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Summary. Let ¢;, &,,... be i.i.d random vectors in R* with a common
distribution £ ( &)=F, i=1,2,.... Let S,= & +... + £,. We investigate how
small is the difference between £ (S,) and #(S,, ,,) in the case when ¢ have
symmetric distributions.

1. Introduction

Let &,,...,&,,...eR* be iid. random vectors with a common distribution
KL (€)=F, i=1,2,.... Then the sum S,=¢&, +...+¢&, has the distribution F*
(products and powers of measures will be understood in the convolution sence:
FG=Fx*G, F*=F*"). Let m,n be arbitrary natural numbers. We shall study how
small is the difference between F" '™ and F" in the sense of uniform distance o(-, )
between distribution functions, i.e. how much may be changed the distribution of S,
after addition to it of the next summand or of a group of summands.

In author’s papers [15-17] it was shown that one can obtain meaningful
bounds for g(F”, F**™) without any moment conditions. Moreover, if the distri-
bution F'is centered so that all its marginal distributions have zero as medians, then
o(F", F**Yy < ckn ' where c is an absolute constant. The proof of this inequality is
relatively simple and is based on classical bounds for concentration functions of
convolutions.

Essentially more complicated methods are needed to investigate the case of
symmetric distributions F. From the above mentioned inequality it follows that in
this case o(F", F" ") < ckn™12, Tt can be easily seen that this inequality is optimal
with respect to order. But we shall show that it may be essentially improved in the
case when the characteristic function F(t) is uniformly separated from —1. In
particular, we shall prove that o (F", F**\) < c¢(k)n = if F(t)=0 for all te R¥. Using
this fact for the distribution F? with symmetric F we obtain a paradoxical
statement: for all natural numbers » and for any symmetric distribution F the
inequalities
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are valid and they are both optimal with respect to order.
It is evident that the knowledge about the closeness of F" and F" ™1 is useful for
studying distributions of the form

o

o

G=) pF°, 0=<p,<1, ) p,=1.
5=0 s=0

As an example we obtain Theorem 1.4 which contains a new estimate for the

uniform distance between the n-fold convolution of F” of a symmetric distribution F

and the corresponding accompanying law
o0 nS
e(nFy=e™ Y — F°.
s=0 S!
It will be proved that
e(F"e(mF)) <c(k)n '7.

All above mentioned inequalities are especially interesting because they give bounds
which are independent of any characteristics of F. Note that these inequalities are
multidimentional generalizations of analogous one-dimensional results contained
in [16,17]; [2], §§ 5 and 6 Chap. V.

To prove our results we use a new method of estimating the uniform distance
between convolutions. This method is an improved version of the triangular
functions method, firstly proposed and applied in one-dimensional case by Arak
[1], see also [2]. Another example of the application of this method is the proof of
Theorem 1.3 from [19] that will be proved in a separate paper. Now we introduce
some necessary notations. Let B, be the o-field of Borel subsets of the Euclidean
space R*, &, be the set of probability measures on B,, D, be the set of infinitely
divisible distributions in §&,, &} < &; be the set of symmetric distributions in &, i.e.
of distributions £ (&) for which #(&)=2(—¢§), &' =& be the set of distri-
butions with non-negative for all te R* characteristic functions. The notation c(+)
will be used for different positive constants depending only on the indicated
argument. For example, ¢(k) depend only on the dimension k, ¢ are absolute
constants. The writing x € IR will further denote that x=(x;, ..., x;) where x eRY,
j=1,..., k. For x,ye R* we introduce the usual partial ordering: x <y means that
x;<y, for all j=1,...,k and we denote [x,y]={ue R*:x<u<y}. We shall also
write x <y if x;<y;forallj=1,..., k. Let IN be the set of all natural numbers, Z be
the set of all integers, E, € &, be the distribution concentrated at a point a e R,
E= E, where 0 is the zero vector in IR*. The symbol 6 will be used to denote different
quantities for which |6|=1. For F=%(&)e§, we shall denote its distribution
function by

Fx)=F{{ueR*:u<x}}, xeR*;

its characteristic function by

F(t)= [ exp(i(t,x))F{dx}, telRX (t,x)=i 15
R* j=1
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its concentration function by

Q(F,hy=sup F{[y,y+h]}, heR*, hx0;
yeR¥
and FW=% (&), j=1,...,k. We shall estimate the uniform distance between
distribution functions

o(F, G)=sup |F(x) ~G(x)]
xeR*

where F, Ge§,. For Fe§,, 220 introduce a distribution e(4F)e D, by

e(AFy=e™* Y I°F%sl, F°=E
s=0
Its characteristic function is equal to exp (A(F(t) —1)), te R*.

Now we return to the statement of the problem. It is evident that if a distribution
Fe®, is concentrated on a hyperplane which does not contain zero and is
orthogonal to one of coordinate axes then o(F", F**™) =1 for any natural numbers
n, m. In particular, we can consider the case when F=FE,, aeR*, a=0. On the other
hand, if all distributions F¥ e §,, j=1, ..., k, are either non-degenerate or equal to
Ee &, then, asisshownin [15], o (F", F"*1)— 0 and, moreover, there exists ¢(F) such
that

Q(F",F"“)§f@, nelN. 1.1
n

A point aeR* will be called the g-quantile of a distribution Fe §,, where qe R,
0=<q<1, 1=(1,1,...,DeR¥ if FV{(—ow,a))}=qg;, FP{(a;, 0)} <1 —g; for all
j=1,..., k. In [15] it was also shown that if 0 is the gq-quantile of a distribution
Fe®, and 0<qg<1 then

k
O(F", F"* Y <en™% Y (g;(1—g) ™' (1.2)
i=1
for all neN. If q=(1/2,1/2,...,1/2)eIR* then the inequality (1.2) turns into
o(F" F"*Y<ckn™"*, nelN. (1.3)

In particular, the inequality (1.3) is valid for any symmetric distribution Fe &;.

Let F be a one-dimensional lattice symmetric distribution concentrated on the
set of odd numbers. Then the distributions F”,n=1, 2, ... are concentrated either on
the set of odd numbers or on the set of even ones in accordance with evenness of a
number n. Therefore, o(F", F***)= Q(F",0)/2. For many distributions, e.g. for
F=F_,/2+ E, /2 the concentration function Q(F*, 0) behaves as c(F)n 12 ifn— c0.
This indicates that the order of decreasing with respect to x of the right-hand side of
(1.3) cannot be increased without additional conditions.

