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The It6 Formula for Antieipative Processes 
with Nonmonotonous Time Scale via the Malliavin Calculus 

A.S. Ustunel 
2, Bd. Auguste Blanqui, F-75013 Paris, France 

Summary. This work is devoted to derive It6-type formulae for anticipative 
stochastic processes with nonmonotonous time using the Malliavin Calculus 
techniques and the fundamental theorem of the differential calculus. The 
same method is applied also to give an It6-Ventcell type formula in the 
anticipative case. 

Introduction 

Suppose that F is a smooth function on 1R" and (Wt) is a standard lR"-valued 
Wiener process. The It6 formula says that (F(W~); te l0,  1]) is a semimartingale 
(more precisely an It6 process) with the following decomposition: 

F(Wt)=F(Wo)+ i OiF(Ws)dW~i+(1/2) i AF(W,)ds. 
0 0 

On the other hand, if ~o is a smooth Wiener functional with zero expectation, 
the Clark-It6 representation theorem gives ~o as 

1 

0 

where Vqo is the Sobolev derivative of q) on the canonical Wiener space (cf. 
[18]), so it is a random variable with values in the Cameron-Martin space 
of absolutely continuous functions with square integrable density with respect 
to the Lebesgue measure on [-0, 1] denoted by H, and the Lebesgue density 
of V~o is denoted by ~Tq~. E[.]~--J denotes the conditional expectation with 
respect to the data of the Wiener paths upto the time s. Now, if we look at 
F(Wt) as an element of L 2, denoting by ( . , . )  the duality form, we have 

(F(Wt) , qo) = (F(Wo), p) + i @iF(VV~), ~Tqo(s)) ds 
0 

+(1/2) i (AF(W,),  cp) ds. 
0 
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This means that the mapping t ~  (F(Wt), (p) is absolutely continuous with 
respect to the Lebesgue measure and the corresponding density is 

~, @i F (Ws), x2i~o (s)) + (1/2) ( A  F(W~), ~o) 
i 

which is defined ds-almost everywhere. There is no reason for not proceeding 
in the reverse order to prove the It6 formula: What  we need is to calculate 
the Lebesgue density of t ~  (F(W~), (p) for any test function ~o, then to use 
the identity 

(F(W,), q,) = (f(Wo),  ~o) + 5 ( F ( ~ ) ,  q,) ds 
0 

and identify the integral with the help of the Clark-It6 representation and the 
Fubini theorems. This work is devoted to the applications of the idea explained 
above with the following generalizations: Instead of the Wiener process we 
take an It6 process. When we make the calculations explained above, since 
the Clark-It6 Representation Theorem is a consequence of the integration by 
parts formula on the Wiener space, for which the adaptedness condition is 
superfluous (cf. [-5, 18, 21]), we realize that we can supress it. In this case the 
natural extension of the It6 integral which is most compatible with the Malliavin 
calculus formalism is the divergence operator  and it was shown in [-3] that 
it coincides with the Skorohod integral on a reasonable domain. Consequently, 
we take an It6 process with a Skorohod integral part, an absolutely continuous 
part and an initial condition, neither being adapted. 

If one can achieve the project explained above, since he would be working 
in a frame in which the orientation of time is not important,  he may ask himself 
if the ordinary time scale can be replaced such that each coordinate of the 
above process depends on a clock Oi(t ), where 0i is a Cl-function from [-0, 1] 
into itself. These kinds of problems are encountered in random differential geom- 
etry (cf. [-1, 19]) when one constructs stochastic integrals indexed by the chains. 
This problem is solved in Sect. III of this work. 

In all these situations, in order to calculate the Lebesgue densities, we have 
proceeded by calculating the pointwise derivatives, however, as the reader will 
realize, this is not sufficient to use the Fundamental  Theorem of the Differential 
Calculus, in fact we also need the derivative to be continuous. In order to 
circumvent this difficulty we use the nice technique of P. Malliavin called redefini- 
tion, which consists of taking the conditional expectations on a smooth basis 
of the Cameron-Mart in space and applying to them the finite dimensional Sobo- 
lev injection theorems (cf. [7]). For  the same reason, we use a class of test 
functionals which is smaller than that of S. Watanabe, which we have constructed 
with the redefinition technique. 

Let us explain the order of the sections. Having recalled some elementary 
results about  the Malliavin calculus and the distributions on the classical Wiener 
space, we prove the It6 formula for the anticipative It6 processes with the ordi- 
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nary time scale in the Sect. II. Section III is devoted to the proof of the It6 
formula for anticipative It6 processes with a nonmonotonous,  differentiable time 
scale. In Sect. IV we prove an It6 type formula for a random field F(x, co) 
when we replace x with an anticipating It6 process and, as shown in the example 
of application, this result covers the results of Hitsuda also (cf. [4]). 

We think that the method used here to prove all these formulae will be 
useful for studying the higher dimensional random fields, since one can now 
profit from the tools of the classical differential geometry thanks to the redefini- 
tion technique. Let us note that we already have applied this method and the 
results of Sects. III and IV to study the anticipative stochastic differential equa- 
tions and the filtering of the diffusion processes (cf. [20]). 

The results of the Sect. II have been announced as a note in CRAS (cf. 
[19]) and at that time we learned that a similar result had also been found 
by Nualart-Pardoux (cf. [9]). In fact A. Badrikian has let us know that the 
formula (II.2) was going back to the work of Sevljakov in 1981 (cf. [13]) which 
is reproved in [12]. We also acknowledge that this work has profited from 
the constructive remarks of an anonymous referee. 

