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Summary. Let ~1, 42,..- be i.i.d r a n d o m  vectors in IRk with a c o m m o n  
distribution 5 ~ (~i)  = F, i = 1,2 . . . . .  Let S, = 41 + . . .  + 4,. We investigate how 
small is the difference between 5O(S,) and 5O(S,+ m) in the case when ~ have 
symmetric distributions. 

1. Introduction 

Let ~1 . . . . .  ~ . . . . .  ~IR k be i.i.d, r a n d o m  vectors with a c o m m o n  distribution 
5 O ( ~ ) = F ,  i = 1 , 2  . . . . .  Then the sum S , = ~ l + . . . + ~ ,  has the distribution F" 
(products and powers o f  measures will be unders tood  in the convolut ion sence: 
F G  = F *  G, F" =F*") .  Let m, n be arbi t rary natural  numbers.  We shall study how 
small is the difference between F" + m and F n in the sense of  uni form distance 9 ( ' ,  ") 
between distribution functions, i. e. how much  may  be changed the distribution of  S, 
after addit ion to it o f  the next summand  or of  a group of  summands.  

In au thor ' s  papers [15-17] it was shown that  one can obtain meaningful  
bounds  for ~o(F', F "+m) without  any momen t  conditions. Moreover ,  if the distri- 
but ion F i s  centered so that  all its marginal  distributions have zero as medians, then 
o~ (F", F n + 1) < c k n -  1/2 where c is an absolute constant.  The p r o o f  o f  this inequality is 
relatively simple and is based on classical bounds  for concentra t ion functions of  
convolutions.  

Essentially more  complicated methods  are needed to investigate the case of  
symmetric distributions F. F r o m  the above ment ioned inequality it follows that  in 
this case Q(F", F "+ 1)< ckn-1/2 .  It can be easily seen that  this inequality is optimal 
with respect to order. But we shall show that  it may  be essentially improved in the 
case when the characteristic funct ion F(t)  is uniformly separated f rom - 1 .  In 
p articular, we shall prove that  Q (F", F" + 1) < c (k) n - 1 if F(t)  > 0 for all t ~ IRk. Using 
this fact for the distribution F 2 with symmetric F we obtain  a paradoxical  
statement:  for all natural  numbers  n and for any symmetric distr ibution F the 
inequalities 
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o~ (F",F"+~)<ckn-~/2,  o(F" F"+Z)<c(k )n  

are valid and they are both optimal with respect to order. 
It is evident that the knowledge about  the closeness of F" and F" + ~ is useful for 

studying distributions of the form 

G= ~ p~F s, 0<p~_<l ,  ~ p ~ = l .  
s = 0  s = 0  

As an example we obtain Theorem 1.4 which contains a new estimate for the 
uniform distance between the n-fold convolution o f f  ~ of  a symmetric distribution F 
and the corresponding accompanying law 

It will be proved that 

nS 
- n  _ _  F S e (nF) = e s ! " 

s = 0  

0 (F", e(nF)) < c(k)n  1/2. 

All above mentioned inequalities are especially interesting because they give bounds 
which are independent of  any characteristics of F. Note that these inequalities are 
multidimentional generalizations of analogous one-dimensional results contained 
in [16, 17]; [2], w167 5 and 6 Chap. V. 

To prove our results we use a new method of estimating the uniform distance 
between convolutions. This method is an improved version of the triangular 
functions method, firstly proposed and applied in one-dimensional case by Arak 
[1 ], see also [2]. Another  example of  the application of this method is the proof  of  
Theorem 1.3 f rom [19] that will be proved in a separate paper. Now we introduce 
some necessary notations. Let ~3 k be the o--field of  Borel subsets of  the Euclidean 
space IR k, ~k be the set of  probabili ty measures on ~3 k, :D k be the set of  infinitely 
divisible distributions in ~k, ~ ,  c ~k be the set of  symmetric distributions in ~k i.e. 