It is easy to show the distribution Fe &5 is concentrated on the set of odd
numbers if and only if its characteristic function F(¢) is equal to —1 at the point
t=2m+1)n, where meZ, for example, F(t)=cost for F=E_,[2+E,/2. The
following Theorem 1.1 says that the separation from —1 of the characteristic
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function of a distribution Fe & leads to more quick decreasing of ¢(F", F"*1) than
the inequality (1.3) is able to provide. For 0 < o <2 define the classes of probability
laws -

Fi={Fe@ F()= —1+a forall teR'}.
It is easy to see that ' = F:2 for oy >, and F=F; .
Theorem 1.1. Let O <o <2 and Fe ;. Then

o(F", F"* 1< c(k)(n™! +exp (—no+ ck In®n))

; N =ck)n '+ o(nh). (1.9
or any neN.

The considerable part of this paper (Sect. 2—6) is devoted to the proof of
Theorem 1.1. Now we deduce a number of consequences of this theorem.

Corollary 1.1. For all ne N the following inequality holds :

sup @(F", F"*")<c(k)n™".
Fegf

Proof. 1t is sufficient to apply Theorem 1.1 for a=1.
Corollary 1.2. For any a=0, b =0, Fe §; the inequality

, . o(e(aF),e((a+b)F))<min {b, c(k)ba '} (1.5)
is valid.

Proof. For a<1 the inequality (1.5) can be easily deduced from the formula e((a
+b)F)=e(aF)e(bF) and from the following well known property of the uniform
distance: for any F, G, He §;,

o(FH,GH)<o(F,G). (1.6)
In fact,

e(e(aF), e(aF)e(bF))<o(E,e(bF))<1—e *<b.

Let now a>1 and let m e Z be the largest integer which is less or equal to a/b.
Applying Corollary 1.1 for the distribution G=e(bF) e §; and using the inequality
(1.6) we obtain:

e(e(ar),e((a+b)F)) < o(e(mbF), e((m+1)bF))

k) _c(k)b
=9o(G™ G™*! <_C( <
0(G".G )=m+1 = a

Remember that, according to (1.3),
sup o(F", F"* Y)Y <ckn™ 17 1.7
Feg;

and the order of decreasing of the right-hand side of (1.7) with respect to ncannot be
enlarged. Using Corollary 1.1 we shall show that sup ¢(F", F"*2) decreases

Fedi
essentially more quickly than the very close to it 1eft-hande§1de of (1.7). At the same
time we shall estimate o(F", F**™) for each meN.
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Theorem 1.2. For any m,neW the following inequalities are valid:

sup o(F", F""?)Zc(k)n™", (1.8)
Fe®;
sup o(F", F"**™ <c(k)ymn™", (1.9)
Fedy
sup o(F", Fr*2m* Y <ckn™*? +c(k)ymn™", {(1.10)

Fe§;
and, consequently,

sup _ sup o(F", F*"™<c(k)n™ 1.
1=mzl/n Fe§

Proof. Let n=21, leN. If Fe§; then F? e, and, by Corollary 1.1,
Q(Fn, F"+2)———Q((F2)l, (F2)1+1)§cl—1 =Cl’l_1 .
If now n=2/+1, leIN, then using (1.6) it is not difficult to show that

Q(F", Fn+2)§0((F2)2j (F2)£+1)§Cn71 .

The inequality (1.8) is proved. The inequality (1.9) can be easily derived from (1.8)
with the help of the triangle inequality. To obtain (1.10) it is necessary to attract in
addition the inequality (1.7).

Let &,,&,,... be i.i.d. random vectors with a common distribution Fe §;, and
let (1, v) € Z? be a random vector, independent of {&,}:2; and having non-negative
integer coordinates. Denote

U=, V=S, G=2L(+.. +&), H=ZL( +...+&).
It is well known that
G=Y P{u=s}F, H=Y) P{v=s}F". (1.11)
s=0 s=0

We shall show that the following upper bound for the uniform distance between the
distributions G and H holds true, if Fe §;.

Theorem 1.3. If Fe §; then

o(G. H) <infEmin i— 1 ey P2V 4L 1.12)
|/v+1 v+1
and if Fe ;' then
(G, H)ginfEmin{c(k) "v‘;;', 1}. (1.13)

Here the lower bound is taken over all possible two-dimensional joint distributions
L((u, ) e, such that Z(w)=U, L v)=V.

Proof. Let Fe §&. From (1.9), (1.10) it follows that for all n, me Z such that n= 0, m
=0 the inequality
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Q(F",F’")§min{ et =" 1} (1.14)

ck
[/n+1
is valid. Let xeR*. Then (1.14) implies that

5 <P{§l §i<x}—1>{é §i<x}>P{,u=m,v=n}

m,n

IG(x) —H(x)|=

. ck lm—n|

§§” mln{l/m+c(k) —
i _

=Emin{ K e ™ v',1}.

Vm v+1

Hence the inequality (1.12) is proved. The inequality (1.13) can be obtained in a
similar way. If '=E, then Theorem 1.3 turns into the following result.

Corollary 1.3. If Fe &, ne N then

. I}P{,u=m,v=n}

Q(G,F”)gEmin{%-}-c(k)\%—]\, 1} (1.15)

and if Fe§,; then

Q(G,F”)gEmin{c(k)!—S—l‘, 1}. (1.16)

The inequalities (1.15), (1.16) show thatif nislarge and E ’% —1 ! is small then the

distribution G of a sum of random number of summands does not considerably
differ from the distribution of the sum of # summands and we can find the upper
bounds for the closeness of above mentioned distributions which are uniform with
respect to classes & and ;' . With the help of the inequalities (1.1)—(1.4) we can also
obtain analogous inequalities for other classes of distributions.

The distributions of sums of a random number of ii.d. summands were
considered in many articles (see, for example, [3, 6, 9, 12, 13]). In particular, there
can be found results about the closeness of studying distributions to the
distributions of sums of a non-random number of random variables (the so-called
transfer theorems). In several works the number of summands is not supposed
independent of these summands (see, e.g., [9, p. 418], [13]). But it should be noted
that the statements contained in the most papers are either of qualitative character
or proved under additional moment restrictions. We do not mention here numerous
works about the central limit theorem for random sums.

As an example of the application of the inequality (1.15) we give an estimate for
the closeness of F”, where Fe &}, to the accompanying distribution e(nF)e D,. It
should be noted that this estimate is independent of Fe &j;.