I. Preliminaries and Notations 

~2 denotes the classical Wiener space C([0, 1], lRa), H is the Cameron-Martin 
space, i.e., the set of absolutely continuous functions on [0, 1] with values in 
IR d, having square integrable densities with respect to the Lebesgue measure 
on [0, 1] and # is the standard Wiener measure on ~2 for which H is the reproduc- 
ing kernel Hilbert space. We denote by (4 ;  ts[0,  1]) the canonical increasing 
family of the sigma-algebras on f2, completed with respect to the Wiener measure 
#. The infinitesimal generator of the O-valued Ornstein-Uhlenbeck process is 
denoted by A (cf. [21]). If M is a separable Hilbert space, Dp.k(M), pe(1, oo), 
kE~, denotes the Banach space which is the completion of the M-valued polyno- 
mials on f2 with respect to the following norm: 

II ~ II ~ , ~ ( ~ )  = II (I -- A) k/2 t 1 II L~ (~; ~ )  

where ( I -  A)'t/is defined coordinatewise. D (M) is defined as the projective limit 
of the spaces (Dp,k(M); pE(1, oo), k~2g) and its continuous dual is denoted by 

D'(M) .  Let us note that if M = I R  we shall simply write Dp,k, D, D' instead 
of Dp, k(]R), D(IR), D'(~). 

If K~D(H),  we denote by btK the divergence operator applied to the H- 
valued random variable whose density with respect to the Lebesgue measure 
is defined by lto,tl(s)/( s where/'(s is the density of K. Recall that in the contexte 
of the Malliavin Calculus the divergence is defined as the adjoint of the Sobolev 
derivative in the direction of H (cf. [5, 21]) and if the above densities are adopted 
to the filtration (4 ;  t~[0, 1]) then it coincides with the classical It6 integral 
of K and in the general case Gaveau-Trauber have proved that (cf. [3]) it 
coincides with the Skorohod integral on D2, I(H) (cf. [15] for a general definition 
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t 
of this integral). Consequently ,StK will also be denoted as j" Rs,SW~ with the 

o 
integral notat ion.  For  the extension of the above results to the space of the 
distributions D' we refer reader [16-18]. 

II. A Short Proof of the It6 Formula for Anticipative Processes 

We call an anticipative It5 process a stochastic process (Xt) with values in 
IR '~ such that 

X ,  = (X: ,  . . . ,  XT), 
where 

t t 

i i I i ~ a [ t V s q _ f  Csds  Xt  = Xo  + ~i 
0 0 

and K ~ denotes the H-valued random variable whose density with respect to 
the Lebesgue measure on [0, 1] is/s (it takes its values in lRd). First we shall 
suppose that K i are in D(H), X~ are in D and ~i are in D(H([0, 1], IR)) for 
i=1 ,  ..., m. 

Let (h,) be a complete, or thonormal  basis in H whose elements are (the 
restrictions of) smooth functions on [0, 1], and (k,) be a basis of H([0, 1], IR) 
consisting also of smooth functions. Denote by V, the sigma-algebra generated 
by (h~ . . . .  , h,), n__> 1, where h i is regarded as the Gaussian random variable 

1 
li~(s), el W~(x) = h, (x)  = (h,, x), 

0 
XE(2. 

Look at E[XolV,] :  F rom Doob's  Lemma, it can be written as 
f , ( (h , ,  x) . . . .  , (h,, x)) where f ,  is a Borel measurable function from IR" into IR", 
and, since X~ is in D for all i=  1 . . . . .  m, using the finite dimensional Sobolev 
injection theorems, we can take f ,  in C~176 ", IR") by modifying it on a set 
of Lebesgue measure zero. This procedure will be denoted by E [ X o l V , ]  and 
it is called redefinition by P. Malliavin (cf. [7]). For  the notational convenience 
we will denote it by X~. We shall also redefine K r and {i in the following 
manner: 

"'~ - ~, E [(K ~, h j)[ V.] h j, K~ - 
j = l  

n 

j = l  

and let us define X t as 

n,i "n,i (~Vs_~_ f "n,i X t = X ~ ' i + i K s  ~s ds, 
0 0 

i=1 ,  ..., m. 
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Proposition II.1. Let F be 
then have 

a C2-function on IR m with bounded derivatives. We 

~ F ( X s ) K s  5Ws+ ~?~F(Xs)r s" ds  
0 0 

n "n,i  " n , j  "n,i  + i OuF(Xs)[(1/Z)(Ks , Ks )+(Ks  , VX~'J(s)) 
0 

\ 0 0 

(II.1) 

almost surely, for any te  [-0, 1], where we used the usual summation convention. 

Proof. We shall give a proof  for d = 1 for the notational simplicity. In this case 
X7 is written as 

0 0 

and the orthonormal  sequences (k j) and (h~) can be taken as identical. In the 
sequel of the proof, for typographical reasons, we shall drop the index n. 