~ + c ~ s  be the set of  distri- of distributions 5e(~) for which ~ ( r  ,~k Ok 
butions with non-negative for all t e IRk characteristic functions. The notation c( . )  
will be used for different positive constants depending only on the indicated 
argument. For example, c(k)  depend only on the dimension k, c are absolute 
constants. The writing x e IRk will further denote that x = (x 1 . . . .  , Xk) where x~ ~ IR1, 
j = 1 . . . . .  k. For  x, y e IRk we introduce the usual partial ordering: x < y means that 
x j < y j  for all j = l ,  ... ,k  and we denote [ x , y ] = { u ~ i R  k : x < u < y } .  We shall also 
write x < y if xj < yj for al l j  = 1 . . . . .  k. Let N be the set of all natural numbers, 7/be 
the set of  all integers, E a ~ ~k be the distribution concentrated at a point a e IRk, 
E = E 0 where 0 is the zero vector in IRk. The symbol 0 will be used to denote different 
quantities for which 10[_-< 1. For  F = ~ ( ~ ) e  ~k we shall denote its distribution 
function by 

its characteristic function by 

k 

tO(t) = ~ e x p ( i ( t , x ) ) F { d x } ,  t e i R  g, ( t , x ) =  ~ t j x j ;  
~,k j =  1 
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its concent ra t ion  funct ion by 

Q ( F , h ) = s u p  F { [ y , y + h ] } ,  h ~ I R  k, h>__0; 
y ~ N  k 

and F(J)=Sq(~j) ,  j = l  . . . . .  k. We shall est imate the un i fo rm distance between 
distr ibution funct ions 

~o(F, G ) =  sup IF(x) - G ( x ) l  
x ~ N  k 

where F, G ~ 3k. For  F ~  3k, 2 > 0  introduce a distr ibution e (2F)~  ~k by 

e(2F)=e -~ ~ 2SFS/s!, F~ 
s = O  

Its characterist ic funct ion is equal  to exp ( 2 ( F ( t ) -  1)), t~  IR k. 
N o w  we re turn  to the s ta tement  of  the problem.  It  is evident that  i f a  distr ibution 

F~3k is concent ra ted  on a hyperplane  which does not  contain  zero and is 
o r thogona l  to one of  coordinate  axes then ~ (F", F" + m) = 1 for  any natura l  numbers  
n, m. In part icular ,  we can consider the case when F =  E~, a ~ IRk, a + 0. On the other  
hand,  if all distr ibutions F (J) e 31, J = 1 . . . . .  k, are either non-degenerate  or equal  to 
E ~ 31 then, as is shown in [15], ~ (F", F ~ + 1 ) ~  0 and, moreover ,  there exists c (F) such 
that  

o(F~,Fn+I)<_ c(F), n~N. (1.1) 

A point  a e IRk will be called the q-quanti le o f  a distr ibution F e  3k, where q e IRk, 
0 < q < l ,  1 = ( 1 ,  1 . . . . .  1)EIR k, if F(Y){( - o% aj)}<=qj, F(J){(aj, oo)} _<_1 - q j  for  all 
j =  1 . . . .  , k. In [15] it was also shown tha t  if 0 is the q-quantile o f  a distr ibution 
FE3k and 0 < q < l  then 

k 

o(F",F"+l)<cn -1/2 ~ ( q j ( 1 - q j ) ) - ' / 2  (1.2) 
j = l  

for  all n ~ N.  I f  q = (1/2, 1/2,..., 1/2) ~ IRk then the inequali ty (1.2) turns into 

~(Fn, F'+l)<=ckn -1/2, n~N. (1.3) 

In part icular,  the inequali ty (1.3) is valid for any symmetr ic  dis t r ibut ion F ~  3~- 
Let F be a one-dimensional  lattice symmetr ic  distr ibution concent ra ted  on the 

set of  odd numbers .  Then the distr ibutions F ' ,  n = 1, 2 . . . .  are concent ra ted  either on 
the set o f  odd numbers  or  on the set of  even ones in accordance with evenness of  a 
number  n. Therefore,  ~(F",F"+I)>Q(F",O)/2. For  m a n y  distributions,  e.g. for  
F = E _  1/2 + E 1/2 the concent ra t ion  funct ion Q (F", 0) behaves as c (F) n - 1/2 i fn ~ oe. 
This indicates that  the order  o f  decreasing with respect  to n of  the r ight -hand side of  
(1.3) cannot  be increased wi thout  addi t ional  conditions.  