Theorem 1.4. For any neIN the inequality
sup o(F", e(mF))Zc(k)n=11? 117

. . F S
is valid. €&
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Proof. Tt is sufficient to note that the distribution e(nF) satisfies all conditions
imposed on the distribution G from (1.11) if ¥ (u)=e(nE,) is the Poisson
distribution with expectation Ey=Du=n. In view of (1.15),

o(F', e(nF))<ckn ?+c(k)n 'E|p—n|
=ckn 2 +c(k)yn 'E|u—Ey|

Sckn "2 +c(k)n” )/ Du
<c(k)n 12,

The closeness of n-fold convolutions of arbitrary distributions from §, to
corresponding accompanying laws was studied by Présman [10]. He proved that

inf o(F",E_enFE_))<c(k)n™1/3 (1.18)
aeR¥
for any Fe &,. It is known that the inequality (1.18) is unimprovable with respect to
order and cannot be essentially strengthened in general case. The inequality (1.17)
shows that such sharpening is possible for symmetric distributions F.

One-dimensional variants of above mentioned results can be found in [2],
§§4-6, Chap. V, see also [11, 16, 17]. There can be also found the proofs of
unimprovability of some of them with respect to order (of course, for this it is
sufficient to consider the one-dimensional case). For example, in order to verify the
fact that the inequalities (1.1), (1.3), (1.10) cannot be sharpened it is sufficient to
consider the distribution F=E_,/2+ E, /2, but for the inequalities (1.8), (1.9) and
for Corollary 1.1 one should analyze the case when F= @ is the standard normal
distribution .A47(0, 1).

Consider now the question about the unimprovability of the inequality
(1.4). We shall show that the dependence of the right-hand side of this inequality
on ¢ is close to unimprovable one. As an example we consider the distribution
F=(1-)(E_{[2+E /2)+ade ;. It can be easily proved that

o(F", F""Yy>c(1 —a)y'n~ 2,

Assume that the question is how little must be « = a.(#) in order to ensure the validity
of the inequality o(F", F"*))<c(k)n™! for all FeF™. In view of (1.4), we can
choose a(n)=ckn™!In*n. On the other hand, the above example says that a(n)
cannot be chosen less than cn ™! Inn.

By (1.4), in the Theorem 1.1 conditions for any X < IR, representable in the form

X={xeR*:x;<y;, y;eR', j=1,....k},
the inequality
|F*{X} —F"" Y {X}|<c(k)(n™* +exp(—na+ ckn®n)) (1.19)

holds. The question about the possibility of the extension of the inequality (1.19) on
arbitrary convex sets X < R* remains open. However, this inequality can be easily
extended on convex polytopes with a number of vertices, bounded by ¢ (k). In fact, if
the distribution = % (&) satisfies the Theorem 1.1 conditions then the same may be
said about the distribution F*=%(A4¢) where 4:R*-IR* is an arbitrary linear



182 A. Yu. Zaitsev

operator. Using this observation, we can easily obtain the inequality (1.19) for the
sets X, representable in the form

Y={xeR*:(x,t) <y, t;eR, y,eR', j=1,... . k}. (1.20)

Consider now a non-degenerate k-dimensional simplex Y given as the intersection
of k+1 half-spaces

k+1
Y= 4,
i=1

where 4,={xeR*:(x,t;)<y;}, t,eR¥, y;eR! and let £e R* be a random vector
with Z(§)=He§,. Then, denoting 4;=R*\4; and using the formula (1.5),
Chap. IV [5], we obtain

k+1

H{Y}=1 _H{'J‘q z,}=1 -3 H{d)

+ Y HA A4+ (=) Y H{A,. A

J1<j2 i< <j
o (D) H{A, A, A (1.21)

Note that from the assumption about the non-degeneracy of the simplex Yit follows
that 4; 4, ... A, ., =% and so the last summand in the right-hand side of (1.21) is
equal to zero. All of the rest sets X=Zj1 ... A}, [<k+1, may be written as in (1.20).

Applying (1.21) for H=F", H=F""1 and using the inequality (1.19) we obtain
|F*{Y} —F"* 1 {Y}|Lc(k)(n™! +exp(—na+ckin®n)).

If now Yis a convex polytope representable as an union of m simplexes with empty
interiorities of their intersections then

|F{Y} —F"* {Y}|Sc(k)m(n™" +exp(—nu+ckin®n)). (1.22)

The right-hand side of (1.22) increases together with a growth of m. Therefore we
have no possibility to obtain the inequality (1.19) for arbitrary convex sets by a
passage to a limit.

Remark 1.1. The inequality (1.22) may be considered as a generalization of the
inequality (1.19) for a larger class of sets. Of course, analogous generalizations can
be written out for other inequalities mentioned above.

The rest of the paper is devoted to the proof of Theorem 1.1. We shall use
the methods which are multidimentional analogues of the so-called triangular
functions method developed and firstly applied by Arak [1], see also [2]. In the
sequel we shall essentially use the results and the methods from [1]. Note, however,
that in the multidimensional case it will be necessary to revise the arguments used in
[2] to prove the one-dimensional version of Theorem 1.1. In particular, somewhere
we shall refuse to apply the Parseval equality and shall use Lindeberg’s method
based on the Taylor formula (see [8, p. 82]). In order to obtain the possibility to
apply this formula we shall change the triangular functions, used in [1,2], by their
infinitely differentiable analogues. The technical details connected with above
mentioned changes of methods are discussed in [18].
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2. Auxiliary Results

Let 9, be the set of all finite charges defined on B,.. For an arbitrary 8B,-measurable
bounded function f and arbitrary ue W, ; F, Ge &, denote

Iy(w=sup || f(x—2)pu{dx}|,
zeRF | R*
0 (F,G)=T(F-G). 2.1)

In the sequel we shall use the following evident inequalities that are valid for any
/’lem’tka F,G,HES'](:

F(uxHy=T(pH) ST (1), 2.2)
o, (FH,GH)Z¢,(F,G). 2.3)

Define now the function ¢(x), xe R, setting
i1t “tx 11
GD(X)=<§€ y 1”@) fer I7vdy for O<x<1,
0 0

e(x)=0 for x<0 and e¢(x)=1 for x=1.