Using the Taylor formula, we have 

F (X,  + h) -- F (Xt) = F' (Xt) (Xt + h -- Xt) + (1/2) F" :X  t t+a( t ,  t + h ) X t + a ) ( X , + h - X , )  z 

where a comes from Rolle's Theorem. 
Let us denote by D o the algebra generated by the following set: 

{E [cp[ Vk]; qo eD, k eN }  

where E[-IVk] denotes as before the redefined conditional expectation with 
respect to the sigma-algebra Vk. From the convergence of the martingales and 
the commutat ion relations between E [.  [G] and the Ornstein-Uhlenbeck opera- 
tor A, it is easy to see that Do is a dense subset of D. Consequently, it is 
sufficient to prove the formula (ILl) on the test functions belonging to D o since 
the both sides of it are already in L 2 (/~). To achieve this we shall calculate 

d 

using the second order development that we have written above" 

(hF,(Xt)(X~+h_XO ' @ 1 = ~ E(F' (Xt)(6t +hK -- 5t K + ~t +h-- ~t)r 
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t 

where i t =  ~ ~sds. Using the very definition of the divergence operator, we 

obtain: o 

1 
E(F' (Xt)(bt +hK-  (StK) qo) = ~ E 

t + h  

I I(~7[F'(X,)(p](s) ds 
t 

1 t+h 
= ~ ~ ~ K~ IF" (X,) ~ ('(TXo (s) ~- ~ ~, K (s) + ~ ~(s)) 

t 

+ F' (Xt) ~7 0 (s)] d s, 

using the commutat ion relations between the divergence operator  and the Sobo- 
lev derivative (cf. [10, 18]) we find that the above expression is equal to 

1 E  ~ (pI(~F"(Xt) ~TXo(s)+ ~7I(~(s)bW~+ ~7~(s)dr ds 
h ~ o o 

1 t + h  

+~F. ~ GF'(X~)~p(s)ds, 

whose limit is obvious when h goes to zero. Let us look at the terms of the 
second order: First, since F is C 3, then the term F'(Xt+aXt+h) is strongly 
Sobolev differentiable, 

(l/h) E [F" (X, + a X~ + h)(X~ +n-- X,) 2 ~o3 

-~ (l/h) E [F"(X t + a X t + h ) ( ~ ) t + h K  - -  (~tK) 2 qO] 

= (l/h) ( V  [F"(X~ + aX, +h) q~ ~f+hK], K~,+h) 

=(1/h)(q~(~t+hK VF"(Xt+aXt+h)-l- F'(Xt+aXt+h) V((p6t,+hK), Ktt+h) 

where b~+hK denotes 6t+nK-6tK, Ktt+h is the element of D(H) whose density 
is equal to 1Et,~+hl(S)Ii;~, "~-- " means equality when h goes to zero and ( - , . )  
denotes the duality between D'(H) and D(H) (we shall use the same duality 
bracket for the case / - /=  R but this does not create any confusion). It is evident 
that the term 

(l/h) (F"  (X t + aXt+h) V(q) 6tt+hK), K~t+h) -* (F"(Xt) I(22~, qo) 

when h goes to zero and we have also 

(l/h) ((p 6~+aK VF"(Xt + aXt+h), Ktt+h) --> 0 

as h goes to zero. 
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We have finally proved that  

d 
d~- <F(X,), ~o) = (K, F'(X3, 9'~o(t)) + <~, F'(X3, ~o> 

( I + F"(XOR~ ~TXo(t)+(1/2)I(,+ S VK~(t)bW~ 
0 

for any q)~D o. Now let us recall that, thanks to the redefinitions made above, 
this derivative is continuous with respect to the parameter  t (it would have 
been C ~176 if we had chosen F to be C~), hence we can apply the fundamental  
theorem of the differential calculus: 

t 

(F(X~), ~o)= (F(Xo), q,)+ S d o ds (F(Xs)' q~) ds 

and the only term to calculate is the first term in the derivative: 

(K~F" '(X~),'(7(p(s)) ds=E KsF'(X~)~7~o(s)ds 
0 0 

(i } = 1Lo,t~(s)KsF (Xs)ds, Vq) 

= @ ( i  lE~ (Xs)ds), (p) 

since 3 is the adjoint of V. For  the other terms the calculations are evident 
and a limit procedure to pass from C 3 to C 2 completes the proof. Q.E.D. 

Remark. With the notations of the above proof  and under the same hypothesis, 
we have 

E[ sup  IX, lq < + oo 
t 

for any p < oo, consequently, even if F"  is not bounded but of polynomial  growth 
the argument  that we have used to show that the term of the Taylor  formula 
corresponding t o  '(7[F"(Xt+aXt+h)](s ) does not contribute to the limit still 
holds and this fact will be used in the proof  of the Theorem II.1. 
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Proposition II.2. Under the hypothesis of the Proposition ILl,  we have, for any 
t~[0, 1L 

t 

F(Xt) = F(Xo) + ~ 0~ F(X~) I(~ 6 W~ + f 0, F(X,) ~ ds 
0 0 

[ + ~ 0,j F (Xs) (R~, (1/2) K~ + VX{ (s) + f V ~(s) d r 
0 0 

+ ~ ~7R](s)6W~ ds (11.2) 
0 

#-almost surely. 

Proof As in the preceeding proposition we shall work in the one dimensional 
case: First let us note that each term of the formula (II.2) is well defined. For 
example: 

s 2 

<=c E s]2 ds E ~7Is ) ds 

i l l  I vv ) )  <cllKI/~,~o<m g ~ f l~7R~(s)l~dr+ ~72R.(s,u)~eR.(s,r)drdu ds 
�9 \ 0 \ 0  0 0 

~c '  IlK 2 2 - IlD=.oCm [lIgllD=,,~m + Ilgll2=.~m] 

using the equivalence of the norms defined by ( - A )  1/2 and V (i.e., the inequalities 
of Meyer, cf. [17, 21]), where c and c' are two constants independent of X, 
K and 4. Furthermore, by hypothesis and the continuity of the divergence and 
Lebesgue integral as mappings from D(H) into D we see that X~' converge to 
X t in D for any t hence F(X~), F'(X~), F"(X~) converge respectively to F(Xt), 
F'(Xt), F"(Xt) in all the L p spaces for p <  oo and te[0,  1]. Hence all the terms 
can be controlled with the following quantities: 

consequently we can use the usual limiting procedure. Q.E.D. 