It is easy to show the distr ibution F 6  3~ is concent ra ted  on the set of  odd  
numbers  if and only if its characterist ic  funct ion F( t )  is equal to - 1 at the point  
t = ( 2 m + l ) ~ z ,  where m~2g, for  example,  / ? ( t ) = c o s t  for F=E_l/2+E1/2. The 
following Theo rem 1.1 says tha t  the separa t ion  f rom - 1  o f  the characterist ic  
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function of a distribution F e ~ ,  leads to more quick decreasing of ~ (F", F" § 1) than 
the inequality (1.3) is able to provide. For  0 < c~ < 2 define the classes of probability 
laws 

~ = { F e ~ : f f ( t ) > - l + ~  for all te]Rk}. 
It is easy to see that ~ 1  ~ ~ 2  for ~1 > ~2 and 51 = ~ .  

Theorem 1.1. Let 0 < ~ < 2 and F e ~ .  Then 

Q(Fn, F~+l)<e(k)(n -1 +exp ( - n ~ + c k l n 3 n ) )  

= c(k)n -1 + o(n-1). (1.4) 
for any n e N .  

The considerable part  of  this paper  (Sect. 2-6) is devoted to the proof  of  
Theorem 1.1. Now we deduce a number of  consequences of  this theorem. 

Corollary 1.1. For all n e N the followin9 inequality holds: 

sup ~(Fn, F"+l)<c(k)n -1 . 

Proof It is sufficient to apply Theorem 1.1 for ~--I. 

Corollary 1.2. For any a > O, b > O, F e ~ the inequality 

~(e(aF), e((a + b ) F) ) < m i n  {b, c(k )ba -1 } (1.5) 
is valid. 

Proof. For  a <  1 the inequality (1.5) can be easily deduced from the formula e((a 
+ b)F)= e (aF)e (bF) and f rom the following well known property of  the uniform 
distance : for any F, G, HE ~k 

o(FH, GH) <= Q(F, G). (1.6) 
In fact, 

(e (aF), e (aF) e (bF)) < 0 (E, e (bF)) < 1 - e-  b < b. 

Let now a > 1 and let m c 7/be the largest integer which is less or equal to a/b. 
Applying Corollary 1.1 for the distribution G = e (bF) ~ ~ and using the inequality 
(1.6) we obtain: 

(e(aF), e ((a + b)F)) < o(e(mbF), e((m + 1) b r ) )  

=~(Gm, Gm+l)<  c(k) <c(k)b 
= m + l  = a " 

Remember  that, according to (1.3), 

sup Q(F", F "+1) <ckn -1/2 (1.7) 
Fc~ 

and the order of  decreasing of the right-hand side of  (1.7) with respect to n cannot be 
enlarged. Using Corollary 1.1 we shall show that sup o(F",F "+2) decreases 

essentially more quickly than the very close to it left-hand side of(1.7). At the same 
time we shall estimate ~ (F", F" +m) for each m e N. 
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Theorem 1.2. For any m, n ~ IN the following inequalities are valid: 

sup ~(F",F'+Z)<=c(k)n -1 , 

s u p  ~ ( I  n, F n + 2 m) ~ c (k) mn - 1, 

sup o(F", F "+zm+l) <=ckn -1/2 +c(k)  mn-1 , 
Fc ~ 

and, consequently, 
sup _ sup 0(F',  Fn+m)<=c(k)n -1/2. 

l <-m<Vn Fe~f~k 

Proof. Let n = 2l, l e N. If F e  ~ then F 2 ~ 5 + and, by Corollary 1.1, 

0 (F", F" +2) = 0 ((F2),, (F2), + 1) _< cl-  1 = cn- 1. 