The function ¢ is infinitely differentiable on the real line. For z, 1,k xeR!,
0<tZh, set

?..(x)=0((x—2)/1),
Lo )= () =0, (x) -0, ,(x), (2.4)
S5, 00= 0 4(X) =040, (),
Gz, o) = 0, 1 (%) = @y ()=, )+, (%)

Denote by Z the collection of vectors J € R* having coordinates which can be equal
either to zero or to unit. For F,Ge &, ; peM,; JeZ; 2z h, 7, xeR*, 0 <7 <h, we set

k

fanX)=TT fo2h, .., (x,)
p=1

k
gz,h,t(x)= 1_[ gzp,h,_-,,rp(xp)z Z fz(:,l)l,t(x)’

p=1 JeE
QEI{)T(FQG):Qf(FB G)’ Fh(:lg(ﬂ):‘rf(‘u) where f=f(g:l£|,rs
dh,r(F’ G) =Qg0,,,,,(Fa G) -

(2.5)

Let us argree to omit a superscript (J) if J=0 (as a rule, we shall estimate
On,-(*>+)=0%(+,+) only, keeping in mind the possibility to use the symmetry
arguments). Note that the characteristics just introduced can be non-zeroif 0 <t <h
only, since if t;=h; for some j then £} .(x)=0. It can be shown that if 0 <z <h then
oiP.(+,+) and dy_,(-,-) are metrics in &, (see, e.g., [14], Theorem 2.2). It is easy to

check that for all 7,he R*, 0<t<h; zeR*;j, p=1,...,k; F, Ge &, the following



184 A. Yu. Zaitsey

inequalities are valid:

Je&
afz h,t 4 62 z,h, 7 c
sn, <_ ,h, <
" ox; (X)’zrj’ e 0x;0x, ®) vt 2.7)

(see (2.4), (2.5)). We shall need the following auxiliary results.

Lemma 2.1 [18). Let F,G,U€,. For heR¥, h>0, denote y’=Q(UY, k),
ya= min Y. Suppose that for all Y€ Z and for all ©,heR* such that 0<t<h;
k

1=j=

yI <4y j=1,... k, the following inequality is valid
A (F, G = c(k)er yi(linyy] + 1) +6,(2)

where o >0, 20, &, 20 and &, (1) is a non-increasing non-negative function of a
parameter teR¥. Then for all JeE and for all T, he R* such that 0 <zt <h the
inequality

k a B
o (F, Gy Sclh, o, ey TT ()" (lnyd?]+1)")
j=1
k 1 V;.j)
—In 7 +1
+82(T) J]_;[l <ln2 n 'J)‘(rl)+
holds.
We shall denote by
[X],={yeR*:inf |x—y| <1}, v>0,
xeX
the closed 7-neighbourhood of a set X< R¥. Define the set
1
Km(u):{z ;g meZ, |n|<m, i=1, ...,I}CIR1 (2.9)
i=1

for ue R!, me N. The following lemma is a special case of Corollary 3.1 [18].

Lemma 2.2. Let reN and let a distribution L,e$, be represented in the form
Lo=s,Uy+0voRy where 00,51, so=1—vy; Uy, Roe§, and there exist such
7020, leN, ueR! that Uy{[—1,, 7,1} =Ry {[K;(W)],,} =1 and

}0 xUpl{dx}=0, rso Oj? x*Upldx}=0>.

Then for any y=0 and for all integers d=rv, the inequality
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(Lo) {IRI\[Kd (“)]dm + y}

2
Y y
< A A
<2max {exp< 4(72)’ exp< 810>}
_ 2 d—
+max {exp <— E‘;MZJ—O)> , €Xp < — 4w0>}
0

Lemma 2.3 below is an analogue of Lemma 4.1, Chap. I1I [2], obtained by Arak
(1]

Lemma 2.3 [18]. LetO <t <h;l, meN;ueR'; ze R!. There exist the functions w(x)
and g(t) having the following properties:

a) 0Sw(x)<f, . (x) for all xe R,

b) W) =1 (%) for x € [Ky W],

c) the function w(x) is infinitely differentiable on the real line and

c(p)

T

holds.

sup p=1,2,...;

dr
@ w(x)‘ =
d) for all teR! the inequality W ()| Zg(t) is valid where
wt)= [ e™w(x)dx

is the Fourier transform of the function w;

e) the function g(t) is even, does not increase for t 20 and takes a constant value
g(0) for lf|<2h71,
w0

0 | g@ydi<cPIn(im+1).

For heR*, h>0, and for an arbitrary finite measure 4 defined on B, we
introduce the following characteristics:

vi(4,h)= | min{1,x3h; 2} A{dx}, j=1,... k; (2.10)
IRk
(4, h)= max v,(4,h;); @.11)
1=2j=k
k
s A= [ Y x2h724{dx}+A{RN[~hh]}. 2.12)
[—h,h} j=1

It is not difficult to check that v(y4,h)=ypv(4,h) for any y >0 and
(4, h)Lv(4,h)<kw(4,h). (2.13)

Lemma 24. Let He{,, >0, 1>0, D=e(yH)eD,, y=0(D, 7). Then
a) y=c((yH, 1)), 2.14)
b) there exist e N, ueR! such that

[Ze(lnyl+1), (2.15)
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yH{RN[K W]} <c(lny|+1)*. (2.16)

The statement a) was proved by Le Cam [7] and the assertions b) were obtained
by Arak [1], sec also [2], Chap. 111, Theorem 3.3. The following lemma may be easily
deduced from [4], Lemma 6.1.

Lemma 2.5. Let Fe&,, heR¥, h>0. Then

k
O(F,h)=c(k) | |F©)ldt T1 A; (2.17)
[-h-T,h-1] j=1
where h™' e R* is a vector with coordinates hj*, j=1,... k.

Forhe R*, h> 0, introduce the class A (h) of functions g (t), t e R¥, representable
in the form

k
g= 1;[1 gj(lj)

where the functions g;e L' (RY), j=1, ..., k, are even, non-negative, non-increasing
for 1,20, and equal to g;(0) for |¢;|<h; "

Lemma 2.6 [18]. Let He ', he RY, h>0. Then for any g€ A(h) the inequality

[ gOH®At=c(k)QH ) | g(t)dt (2.18)
]Rk ]Rk
holds. In particular,
[ HMdt<=<c(k)Q(H.h) IT 4;*. (2.19)
[~h~1L,h-1] Jj=1

3. Beginning of the Proof of Theorem 1.1

Let Fe §;, neN and let for all t e R* the inequality F(t) > —1 +a, 0 <o < 2, be valid,
i.e. Fe&}. Denote

A=nF, D=emF)e®,nF; . 3.1
It is not difficult to see that for all teIR* the following relations hold true:
Dty=exp (n(F(t) 1)),