In fact, in the proof of the above proposition we have made a little bit 
better: 

Proposition II.3. Suppose that F is a twice differentiable function with bounded 
derivatives and that Xio~D2,1, KiED2,2(H), ~i~D2,1(H([0, 1], ]Rm)), then the for- 
mula (II.2) still holds and its terms are in D2,o =L2(#). 
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We have proved the validity of the formula (II.2) for the twice differentiable 
functions having bounded first and second derivatives. In fact this restriction 
can be removed if we impose some regularity conditions on the integrands. 
To do this we need the following 

Lemma ILl.  Suppose that Z is a process with the following decomposition: 

Z~=Zo+ft H+ i O~ds=Zo+~StH+th 
0 

for any t~ [,0, I]. Then, for any p(1, oo), ke2~, one has the following relation: 

sup II/,ll~,,~ep,k IIHIIop,k+,(H> 4- ]I~ItDp,k(H) 4- IIZoIIDp,k 
te[O, 1] 

where cp,k is a constant depending only on p and k. 

Proof From the hypothesis, we have 

moreover, from the continuity properties of the divergence operator on the 
Sobolev spaces (cf. [-5]), one has 

II~'HI[D~'k~Cp'k i l[~ a . . . . .  (m 

~Cp,k rIHI[D ...... (H)" 

For ~/t we have a similar but simpler inequality. Q.E.D. 

Theorem II.1. Suppose that F is a C2-function which is poIynomially bounded 
of order n>O as well as its first two derivatives and suppose that KieD4, , z (H)  
with 

~E 4 d s  < 4 - 0 0  

i o 

and that XioeD,,1 c~D2,1, ~eDz,,0(H([-0, 1], IRm))c~Dz, I([,H([-0, 1], ~m)). Then 
the change of variables formula (II.2) is still true. In particular, if the above 
hypothesis holds for any neIN, then the formula (II.2) holds for any C 2 fi~nction 
which is polynomially bounded on R m. 

Proof. For the notational simplicity we shall proceed in the unidimensional 
c a s e .  
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Using the hypothesis and the Lemma II.1, we have the following apriori 
majoration: 

~ i ~ i F"(X~)K~VXo(s)ds D sup F' (Xs) ~s d s - + IIF(X,)II~2.o + 
t k l l  0 1192,o 2,0 

s 

+ 
0 D2,O 

0 \ 0  IIDz,o 

F (X~)K~ ' " r (X~) K~ 
0 D2,O 0 D2,0 

< C ( n  E lt(~14ds a e = ([IKIID . . . .  (m+ ~ D=~ 
0 

X 2 +lXo l l~2 ,+ l  0 o.,), 

hence we can proceed exactly as in the proof of the Proposition II.1 and the 
Proposition II.2, i.e., beginning with the smooth coefficients K, Xo and ~ impos- 
ing on K the supplementary condition of the Theorem and taking F as in 
the hypothesis. The above inequality says that we can pass to the limit and 
the redefined case is obvious from the proof of the Proposition II.3 and the 
Remark following it. Q.E.D. 

The class of functions with which we have studied till now does not include 
the exponential function. Because of its importance in probability we shall treat 
it separately. 

Preposition II.4. Suppose that K is in D2,2(H ) and that 

1 

E j" exp(2 [6sK[)/(s 2 ds< + oo 
0 

then we have 

t t s 

exp(~,/<) = 1 + S exp(~K)Ks ~W~+ S exp(~/()/~((1/2)/~, + ~ ~/~r(s)~W~)ds 
0 0 0 

almost surely, for any t in [0, t]. 

Proof Let eN be the function ~ x~/(i!). Using the previous results, we have 
i < N + I  

the It6 formula for eN(,5~K ). Let (p~D, then, from the hypothesis 

E i ~ [6~Kl i~  11($1 ,~Tq)(s), ds 
0 i = 0  

~ ['(P][2,1 (E i (exp2'g)sK,)lI(s[2ds) 1/2, 
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t t 
hence S e}(6sK) I(~ 6 W~ converges to ~ (exp 6~K)/~s 6 ~ in D' in the weak topolo- 

0 0 
gy. Similarly, we have 

E j 16sgli/(i!)lRs]l~ol I(~+ S ~7Rr s ds 
0 i=0 0 

<=(Ei(exp2,cSsKl),I(s,2ds)l/2(E[~o2i(1/2I(~+ix(ZI(~(s) 
0 0 0 

\2 ]~1/2 

Since K is in D2,2(H), V K  is in D2, I(H@2H) where " |  denotes the Hilbert- 
Schmidt tensor product, hence, if we apply 6 to its second component,  the 
result will be in D2,o(H ) and this implies the finiteness of the right hand side 
of the inequality. Consequently the second order part of the It6 formula for 
e N converges in a(D', D) to the Lebesgue integral in which eN is replaced with 
the exponential function. Both sides of the It6 formula are equal as distributions, 
by the hypothesis they are in D2, o for any t > 0  and this completes the 
proof. Q.E.D. 

