \sum_{n=1}^{\tau} y_{n}+P(\tau<\infty) \\
&
\end{aligned}
$$

Hence

$$
E\left(\sum_{n=1}^{\infty} x_{n}\right) \wedge 1 \leqq 6 E\left(\sum_{n=1}^{\infty} y_{n}\right) \wedge 1
$$

Now, an application of the above inequality to the sequences $x_{n}=\frac{d_{n}}{t} \wedge 1$ and $y_{n}=\frac{e_{n}}{t} \wedge 1$ yields

$$
E \Phi\left(\sum_{n=1}^{\infty} d_{n}\right) \leqq 6 E \Phi\left(\sum_{n=1}^{\infty} e_{n}\right)
$$

as required.
Now we turn our attention to the case of conditionally symmetric random variables. The following theorem is a simple corollary to the proof of the twosided convex function inequality between the square function and the maximal function of a martingale [1, the proof of Theorem 15.1]. We include the proof for the sake of completeness. Recall that if Φ is an increasing, continuous function satisfying Δ_{2}-condition and $\Phi(0)=0$, then there exists a constant c such that for every martingale $\left(f_{n}\right)$ with difference sequence $\left(d_{n}\right)$ such that $\left|d_{n}\right| \leqq w_{n}$, where w_{n} is \mathscr{F}_{n-1}-measurable, $n=1,2, \ldots$ the following inequalities hold:

$$
\begin{equation*}
E \Phi\left(f^{*}\right) \leqq c E \Phi(S(f))+c E \Phi\left(w^{*}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E \Phi(S(f)) \leqq c E \Phi\left(f^{*}\right)+c E \Phi\left(w^{*}\right) \tag{3}
\end{equation*}
$$

(see Sect. 12 of [1]).
Theorem 4. Let Φ be as in Theorem 2. Then there exists a constant c (depending only on Φ) such that for every adapted and conditionally symmetric sequence $\left(d_{n}\right)$ the following inequality holds:

$$
c^{-1} E \Phi(S(f)) \leqq E \Phi\left(f^{*}\right) \leqq c E \Phi(S(f))
$$

where $f_{n}=d_{1}+\ldots+d_{n}, n=1,2, \ldots$.

Proof. Let $\left(d_{n}\right)$ be a conditionally symmetric sequence and $f_{n}=d_{1}+\ldots+d_{n}, n$ $=1,2, \ldots$. Following Burkholder [1, the proof of Theorem 15.1] write

$$
f_{n}=g_{n}+h_{n}
$$

where

$$
\begin{aligned}
& g_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} d_{k} I\left(\left|d_{k}\right| \leqq 2 d_{k-1}^{*}\right), \\
& h_{n}=\sum_{k=1}^{n} b_{k}=\sum_{k=1}^{n} d_{k} I\left(\left|d_{k}\right|>2 d_{k-1}^{*}\right) .
\end{aligned}
$$

Then

$$
\begin{align*}
& f^{*} \leqq g^{*}+h^{*} \leqq g^{*}+\sum_{n=1}^{\infty}\left|b_{n}\right| \tag{4}\\
& S(g) \leqq S(f)+S(h) \leqq S(f)+\sum_{n=1}^{\infty}\left|b_{n}\right| \tag{5}
\end{align*}
$$

and

$$
E \Phi\left(f^{*}\right) \leqq c E \Phi\left(g^{*}\right)+c E \Phi\left(\sum_{n=1}^{\infty}\left|b_{n}\right|\right)
$$

Applying inequality (2) to the martingale $\left(g_{n}\right)$ and using (5) we get

$$
\begin{aligned}
E \Phi\left(g^{*}\right) & \leqq c E \Phi(S(g))+c E \Phi\left(2 d^{*}\right) \\
& \leqq c E \Phi(S(f))+c E \Phi\left(\sum_{n=1}^{\infty}\left|b_{n}\right|\right)+c E \Phi\left(d^{*}\right) .
\end{aligned}
$$

Since $d^{*} \leqq S(f)$ and $\sum_{n=1}^{\infty}\left|b_{n}\right| \leqq 2 d^{*} \leqq 2 S(f)$ we conclude that

$$
E \Phi\left(f^{*}\right) \leqq c E \Phi(S(f))
$$

The proof of the reverse inequality is the same: use $S(f) \leqq S(g)+\sum_{n=1}^{\infty}\left|b_{n}\right|$ instead of (4), $g^{*} \leqq f^{*}+\sum_{n=1}^{\infty}\left|b_{n}\right|$ instead of (5) and (3) instead of (2). Q.E.D.

Corollary 5. Let Φ be as in Theorem 4. Then there exists a positive number c (depending only on Φ) such that for all tangent and conditionally symmetric sequences $\left(d_{n}\right)$ and $\left(e_{n}\right)$ we have that

$$
E \Phi\left(f^{*}\right) \leqq c E \Phi\left(g^{*}\right)
$$

where $f_{n}=d_{1}+\ldots+d_{n}$ and $g_{n}=e_{1}+\ldots+e_{n}, n=1,2, \ldots$.

Proof. By Theorem 4 we have

$$
\begin{gathered}
E \Phi\left(f^{*}\right) \leqq c E \Phi(S(f)), \\
E \Phi(S(g)) \leqq c E \Phi\left(g^{*}\right)
\end{gathered}
$$

and by Theorem 2 applied to the function $\Psi(t)=\Phi\left(t^{\frac{1}{2}}\right)$, and sequences $\left(d_{n}^{2}\right)$ and $\left(e_{n}^{2}\right)$ we get

$$
E \Phi(S(f)) \leqq c E \Phi(S(g)) . \quad \text { Q.E.D. }
$$

References

1. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19-42 (1973)
2. Kwapien, S., Woyczyński, W.A.: Semimartingale integrals via decoupling inequalities and tangent processes. Case Western Reserve University, preprint, (1986)
3. McConnell, T., Taqqu, M.: Double integration with respect to symmetric stable processes. Preprint
4. Seminar notes on multiple stochastic integration, polynomial chaos and their applications. Case Western Reserve University, preprint (1985)
5. Zinn, J.: Comparison of martingale difference sequences. In: Beck, A., Dudley, R., Hahn, M., Kuelbs, J., Marcus, M. (eds.). Probability in Banach spaces V. (Lect. Notes Math., vol. 1153, pp. 453-457.) Berlin Heidelberg New York: Springer 1985

Received November 3, 1986; received in revised form December 9, 1987