IF(t)| <max {exp (F(t)—1), e %}, 3.2)
|Fr ()] S [FM (] Smax {D(t), e ™}, (3.3)
|Fn(t) — F* ()| <max {cn ™1, 2e7 ™) (3.4)

In order to prove the inequalities (3.2)—(3.4) it is sufficient to consider separately the
cases F(£)=0 and F(t)<0. The inequality (3.4) shows that an analogue of the
inequality (1.4) is valid for the uniform distance between characteristic functions of
distributions to be compared.
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For ve R, v>0, set
PW=0(DW, v), y,= min pi, (3.5)
15jsk

The inequalities (2.17), (2.19), (3.3) imply that

Q(F"W=ck) |F"(t)ldt H h;

[-h~1,h- j=1
<ck) | (D(t)+e‘""‘)dt 1‘[ h

[~h~1,h- j=1
§C(k)(Q(D,h)+€_"“)
<c(k) Gyte™™). (3.6)

for any he R*, h>0.

Fix teR¥, >0, and apply the statement of item b) of Lemma 2.4 to the
distributions DY =¢(nF¥)eD,. By (2.15), (2.16), (3.5), for j=1, ..., k there exist
L,eN, u” eR" such that

L<c(iny|+1), 3.7
FO{RNK, @]} en 1 (iny@] +1). (3.8)
For meIN we define the sets K, = R* as direct products of the sets [K,,(u")]

k
K= ® 1K)y (3.9)
J

mrJ

Remark 3.1. The sets K, are symmetric with respect to zero, contain the point 0 and
grow when m increases. In addition, if xe K,,, ye K, then x+yeK,, ., .
Setting

s=F{[—t,1]}, v=F{K\[ -7, 7]}, w=F{R"K,},
(3.10)

we represent F'as a mixture of distributions U, R, P & §; concentrated on the disjoint
sets [—1,7], K,\[ —7, 1], R"\K,, respectively:

F=sU+vR+wP,

U{[—7, 7]} =R{K\[—7, 7]} =P{R\K,} =1. (3.11)

Define also the probability measures L, We &; and the numbers b, g by the relations

bL=sU+vR, qW=vR+wP. (3.12)

It is evident that
F=bL+wP=sU+qW, (3.13)
stv+w=1, b=s+v=1—-w, g=v+w. (3.14)

The numbers and the distributions just introduced depend on the choice of a
parameter 7. From (3.5), (3.8)~(3.10) it follows that
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k
wSen™t Y (Iny?|+1) Sckn ™ (Iny,|+1)*. (3.15)
=1
Set ’
A,.=nbL=A4—nwP. (3.16)

The relations (2.10), (2.12), (3.15), (3.16) imply that for e R, § > 0, the following
inequalities are valid

vj(Az 5J)§U;(Av 5}) +Ck(|ll’1y,’l + 1)3a J:L >k 5 (317)
v(4,8)<v(4,,8)+ck*(lny|+1)>. (3.18)
In addition, by (3.1), (2.12), (3.11)—(3.14) we have the equality

k
v(4,F)=ns | Y x3t72U{dx}+ng. (3.19)
Rk =1

For he R*, h>0; G, He §, define
on(H,G)=01,,(H,G) (3.20)

(here and further 1, is the indicator function of a set 4). Instead of Theorem 1.1 we
shall prove the following more general result.

Theorem 3.1. For any he R* such that h>0 the inequality

1
en(F", P )y seyn™ ﬁ G (vl + 1)

j=1

_ ‘ +c(k)exp(—nou+ck(nn+1)%) 3.21)
is valid.

Theorem 1.1 may be easily derived from Theorem 3.1 since
oW, Fr*) Ssup gy (F F*Y).
Note that the inverse assertion is false because the factor after c(k)rn ! in the right-
hand side of (3.21) can be small, but (1.4) implies only that
on(F", F** ) <c(k) (n™! +exp (—na+ckIn’n)).

We can interprete the inequality (3.21) as a non-uniform bound for g, (F", F**1),
taking into account the possible smallness of y{’ for sufficiently small 4;, j=1, ... k.
To prove Theorem 3.1 we shall need the following Lemmas 3.1 and 3.2

Lemma 3.1. For all JeZ and for all t,heR* such that 0<t<h the following
inequalities holds :

oL (F", FrYy (k) (n™ 1 pyu(4, ) +e ™)
<c(®) (0 @ Ae, D+ (Iny |+ 1)) +e™ ™), (3.22)

1 1 3k
o0, (P, P (k) {,,,1 (mun y,|+1>3+———(('vfj:[:))f,z>

+exp(——m¢+ck(!lnytl+1)3)}. (3.23)
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Lemma 3.2. For all JeZ and for all ©,heR* such that 0<t<h; y{? <499,
j=1,...,k, the inequality
G (F" Fr Y Sc(k)n P (Inpy |+ 17
+c(k)exp (—no+ck(|lny,|+1)%) (3.24)
is valid.

The proof of Lemma 3.1 will be carried out in Sect. 4. Lemma 3.2 will be proved
in Sect. 5 with the help of Lemma 3.1. Finally, in Sect. 6 we shall derive Theorem 3.1
from Lemma 3.2.

4. Proof of Lemma 3.1

We sshall prove Lemma 3.1 for J =0 only. The fact that this does not imply the loss of
generality follows from the symmetry argument. We assume below that h, t€ IR* are
fixed (although arbitrary) vectors satisfying the Lemma 3.1 conditions.

First we shall prove the inequality (3.22). Using (3.13) and the definition of the
metric gy .(+,+) we find that

Qh,r(Fna Fn+1)§sgh,r(Fn: UFn)+QO,t(Fna WF”) . (41)

It follows from (2.1), (2.2), (2.5), (2.8), (3.6) that for any G e, the following
inequalities hold true:

on,(F", GF") Smax (I, .(F"), I, .(GF")}
QUL =ck)(ypt+e™ ™). (4.2)
In particular,

On,(F", WEN Zc(k) (yp+e™™). (4.3)

Let us estimate gy, ,(F", UF"). For this we consider the integral
I= | f(x)(F"—UF") {dx} (4.4)
]Rk

where f=f, , ., ze R, and introduce independent random vectors &, 5 eR* with
distributions Z(&)=U, ¥ (y)=F". Then the integral I can be rewritten as

I=E(f(n) —/(n+&)=E( () ~f (n+ ) ¥.(n) (4.5)

where ¥, is the indicator function of the parallelepiped [z —7,z+h+1]. We have
used that U{[—t,7]} =1 and f(x)=0 for x¢[z,z+h].