IlL Extensions to Nonmonotonous Time 

Let v: [0, 1] ~ [0, 1] be a Cl-function (in the sense of restriction) which is not 
necessarily monotonous.  If f is a continuous function on [0, 1] then a classical 
theorem of differential calculus says that 

v(1) 1 
j f (s)ds = j f(v(s)) v'(s) ds. (III.1) 

v(O) 0 

If we take a stochastic integral instead of the Riemann integral and a stochastic 
process instead of f, can we do something similar? Let us suppose first that 
KeD(H) and denote by K n its finite dimensional redefinition as in the preceeding 
section. For  the sake of simplicity we deal with the one dimensional case. So, 
if cp is in D o (cf. the Sect. II), then we have 

i 
v(l) . / v(1) 

v(O) v(O) 

since the integrand is infinitely differentiable with respect to s, by (III.1), we 
can write 

Iv ( l )  t 1 Kv(~) V ~  (~ (s)) v (s) ds, 
v(O) 0 
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if we suppose that 

1 

(card{u: v(u)=s, v'(u) , 0 } )  2 ds< + oo, (III.2) 
o 

then the image of the measure v'(s)ds under v is absolutely continuous with 
respect to the Lebesgue measure (cf. [1, 22]) with the density 

e(s) = ~, sign v'(u) 
ue~l(s) 

hence we obtain 

consequently 

j" Ks" 6 ~ ,  ~o = E R~' ~ o  (st ~(s) ds 
v(O) 

~p~Do, 

v(i) i 

v(o) 0 

moreover both sides pass well to the limit as n goes to infinity, hence we have 

v(1) 1 

S & 6 ~ = ~ / ~ , ~ ( s ) a ~  a.s., 
v(0) 0 

now, if K is in D2, I(H) instead of D(H), we can approximate it with (K m) c D(H) 
and from the continuity of the divergence operator  on Dz, I(H) we obtain the 
following 

Theorem III.1. For any K ED2,1 (H), under the condition (III.2) we have 

v(1) I 

v(O) 0 

where e is the degree of the function v. 

Remark. If K~D2,o(H) such that K is adapted then the theorem is still true 
except that the Skorohod integral should be replaced by the classical It6 integral. 

We shall apply the same idea combined with the redefinition technique of 
the Sect. II to prove the It6 formula for F(X~,m, ..., X'~m,) ) where 0i: [0, 1] 

[0, 1] are Cl-mappings and X i are the one-dimensional processes defined 
by 

i _  i "i " i b W  ~ X r - - X o +  5 ~ d s +  Ks 
o o 

= X i o + ~ + 6 t  Ki ,  i = 1  . . . . .  m. 
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For  the typographical reasons, we shall denote (0, (t) . . . .  , O,,(t)) with O(t), hence 
0 defines a Cl-mapping from [0, 1] into [0, 1] m and Xo(t ) will denote the vector 
valued random variable whose components are Xi0~(0, i=  1, ..., m. Let us suppose 
that K i, ~i are in D(H) and X~ in D for all i. As before we shall denote by 
Ki,,, ~i,n, Xi,n redefinitions and the processes defined from these redefined pro- 
cesses (cf. Sect. II). We have 

Lemma IIl . l .  Let F: ]Rm--*IR be a C2-function with bounded derivatives, then, 
1,n nl,n for any (p in Do, the mapping t --+ (F(Xo,(o . . . .  , Xom(o ), (p) is absolutely continuous 

with respect to the Lebesgue measure on [0, 1]. 

Proof For  the notational convenience we shall suppress the index n of the 
redefinition. If ~o e D o, we have, from Taylor's formula: 

F(Xo(1))-- F(Xo(o)) = 2 F(Xo(t~+ ,))-- F(Xo(,~)); 
k 

2 ( F ( X o ( t k +  1) ) - F ( X o ( t k ) ) ,  ~ >  
k 

= Z ~, (aiF(Xo(tk))(Xoi(tk+i)-- Xio,(tk)), (P) 
k i - - 1  

�9 X i + (1 /2)~  lC3iiF(Xo(tk)+akXo(tk+,l)(X~oi(tk+,) - O~(tk)) 
i, "= 

~) oj(t~)), @ �9 (XJoj(tk+ --xJ 

where (to--O<t I <. . .  <tN+1) is a parhtion of [0, I]. We shall study the terms 
of the sum as supi(ti+1-ti) goes to zero. Let us look at first the terms of 
first order: 

yi • A K i i 
k,i 

( Oi(tk!~ 1) 

k,i Oi ) 

Oi(tk+ 1) ) 
+ E ~ t(~ ~7[goc~iF(Xo(t~))](s) ds 

O~ (tk) 

denoting the first sum of the right hand side by I, we see that the above quantity 
is equal to 

0i (l~k + 1) 
I+ZE J" (Is176 ~ 20~F(Xo,  ~TXJo..,.~s, ds J (k) j .  ~ . ( .  

k,i Oi(tk) j - -  1 

Oi(tk + 1) r OJ(tk) 

= I + I I + ~ , ~ E  ~ ~K~'i~jF(Xo(,k))[~TXJo(S)+ S ~4](s)dr 
k i j  Oi(tk) 0 

�9 j Oj(tk) 
+lLo, oj(t~)l(S)K~+ ~ ~7K~(s) bVV~ ds J/ 0 
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where II denotes the sum with ~7~o(s) and the last equality follows from the 
commutat ion relations between V and 6. The only term that we need to study 
is the one which has the indicator function of the interval [0, Oj(tk)]. It can 
be written as 

• 1  (ol (tic) < 01 (tic + 1)} �9 (0~ (tic) > 0, (tic)} 
1 

k 

. E  
Oi(tic + 1) 

~ k~ g~ 1Lo,o~(,.)~(s) ~is F (Xo(~ic)) ds 
Oi (tic) 

X" 1 1 + 
/ ~ �9 {Oi (tic) > Oi (tlc + t)} �9 {Oj (tic) > Oi (tic + 1)} 
k 

. E  
Oi (tic + 1 ) 