If now n = 2 1 + l ,  IEN, then using (1.6) it is not difficult to show that 

(~.8) 

(1.9) 

(1.10) 

o(F', F "+2 ) =< O ((F2) ', (F2)Z+ l) <=cn 

The inequality (1.8) is proved. The inequality (1.9) can be easily derived from (1.8) 
with the help of the triangle inequality. To obtain (/. 10) it is necessary to attract in 
addition the inequality (1.7). 

Let {1, ~2 ... .  be i.i.d, random vectors with a common distribution FE ~k and 
let (/~, v) e 7],,2 be a random vector, independent of {~i}~=1 and having non-negative 
integer coordinates. Denote 

U= 2"(p), V= ~e(v), G = ~ ( r  + ... +Q) ,  H= 2 ' ( r  + ... + ~ ) .  

It is well known that 

G =  ~ P { # = s } F  ~, H =  ~ P { v = s } r  ~. (1.11) 
s=0 s=0 

We shall show that the following upper bound for the uniform distance between the 
distributions G and H holds true, if F~ ~ .  

Theorem 1.3. I f  F~ ~ then 

0(G, H)_<_infEmin +e(k)  v ~ i - '  1 , (1.12) 

and if f e ~ then 

0(G,g)=<infEmin  c ( k ) ~  1 . (1.13) 

Here the lower bound is taken over all possible two-dimensional joint distributions 
s v)) e ~2 such that ~ ( g ) =  U, s176 = V. 

Proof. Let F e  ~ .  From (1.9), (1.10) it follows that for all n, m e ~ such that n > 0, m 
_-> 0 the inequality 
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. f ck Im-n l  1} 
o(F' ,F ) < m , n ~ + c ( k )  n + ~ '  (1.14) 

is valid. Let xelR k. Then (1.14) implies that 

IG(x)-H(x)l = ~ ,  (P  {z__~l ' i < x } - P  {i=~ r  {#=m, v=n} 

< 2 rain +e(Ic) n ~ l - '  1 P {#=m,v=n}  
m ,  n 

= E m i n  ~ + c ( k )  l . 

Hence the inequality (1.12) is proved. The inequality (1.13) can be obtained in a 
similar way. If V= E, then Theorem 1.3 turns into the following result. 

Corollary 1.3. I f  Fe  ~,,  n ~ N then 

e{~ t # _ 1 ,  t } (1.15) e(G,F ' )<Emin  +c(k) n 

and if  F ~  then 

o ( G , F ' ) < E m i n { c ( k ) ~ - l ,  1}. (1.16) 

The inequalities (1.15), (1.16) show that ifn is large and E ~ - 1 is small then the 

distribution G of a sum of random number of summands does not considerably 
differ from the distribution of the sum of n summands and we can find the upper 
bounds for the closeness of above mentioned distributions which are uniform with 
respect to classes ~, and ~ ; .  With the help of the inequalities (1. I)-(1.4) we can also 
obtain analogous inequalities for other classes of distributions. 

The distributions of sums of a random number of i.i.d, summands were 
considered in many articles (see, for example, [3, 6, 9, 12, 13]). In particular, there 
can be found results about the closeness of studying distributions to the 
distributions of sums of a non-random number of random variables (the so-called 
transfer theorems). In several works the number of summands is not supposed 
independent of these summands (see, e.g., [9, p. 418], [13]). But it should be noted 
that the statements contained in the most papers are either of qualitative character 
or proved under additional moment restrictions. We do not mention here numerous 
works about the central limit theorem for random sums. 

As an example of the application of the inequality (1.15) we give an estimate for 
the closeness of F',  where F e  {}~, to the accompanying distribution e(nF) ~ ~k. It 
should be noted that this estimate is independent of F e  ~ .  