Let us apply under the expectation sign in the right-hand side of (4.5) the Taylor
formula to the function f*(«) =f(y+a), xR, Note that E£€=0 since Ue ;.
Using (2.7) and taking into account the mutual independence of # and & we obtain
that
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k %)
=)~ Y &5 )

x=n

kK& 2
Z Z 515 o7 (x)|X:"+0§}glz(n)}‘

1
2 & = P Oxox,

k k
§cE‘Pz(n)E<Z Y Ié,-ir,-‘lli,,lr?)

j=1p=1

<c(k)E¥,(nE i &2, (4.6)
i=1

Since 0 <t <h, with the help of (3.6) it can be easily deduced that
E¥,iN=0(Lm.h+27)
Sc(k)Q(F", h)
Zck)(yu+e™ ™). “.7
Using (4.4), (4.6), (4.7), we obtain

k
On - (F" UF) S c(k) (i te™™) ) E&fry2. (4.8)
=

Since ¥ (&)= U, the inequality (3.22) follows immediately from (4.1), (4.3), (4.8),
(3.18), (3.19).

Let us pass on to the proof of the inequality (3.23). Suppose, at first, that w>1/2.
Then, applying (3.15) and the inequality (4.2) for G=F, we get

o (" ) S k) (py+-e ™) S c(k)w(py +e7™)
<c(kyn ' (Inyd+17 Gy te ™). (49)

Obviously, (4.9) implies (3.23) if w> 1/2. Therefore we shall further assume that

wzi. (4.10)
By (3.13), we have

On . (F", F"* 1) <bgy, (F", LF"y+wgy, (F", PF") 4.11)
and from (3.15), (4.2) it follows that
woy (F", PF) <c(k)n™ " (Iny,| +1)° (py +€7™). (4.12)

Let us estimate bg,, ,(F", LF"). It can be easily derived from (3.13) that

=Y Clb'w' L'P" (4.13)

r=0

where C, =r!/((n —r)!r!) are binomial coefficients. Using (2.1), (2.3), (2.5), (4.13)
we find
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on,(F", LE") =T, (F"—LF")

IIA

iM= iA1=

C:;brwn—-rgh,t(LrPn—r, Lr+1Pn—r)

IA

Crorw" gy (L7, LY (4.14)

¥

By (3.12), the distribution L may be written as

L=s5s,U+v,R where s,=sb"* v,=vh"!. (4.15)
Note that (3.10), (3.14), (4.10) imply 1 =2b=1—w=1/2 and, hence
SS5p=2s, v=p,=2v. (4.16)

Fix reN, jeN, where 1<r<n, 1<j<k, and apply Lemma 2.2 for Ly=LY,
Up=U", Ry=RY, 1y=1,, I=1,, u=u,

dd=ai=rs, | U dx;}=rs, | x3U{dx}. (4.17)
— ]Rk

By this lemma, the inequality
L9y { RY\[K, (“(j))]d:j + y,-}

(4.18)
=2exp(—y;/81))+exp(—d/8)
is valid, if
y;zo3/2t;, d22ru,. (4.19)
In addition, from (2.13), (2.14), (3.1), (3.5) it follows that
cSc(@(d,0) P <e)/kw(d, )P (4.20)
or
v(d,7)Scky;? 4.21)
Let
melN, mz=cyky,? 4.22)

where ¢, is a sufficiently large absolute constant. We shall apply the inequality (4.18)
for y;=mr;/2, d=m/2. The validity of the inequalities (4.19) is ensured by a suitable
choice of ¢, with regard to the relations r<n, v=<gq, (3.19), (4.16), (4.17), (4.21).
Setting now y;=mrt;/2, d=m/2 we obtain from (4.18) that

(LYY {RU[K,, (@], } <3e7™6 (4.23)
From (3.9), (4.23) it follows that
L'{RM\K, } <3ke™m16 (4.24)

for each re N such that 1 <r<n. The inequality (4.24) is also valid for r=0 since
L°=F and 0€K,,.

Let us estimate g, (L, L"*") for r=0,1,...,n. For this we take an arbitrary
ze R* and consider the integral
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L= 1§ fon ()L =L {dx}. (4.25)
]Rk
By Lemma 2.3, for j=1, ...,k there exist the functions w,(x;), g,(¢;) such that
a) 0=w;(x))<f,, s, tJ(x )<1 for all x;e RY;
b) w; (x) fz,,hj, (x;) for x;¢e] m+1(“ )](m+1)zj§
c) the functions w j(x ) are inﬁnitely differentiable on the real line and

(p)

J

sup

w( NE p=12,...; (4.26)

dxP ?
d) [w;(t;)|£g;(t;) for all r;,eR";
¢) the functions g;(¢;) are even, do not increase for #;=0 and take constant
values ¢;(0) for |r;|<2h;*

) [ g,t)dt, < In((m+1)+1). (4.27)
For xeR*, teRF set
k k
w(x)= U Wj(xj)7 h(x) :.fz,h,r(x)_w(x)i gy= Ij[l gj(tj)~ (4.28)

By property a) of the functions w;, for all x €R¥ the inequalities
0=h(x)st (4.29)
are valid, and from (2.7), (4.28) and from properties a), c) it follows that

2

ch
Z x| <2,

axj J X

for all j, peN such that 1 <<k, 1<p=<k. In addition, property b) and (3.9)
imply that

sup

X

X)|<— (4.30)

hA(x)=0 for xekK,,;. (4.31)
Represent I, as a sum
Iy=58o1, +voly +1 (4.32)
where
I = | h(x)(L'—UL") {dx}, (4.33)
]Rk
= [ h(x)(L"—RL") {dx}, (4.34)
Rk
L= [ wXx)(L" =L ") {dx} (4.35)
R ‘

(see (4.25), (4.28)).