](~ [(J q) l[O, OAtic)l(s) ~ijF(Xo(tic) ) ds, 
Oi (tic) 

if Os(tk)>O~(tk), from the continuity, we have Ofitk)>O~(tk+O provided that the 
distance between tk and tk+ 1 is sufficiently small, hence the indicator function 
in the integral of the first sum disappears. Similarly, if O2(tk)> O~(tk+ 1), we have 
Oj(tk) > O~(tk) and the above expression becomes 

tic+ i 

~, l(o'<~ic)> o} l(oj<~ic)>o,(~ic)}E 
k tic 

(PI(~o s I(Jo s o~ . r (Xo~ )O;(s)ds i (  ) i (  ) s (Ic)  

tic+ 1 

(p Ko,(s ) Ko,(s ) c~ q F (Xo(tic) ) Oi(s ) ds +El(o~(tic)<o}l(os(tic)>_o~(tic)}E ~ "i "j 
k tic 

and the limit of this sum becomes, from the dominated convergence theorem 
and by writing the sets {0'~(s) >< 0} c~ {0i(s) > 0r(s) } as a countable union of disjoint 
intervals, 

1 

E ~ [1(0,~)> o} 1(0~>0,~+ i(0:(~)<o} l(oj>=o,~] 
0 

" i  " j  �9 qo Ko,(s ) Ko,(~ ) c~is F(Xo(s) ) O'i(s ) ds, 

let us note also that the first order terms are of finite variation as it follows 
trivially from these calculations. The only second order term which influences 
the limit is the following one: 

(~/2) ~ (c3ijF(X~(tIc) + c~X~(tk+'))(6~`(tk+ ')Ki-6~`(tk)Ki)(6~j(tk+1)Ks-6~j(tIc)K~)~ q)} 
k 

= ( 1 / 2 ) ~ E  
k 

Oi( tk  + 1) 

K 6 K t3 F X  + ~  " i "  j j KsV[~O(~o~(,~.,) - oj(,~) ) ~ (o(,~) kXo(,~+,))](s)ds 
O~(tk) 
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w h e n  we deve lop  the Sobo lev  der ivat ive  us ing exac t ly  the same  a r g u m e n t  as 
in the p r o o f  of  the P r o p o s i t i o n  II.1 we see, in fact, tha t  the on ly  t e rm hav ing  
a n o n z e r o  limit is 

Oi(tk + ~) 
(1/2)Z  ' (P Ks c?ij F ( X  o(t~ + ak Xo (tk +1)) 1 ~0~(~), o~tt. +,)(s)]/(~ d s 

k Oi(t~) 

Odt~+ ~) 

~p K'sK~ = (1/2) ~ 1~o,(~ + ~) > 0,O~)~ l~oj~t~+ ,)>o,(t~ E 
k Odtk) 

�9 ~ F(Xo(t~) + ak Xo(,~ + 1)) lto. o~(~ + ,)~ (s) ds 
O~(t~ + ~) 

--  (1/2) ~, 1~o~( . . . .  )>o,(t~)~ l~o~(~)>o,(t~)) E ~ (PI(~ I~j 

�9 c~i~ F (Xo(~  + a~ Xo~t~ + ,)) lro, o~(~ (s) ds  
Oi(t~,+ D 

+ ( 1 / 2 ) ~  l(o,(,~)>o,(t~+.~ l{oAtk+D>Oi(tk+l)}E ~ qOI~I~Js 
k Oi (t~) 

�9 3 i j  F ( X  0 (tk) -~- ak  X o  (tk +1)) i t0 ,  oj(tk +1 )] is) d s 

Oi(tk+a) 

--(1/2)~l~o~(t~)>o~.~+.~l~oA~(>o~(t~+~)~g ~ qo Ks'i Ks "~ 
k 0 i (tk) 

�9 c~j F(Xo(~) + ak Xo(~+ ~)) lto, 0~(,~t (s) ds, 

w h e n  sup~ (t~ + ~ -  h) goes  to  zero,  the  a b o v e  express ion  has  the fo l lowing limit:  

1 

(1/2) E ~ [1~o~(~)> o~ 1(~) _ W) 1 ~ .~ i  ~>j ~{oj=od l(o~(s)<O) {Oi=Oj}A'v~'~O~(s) ~"O~(s) 
o 

�9 Oij F(Xo(s)) O'i(s) ds. 

H e n c e  we have  p r o v e d  tha t  the R a d o n - N i k o d y m  der ivat ive  of  t~+(F(Xo( t ) ,  q)), 
for  qo~Do, is 

E[q~OiF(Xo(s)) r "i C.o,(~) + Ko~(s) Oi F (Xo(~)) V q~ ( Oi(s)) 

+ F(Xo , (VXJo + 
Oj(s) 

S d,. 
0 

0 j (s) 
+ 

0 

+ (P I(io~ (s) I(Jo, (s) ~i~ F (X  o (s)) (1 ~0u > o~ (s) + 1 ~o~(s) < o~ (s) + 1 ~oj - od (s)) 

+ (1/2) ~oK'oi(s)KJoi(s) Oi~ F(Xo(s))(l~o~(s)> o~ - 1,~o~(s) < o~) 

�9 1 (s~ qO ' t ~  Q.E .D.  (Oi = Oj}J i to] . (ni.1) 

W e  have  
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Proposition lII.1. Suppose that ~i, KinD(H), Xio~D, F~C2(IR m) and that Oi: 
[0, 1] ~ [0, 1] is continuously differentiable, for i= 1 . . . .  , m, with 

No: ~ i (card {u: 01(u): S}) 2 d s  < -~- 0 0 .  

i = 1 0  

Then, for any t~ [0, 1], almost surely we have the following relation: 