Theorem 1.4. For any n ~ N the inequality 

sup 0 (F', e(nF)) <= c(k)n- 1/2 (1.17) 

is valid, e~8~ 
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Proof. It is sufficient to note that the distribution e(nF) satisfies all conditions 
imposed on the distribution G from (1.11) if s  is the Poisson 
distribution with expectation E # =  D # = n .  In view of (1.15), 

o(F", e(nF)) < ckn- 1/2 + c(k)n-  1 El# -n l  

=ckn -1/2 +c(k )n - lE]#  - E # I  

<ckn 1/2 + c ( k ) n - 1 ] ~  

<=c(k)n -1/2. 

The closeness of n-fold convolutions of arbitrary distributions from ~k to 
corresponding accompanying laws was studied by Pr6sman [10]. He proved that 

inf 0 (F", E,a e (nEE_ a)) < c (k) n-  1/3 (1.18) 
a e ~  k 

for any F e  ~k- It is known that the inequality (1.18) is unimprovable with respect to 
order and cannot be essentially strengthened in general case. The inequality (1.17) 
shows that such sharpening is possible for symmetric distributions F. 

One-dimensional variants of above mentioned results can be found in [2], 
w167 Chap. V, see also [11, 16, 17]. There can be also found the proofs of 
unimprovability of some of them with respect to order (of course, for this it is 
sufficient to consider the one-dimensional case). For example, in order to verify the 
fact that the inequalities (1.1), (1.3), (1.10) cannot be sharpened it is sufficient to 
consider the distribution F =  E_ 1/2 + E 1/2, but for the inequalities (1.8), (1.9) and 
for Corollary 1.1 one should analyze the case when F =  �9 is the standard normal 
distribution X(0 ,  1). 

Consider now the question about the unimprovability of the inequality 
(1.4). We shall show that the dependence of the right-hand side of this inequality 
on c~ is close to unimprovable one. As an example we consider the distribution 
F=(1 -cO(E_i /2+E1/2)+c~cbe~.  It can be easily proved that 

o(F", F "+1) >c(1 - -00nn  -1/2 . 

Assume that the question is how little must be ~ = 7(n) in order to ensure the validity 
of the inequality o(F",F"+l)<c(k)n -1 for all F e ~  ("). In view of (1.4), we can 
choose c~(n)=ckn-lln3n. On the other hand, the above example says that ~(n) 
cannot be chosen less than cn -1 lnn. 

By (1.4), in the Theorem 1.1 conditions for any X c  IR k, representable in the form 

X =  {X e IRk : xj < yj, y je  IR 1, j =  1 . . . . .  k} , 

the inequality 

IF"{X} -F"+l{X} l<c(k ) (n - l+exp( -nc~+ck ln3n) )  (1.19) 

holds. The question about the possibility of the extension of the inequality (1.19) on 
arbitrary convex sets X c  IRk remains open. However, this inequality can be easily 
extended on convex polytopes with a number of vertices, bounded by c (k). In fact, if 
the distribution F =  s162 satisfies the Theorem 1.1 conditions then the same may be 
said about the distribution F* =5('(Ar where A:IRk+IR k is an arbitrary linear 
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operator. Using this observation, we can easily obtain the inequality (1.19) for the 
sets X, representable in the form 

X =  {x e IR k : (x, tj) <yj ,  t je  IRk, yj e IR1, j =  1 .. . .  , k}. (1.20) 

Consider now a non-degenerate k-dimensional simplex Y given as the intersection 
of k + 1 half-spaces 

k+l  
Y = ~  Aj 

j = l  

where Aj = {x e IRk : (X, tj) <yj}, t je  IRk, ya e IR1 and let { e IRk be a random vector 
with s  Then, denoting Aj=IRk\Aj and using the formula (1.5), 
Chap. IV [5], we obtain 

} - Aj = a -  
I j : l  j = l  

+Z E 
J~<J2 J~<...<Jz 

+ ... + (  - -1 )k+IH{A1Az  ... Ak+l}. (1.21) 

Note that from the assumption about the non-degeneracy of the simplex Yit follows 
that A 1A2...-4k+1 =~b and so the last summand in the right-hand side of (1.21) is 
equal to zero. All of the rest sets X=Aj ,  ... Aj,, l<  k + 1, may be written as in (1.20). 
Applying (1.21) for H = F " ,  H = F  "+~ and using the inequality (1.19) we obtain 

IF" { Y} - r "  +1 { y}[ < c (k) (n-1 + exp ( - nc~ + ck in 3 n)). 