Let us estimate /; and I,. For this we introduce independent random vectors
&, n, ¢ e R* with distributions Z(&)=U, £ (y)=L", ¥ ()= R and define a random
event Y, by

Yi={n¢K,}. (4.36)
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In view of (4.24),
Ely =P{Y} <3ke ™°. 4.37)
It can be easily seen that
Eé=0, (4.38)
since U= (&) e F;. It follows from (2.9), (3.9), (3.11), (3.12) that L{K, } = U{K,}

=R{K,}=1. Hence, if e K,, then, using (4.31) and Remark 3.1, we obtain that
h)=h(y+&)=h(y+{)=0. Taking (4.36) into account, we get

h=hmly,, h+E=h(+1y,, h+=h(n+O1y,. (439
Applying (4.30), (4.33), (4.36)-(4.39), the Taylor formula and the mutual
independence of  and £, we find that

| =[Eh () —h(+ &)
=[E(m) —h(+ &) 1y,]
k k azh

:%’E@n Z Z ¢i&y

j=1 p=1

(x)

x=n+9§>

0x;0x,

<c

k
E(ﬂyl Yy léjéplr;%;i)

k
j=1 p=1

k
<ck) Y E&t2Ely,
ji=1

k
<e(k)e™6 Y EéZey2. (4.40)
j=1

J

With the help of (4.29), (4.34), (4.37), (4.39) we can similarly derive the inequality
| =E(h(n) —h(n+0))l
=|E{(h(n) —h(n+L)Ty,}]
SP{Y,}<3ke ™16, (4.41)

Now from (3.14), (3.19), (4.16), (4.40), (4.41) and from the fact that Z(&)=U it
follows that

lso Iy +vo L) S c(k)nYv(4, t)e ™16 (4.42)

Let us pass on to the estimation of |I;|. Put

_oc—2w_oc—2w
T 1—w b

B (4.43)

If <0 then the inequality (3.23) follows immediately from the inequalities
on.(F", F""1)<1 and (3.15). Therefore we further assume that

£=0. (4.44)
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If for some te R we have L(t) <0 then, using the fact that Fe §% and the relations
(3.11), (4.15), (4.43), it is not difficult to show that

0=L(t)=b"*(sU@Mt) +vR(1)=b 1 (F(t) —w)

2—1+oc w
_———1_

Hence <1 and |LM)|S(1—P)lgcpeyy. If now L(t)>0 then |L(H)|=L(t)
<exp(L(t)—1). Thus, for all te R* we have

—1+4.

|L(t)| <max {exp(L(t) —1),(1 =P o<p<yy) - (4.45)
Define the distribution D*e®, &, with characteristic function
D*(t)=exp (r(L(t) —1)/2). (4.46)
From (4.45), (4.46) it follows that

|I:r(t) —I:'“(t)lgmax {r—f—i lj*(t), 21 —ﬁ)rﬂ{oygl}} (4.47)

for all te R¥.
By the Parseval equality, (4.28), (4.35), (4.47) and in view of property d) of the
functions w; and g;, the following inequality holds:

ILI=1Qm)7* | w(—ty (L) L tyat <L+, (4.43)
where R
_<® j O D*(t)dt, (4.49)
=i 9 '
L=c(k)(1 =By Voepey | g(H)dt. (4.50)
]Rk

Property e) of the functions g; ensures the function g to belong to the class A(h) and
to satisfy the Lemma 2.6 conditions. By this lemma,

[ ¢®D*®dt=c(k)QD*h) | gt)dt 4.51)
]Rk Rk

(see (2.18)). From (4.27), (4.28) it follows that
§ g®dt=c(k) I’i[ Bin(j(m+1)+1). 4.52)
R* j=1

In view of (4.46), D*=e(rL/2). Using the assertion a) of Lemma 2.4 we obtain
Q(D* h)<c(k)(r+1)v(L, h)~*7? (4.53)

(if =0 then (4.53) follows from the evident inequalities Q(D*,h) <1, v(L,h)<k).

Define meIN more exactly, setting m={[coky,*]+1 where [-] means the
integer part of a number. It is evident that (4.22) is then satisfied. With the help of
(4.21) we get
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v(d,7)e” ™ Scky;? exp (—coky, 2/16)

<cexp(—cky,?) (4.54)
and (3.5), (3.7), (4.52) imply
j gydt<c(k) (Iny |+ 1) (4.55)
R
In view of (4.49)—(4.51), (4.53), (4.55), the inequalities
L=cl) (lny|+ D+ 1) 72 (L, h) 77, (4.56)
L= c(k) (lny, |+ 1)1 =) o <p<yy (4.57)

hold true. From (4.25), (4.32), (4.42), (4.48), (4.54), (4.56), (4.57) it follows that
on (L', LY Zelk)y (™ exp (—cky;?)

+(lny,|+ 1)3k((”+ 1)_3/2(0(14: h))d/z +(1 _ﬁ)rﬂ{0§[i§1})} . (4.58)

Let us return to the formula (4.14). By using (3.14), (4.10), the binomial formula and
the Holder inequality it is not difficult to show that

Y bWt (1) o (4.59)
=0

In addition, with the help of (3.14), (3.16), (4.43) we obtain

=

Crbw" (1 =Y =B - +w)'=(1—a+2w)", (4.60)

r=0
(1 —a+2w) "1y peqy Sexp(—n(x—2w)), (4.61)
v(L,W=n"to(4,,h). (4.62)

Now the inequality (3.23) follows immediately from (4.14), (4.58)—-(4.62), (3.15).
Hence Lemma 3.1 is completely proved.

5. Proof of Lemma 3.2

Let 7,heR* satisfy the Lemma 3.2 conditions, i.e. 0<t<h and y{’<4yY for
j=1,..., k. Taking into account the obvious symmetry of the situation considered in
Lemma 3.2 with respect to a parameter J we shall consider again the case J =0 only
and shall prove the inequality (3.24) for gy, ,(F", F** ") =g{".(F", F" 7). Put

Kn=7n 27 (I y,l+1)7%. (5.1)

We shall construct the numbers re Z, 0 <r<k; ¢, ..., &,, using the following rule.
We shall denote by t¥eR¥, j=1,...,r+1, the vectors having the coordinates
i =g for/<jand ¢’ =1, for/>j. Suppose that the numberse, , ..., &;_, are already
constructed. So, we know the vectors 7, ..., 7Y (of course, for j=1 we have
constructed the vector 7' =1).
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Consider separately three possible situations:

a) vi(deins T Sy 5 (5.2)
b) 04,0, ) <y <v;(4:00575) 5 (5.3)
C) Uj(At(j),hj);Kh. (54)

In the case a) we set ¢;=1;. In the case b) we take as ¢; the solution of the equation
Uj(Ar(j),Sj)th. (55)

This solution exists and 7; < ¢; < i; because the function v;(4.», #) is non-increasing
and continuous with respect to u, #> 0 (see (2.10)). Finally, in the case ¢) we denote
r=j—1 and complete the construction. If on constructing the numbers e,
j=1,...,k, the case c) does not appear, we take r==k.