1 

F(Xo(t))--F(Xo(o)) = ~ ~ [  ~'~ •iF(Xo(.)) sign O'i(u)] ds 
0 0 i  ~(s) • [0,t] 

1 

+ ~ Is ~ ~iF(Xo(,)) signO'i(u)] 6W~ 
0 0 i l(s) r~ [O,t] 

1 

+ ~ Ki~7Xio(S)[ ~, ~?ijF(Xo(.))signO'i(u)] ds 
0 0 i- a(s) c~ [0,t] 

1 / Oj (u) . . Oj(u) 

+ ~ I(~[ Z ~?~jF(Xo(,)){ ~ V~(s )dr+ ~ ~7K~(s)6W~)signO',(u)]ds 
0 O~l(s)c~[O,tl \ 0 0 

1 

+ I /~R{[  Y, ~ijF(Xo(.~)(l~o~>o~(u)+(1/2) l{o,=oj}(u))signO'~(u)] ds.(III.2) 
0 Oi- '(s) c~[0,t] 

Proof. Using the formula (III.1), we see that 0II.2) is true for the finite dimension- 
al redefinitions as we have done in the Sect. II, afterwards we can pass to the 
limit. Q.E.D. 

Theorem IIL1. Suppose that we have: 
F: IRm-. IR bounded with bounded derivatives upto second order, 
0: [0, 1]"--+ [0, 1] m is a Cl-mapping, 

KieD2,2(H), X~eD2, , ,  ~ieD2,a(H) 

for i = 1, ..., m, 

No= ~ (card{u: O~(u)=s})2ds< +oo. 
i = 1 0  

Let us denote by X I the anticipative It6 process defined as 

x , = x 0 +  k~6w~+~, i=1 ..... m, 
0 

then, for any te [0, 1], the formula (III.2) holds almost everywhere. 

Proof. The proof  is again the classical limiting procedure. F rom the hypothesis, 
if we approximate X i, K i, ~i with the smooth objects we know that the formula 
is valid for these approximations. In order to pass to the limit we see that 
the left hand side of (III.2) creates no difficulty as well as the terms of the 
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right hand side, except the second term, but, since the limits of all the other 
terms do exist in L2(/~), the limit of the second term does exist and belongs 
to L2(/~). Q.E.D. 

Example�9 Suppose that (Xt; t~[0, 1]) is the solution of the following stochastic 
differential equation with smooth coefficients: 

dXi=Ai(Xz).dWr, i=1 ,  ..., m, 

where A i" ]Rm--)lR a. Then, for any FeC2(IRm), for any 0 as in the hypothesis 
of the theorem, we have 

1 

F(Xo(t))-- F(Xo(o))= ~ [ ~ Oi F(Xo(j  sign 0}(u)] Ai(Xs) - ~ W s 
0 0/- ~(s) c~ [O,r] 

t 
i + ~ ~ &(xo~(~))~sf(xo(~)) 

i , j , v , l , n  0 

�9 (. c~.A{(X,)lto,,.~(s)[Y,Y~-lA~(Xs)].aW/ O'~(s)ds 
0 

+ ~ i (Ai(Xo,(*)), AJ(Xo~<~))) O~S F(Xo<,)) 
i j  0 

�9 (l(0s > 0,~ (s) + ( i / 2 )  1 (0, - os} (s)) Oi (s) d s 

where Y is the matrix-valued process defined as 

a Y~= DA=(Xt) Y~dW? 
Yo--Id 

1 

[DA~]is=c~sA~, and ~ H5Wt i is the Skorohod integral of Hei, H being scalar 
0 

valued and ei is the i-th unit vector of the canonical basis of IR a. 

Remarks. (1) With the finiteness hypothesis of N 0, one can prove the analogous 
of the Theorem II.1; since the calculations are quite similar to those of above 
we shall omit it. 

(2) Note that the second term the example can be written with the It6 integral as 
1 

0 

O~(tk) 

�9 y-~* [. Yr*DAJ(X~)dW~,A~(X~))O'~(s)ds 
0 

with the usual summation convention. 

I V .  A n  E x t e n s i o n  to  R a n d o m  F i e l d s  

In [4], Hitsuda shows that one can develope F(W~I, ..., W~,) for the first variable 
keeping the others fixed for smooth F with the help of the Wiener's chaos 
decomposition of L 2. In fact what happens can also be understood by using 
the Malliavin Calculus. First let us give the following 
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Proposition IV.1. Suppose that F: 1Rm x f2-+IR is a measurable mapping. Suppose 
that F is in 5~(]Rn)@D, i.e., the completed projective tensor product of the space 
of  rapidly decreasing functions and the space D and that (Xt) is an n-dimensional 
Itd process defined as 

i i t 
X , = X o +  ~/(~6Ws+ ~ ~ d s ,  i = l , . . . , n  

0 0 

where xioED4,1, Ki~D4,2(H), ~i~D4,1(H([-O , 1~, ~_)). Then we have the following 
relation: 

F (Xt, w) = F (Xo; w) + i c?~ F (Xx, co)(K,6W~+~ds)" i "i 
0 

+ i (~7ra, F] (X~, co)(s), K~) ds 
0 

"i 1 , .  

0 

i s ) 
+ ~7~](s)ds+ ~ ~7ti2](s)bVV~ ~?ijF(X~,co)ds (IV.l) 

0 0 

for any t in [0, 1], #-almost surely. 

Proof It is sufficient to write 

F(X, ,  co) = ~ exp i(y, X,) ~e(y, co) dy 

where ..... denotes the Fourier transformation on IR" and apply the It6 formula 
to exp i(y, Xt) (cf. the Theorem II.1) and use the commutation relation 

6(r K)=cp 6 K -  VK~o 

for ~o~D, KeD' (H)  (cf. [-18, 21]). By the hypothesis the Lebesgue integral with 
respect to dy commutes with the Lebesgue integral with respect to ds and 
with the Skorohod integral Q.E.D. 

The hypothesis that we have imposed on F is very easy to check: Because 
of the nuclearity of 5P(]R n) (cf. 1-14]), F~9~(]R n) @D if and only if, the equivalence 
class corresponding to the following random variable 

o~<T,  F(., co)> 

is in D, for any tempered distribution T on P,". Obviously this formula can 
be extended to larger classes of functionals. Let us give an extension of it to 
some Sobolev spaces: The first difficulty is how to define g~F(Xt(co), co) for 
a multi-index ~ with ] c~[ < 2. Since we have 

lOaF(x, co)-- O~x F(Y, co)l =< c(n)Ix - Yl l] F(. ,  co)fl win, I~l _-< 2, 



The I t6  F o r m u l a  for An t i c ipa t ive  Processes  267 

with m>(n/2)+2, where W m denotes the Sobolev space of order m on IR", if 
we suppose that  L[FIk w~ is in Dp,o with p > n, then from the Lemma  of Kolmogor -  
ov (cf. for instance [8]), x~--~UF(x, co) will have an almost surely continuous 
modification. Therefore UxF(Xt(co), co) will be well defined for Ic~[< 2. 

The second difficulty comes from the term 

t 

([~ aiF] (X~, co)(s), s ds 
0 

which is the integral of a function of two variables on the diagonal of [0, 1] 2. 
We have the following apriori  majorat ion:  

/ ( [~a~F]  (X~, co)(s), Ii;~) ds 

__< c(n, ~) i I/(~1 II V F ( ' ,  co)(s)[I w-/ . . . . .  d s 
0 

for an arbi trary e>0 ,  where the constant c(n, E) depends only on n and e. 
Let us denote by D2, ~ ( W ' )  the space of Wiener functionals with values in W", 
equipped with the norm 

1 

let us note that this notat ion is compatible with the Sect. I because of the Meyer 
inequalities for vector valued Wiener functionals (cf. [17]). Since 5P(R")~)D is 
dense in D2,1 (Win), passing to a subsequence, we see that 

t 

([V c3iF-I (Xs, co)(s), K~) ds 
0 

can be defined as the almost  sure limit of the integrals 

t 

S ([~ ~,e.k] (X~, o~)(s), K~)ds; nk~N) 
0 

where (F,) converges to F in D2,1 (Win) with m = (n/2) + 2 + e. Apriori  the definition 
of this term depends on the choice of the approximating sequence. However,  
when we look at the things in detail, this is not the case as the following result 
s h o w s  : 

Proposition IV.2. Suppose that F ~ D 2,1 (Win) c~ Dp, o (Win) with p > n, m > (n/2) + 2, 
n being the dimension, X ~ D 4 , 1 ,  KiED4,z(H) and r 1] , ]R) ) fo r  i 
= 1 . . . . .  n. Then the formula (IV.I) remains valid and the term 

t 

S (Iv 0,V] (X,, ~)(s), K~) d s 0v.e) 
0 

is independent of the particular choice of the sequence (F~) approximating F. 
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Proof As we have explained above, both sides of the formula (IV.l) pass to 
the limit in D' in the weak topology. Furthermore all the terms, except (IV.2) 
are independent of the choice of (F,) approximating F, consequently (IV.2) is 
also independent of (F,). From the majorations that we have done above all 
the terms are elements of D2, o hence also the term with the Skorohod inte- 
gral. Q.E.D. 

Let us now apply this result to develop f(Wq, Wt~), for f in w g ( ] R  2)  t o  

understand what happens in [4]. From (IV.I) we have 

t l  

f(W~,, W~;)= f(0, Wt~)+ y axf(l/V~, W~z)aW~ 
0 

t l  t l  

+ ~ V[a~f(W~, Wt~)](a)da+(1/2 ) ~ O2~f(W., Wt~)da 
0 0 

t I t 1 A t 2 

=f(O, Wt:)+ ~ #~f(Vr Wt~)bWo+ I ax#sf(W~, Wt~)da 
0 0 

tl  

+(1/2) ~ ~2 f(W~, Wt~)da. (IV.3) 
0 

Iterating the same formula for each term above with respect to t2, we obtain 

t2 t2 

f(W~l, W~2)=f(O, 0)+ i O,f(O, WOdWb+(1/2) S O2 f (  0, Wb)db 
0 0 

t l  [ t2 

+ f Oxf( Wa,O)+ ~ OxOyf(W~, Wb) 6Wb 
o o 
t 2 A a t2 

+ ~ 2 2 Ox ~y f (Wo, VVb) db+(1/2) ~ O~ O~f (W~, Wb) db] 6W~ 
0 0 

t 2 A t 2 �9 t 2 

+ ~ da ~?xOyf(W,,O)+~OxO~f(Wo, Wb) 
0 0 

t 2 A a t 2 -1 

+ S 2 2  0~ Oy f(VV~, Wb) db + (1/2) 5 ax 0~ f(W~, Wb) db ] 
0 0 

t l  [ t2 

+(1/2) I d a  82 f(W,,O)+ ~ c~3,f(W,, Wb) 6W b 
0 k 0 

t 2 A a t 2 ] 

+ ~ O~Oyf(Wa, Wb)db+(1/2) ~ 2 2  a~ ay f(W~, Wb) db . ] 
0 0 

The same method of iteration can be applied in case which there are more 
than two variables. 
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