Denote by h e R*, j=1, ..., r, the vectors with the coordinates A" =¢, for /=j
and A{? = h, for /+j. Then

Jon, w0 =fo.n0+0+ o0, -
Hence

On, e (" F* ™Y S 0p w5+ 0 (F F* Y+ 04 oo (F7 F*F1) (5.6)

With the help of an induction one can easily derive from (5.6) the inequality
Qh,t(Fnﬂ Fn+1):gh,1(1)(Fna Fn+1)
<Y 0w, e (F " ) 4 gy o 0 (F FT1). (5.7
j=1
From the Lemma 3.2 conditions and from the definition of the vector ¥ it follows
that
‘ln))f(j)|§|ln'yh‘+1n4, j:1,...,r+1, (58)

(we use (3.5) and the fact that 7;<¢;<h;).
Consider more explicitly the process of construction of numbers ¢;. If the case a)
occurs for a number j then, of course,

Onn, sz (F", F"7 1) =0 (5.9

since h) =1 =¢;=1;. In addition, in view of (3.17), (5.2), (5.8),

vi(4,¢)=v;(4, 1))
S 0,(dn, 7)) + k(0 y,0) +1)°
<xp+ck(Iny,|+1)°. (5.10)
If now the case b) occurs then, by (2.10), (2.11), (2.13), (5.5), we have:

0(de, BD) 2 0;,(do00, B =16, (5.11)
Using the inequality (3.23) and taking into account (5.1), (5.8), (5.11), we find that
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_ In (i +1 3k
Qh(jJ,,(j)(F",F"H)§C(k)n l{yh(j)(llny,(j)l+1)3+ (In ool +1) }

(4, B
+e(k)exp (—na+ ck(lny,p| +1)%)
Sclk) (n P (Inyyl+ 1)
+exp (—na+ck(lny] + 1)) (5.12)
(it is clear that hY <h and v, < yy). The relations (3.17), (5.5), (5.8) imply now that

vi(4, ) Sv,(dein, £)) + ck (Iny, 4 1)°
Skpt+ck(Iny,+1)°. (5.13)

If the construction of the numbers¢, , ..., ¢, is completed by the realization of the
case ¢) for j=r+1 then, in view of (2.11), (2.13), (5.4),

U(A,,(r+1),h)gvr+1(Af(r+1),h,.+1)§Kh. (514)

Using again the inequality (3.23) and taking (5.1), (5.8), (5.14) into account we
obtain

Onzc+n(F" FP T Y Sekyn™ Py (Inypy) + 1)
+c(k)exp (—no+ ck([lnpy| +1)%) . (5.15)

In this case the inequality (3.24) follows from (5.7), (5.9), (5.12), (5.15) (of course,

ln | < [lny,[).
If, onthe contrary, forallj=1, ..., k we deal with the casesa) or b) then r =k and
" W =(g,...,¢,). According to (2.11), (2.13), (5.10), (5.13), we have

U(Af(m» 1)) ék max U]-(A, 8}-)

1sjsk
Sk +ck?(lnyy|+1)* . (5.16)

Applying the inequality (3.22) of Lemma 3.1 and taking (5.1), (5.16) into account we
find that

On,zos 0 (F" F* ) S e (k) (n™ My u(4, D) 7™
Sc® 7 P (lnpy +1P* 7). (5.17)

The inequality (3.24) can be derived from (5.7), (5.9), (5.12), (5.17). Thus, Lemma
3.2 is completely proved.

6. Proof of Theorem 3.1

Let he R%, h>0. Assume that y,<2n 2. Then from (2.1), (3.5), (3.6), (3.20) it
follows that
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Qh(Fn’ F"*l)gmax {Fﬂ[u,m(Fn)’ Fﬂ[o,h](Fn+l)}
é F’ﬂ[ovm(Fn) = Q(Fn, h) éc(k) (’})h +e_nu)

1
ck)(n 'y 1’2+€_”")§C(k)< i H o +€_"“>- (6.1)
The inequality (6.1) implies (3.21) for Tp<2n2
Let now y,=2n"% Define the set

T={jeN:1<j<k, Q(DV,0)<2n ?}. (6.2)
For je T we can find the points t¥ such that
0<t¥<h;, n 20DV, <202, 6.3)

The existence of t¥ follows from elementary properties of one-dimensional
concentration functlons Let §>0 be an arbitrary number which is less than
min {min {t%,je T}, min{h;,j=1,...,k}}. Define the vectors &=2&(d),
t=1(8) e Rk, setting

g;=6, j=1,...,k;

T,=1%, jeT,; (6.4)

J J
1;=0, j=1,....k, j¢T.
By (2.4), (2.5), (6.2), (6.4) we get that

Jon ) =fone(®) =Y fo,0,0,(x) H Jo i, (X1) H Joma@). (6.5

jeT I=j+1

From the definition of concentration functions and from (2.4), (2.5), (6.5) it is not
difficult to deduce that for J=0

A (F F Y S o (F PP+ ) Q(FVY, 18). (6.6)
jeT
For arbitrary J € = the validity of the inequality (6.6) is established in a similar way.
It is clear that if Fe &% then FY e 4 for all j=1, ..., k. Applying the inequality
(3.6) to the distributions F“ and using (3.5), (6.3) we obtain that if je T and
vp=2n" 2% then
Q(FIY, ) =c(QDY, ) +e™™)

<c(n i+e ™ Zc(n Iyl +e™™)

<c(k) ( 1 (ygﬁ)ﬁw—"“). 6.7

Lemmas 2.1, 3.2 imply that for all Je&

1
o (F" F* ) <c(k)n ! H () (I +1)%)

kol
+e(k)exp (—na+ck(lny,|+ 1) T1 <ln %+1> (6.8)
ji=1
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In view of (3.5), (6.2)—(6.4) for all j=1,..., k we have y">n"? and, hence

()

In %gunygfngun yl<2nn. (6.9)
It is clear that
on(F", F"" D) <lim sup dy, 5 (F", F'71), (6.10)
o0
dh,s(é)(Fn’ Fn+1)§ z Qﬁ;l,)s(é) (Fna Fn+1) (611)
Je&

(see (2.4)—(2.6), [18], p. 85). From (6.6)—(6.11) we can easily derive the inequality
(3.21) for y,=2n"%. Theorem 3.1 is completely proved. We have already noted that
Theorem 1.1 follows from it.
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