If now Yis a convex polytope representable as an union ofm simplexes with empty 
interiorities of their intersections then 

]F"{Y} - r " + l { Y } ] < c ( k ) m ( n - l  + e x p ( - n o ~ + c k l n a n ) ) .  (1.22) 

The right-hand side of (1.22) increases together with a growth of m. Therefore we 
have no possibility to obtain the inequality (1.19) for arbitrary convex sets by a 
passage to a limit. 

Remark  1.1. The inequality (1.22) may be considered as a generalization of the 
inequality (1.19) for a larger class of sets. Of course, analogous generalizations can 
be written out for other inequalities mentioned above. 

The rest of the paper is devoted to the proof of Theorem 1.1. We shall use 
the methods which are multidimentional analogues of the so-called triangular 
functions method developed and firstly applied by Arak [1], see also [2]. In the 
sequel we shall essentially use the results and the methods from [1 ]. Note, however, 
that in the multidimensional case it will be necessary to revise the arguments used in 
[2] to prove the one-dimensional version of Theorem 1.1. In particular, somewhere 
we shall refuse to apply the Parseval equality and shall use Lindeberg's method 
based on the Taylor formula (see [8, p. 82]). In order to obtain the possibility to 
apply this formula we shall change the triangular functions, used in [1,2], by their 
infinitely differentiable analogues. The technical details connected with above 
mentioned changes of methods are discussed in [18]. 
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2. Auxil iary Results 

Let 9J~ k be the set o f  all finite charges defined on ~3 k. Fo r  an arbitrary ~3k-measurable 
bounded  funct ion f and arbi t rary # e 93l k ; F, G e ~k denote 

r r  = sup S f ( x - z ) # { d x }  , 
z ~  k ~{k 

oy(F, G ) = F y ( F - G ) .  (2.1) 

In the sequel we shall use the following evident inequalities that  are valid for any 
#~9~k; F,G, HE~k" 

Q (# * H )  = V~- ( # H )  < Q (# ) ,  (2.2) 

oI(FH, GH) < of(F, G) . (2.3) 

Define now the funct ion ~o(x), x e IR*, setting 

q)(x)= e J 1-y e ; 1-Ydy for O < x < l ,  
o 

q~(x)=O for  x < O  and ~o(x)=l  for x > l .  

The funct ion ~o is infinitely differentiable on the real line. For  z, r, h, x e IR~, 
O<z<__h, set 

~o~,~ (x )  = ~o ( ( x  - z ) / ~ ) ,  

(x" -(o) (x f~,h,~ )=Jih,~, )=~Oz,~(X)--~O~,h(X), (2.4) 

(1) x f~,h,~( )=q~z,h(X)--~O=+h-,,~(X), 

@z,h,~(X)=(pz,~(X ) __(pz+h_z,z(x)=f(O~,~(X) (1) + fqz,h.~(X) . 

Denote  by Z the collection o f  vectors J E IR k having coordinates which can be equal 
either to zero or to unit. Fo r  F, G ~ ~k ; # E ~J/k ; J ~ E ; z, h, v, x ~ IRk, 0 < �9 < h, we set 

k 
(J) fz~,h,e(X) = l~  fz~P,)hv,~v(Xp), 

p = l  

k 

@z,h,,(x) = I~ gzp,hp,,v(Xp) = E /'(J) (x~ p : l  j ~ J z ,  h,,~ / ,  (2.5) 

~(a) O(ha),(F, G ) = e y ( F ,  G) ,  V~J,)(#)=Ff(#) where J=J&h,, 

dh,,(F, G)=oo ..... (F, G). 

Let us argree to omit a superscript (J) if J = 0  (as a rule, we shall estimate 
_ (o) 0 h , , ( ' , ' ) - - 0 h , , ( ' , ' )  only, keeping in mind the possibility to use the symmetry  

arguments).  Note  that  the characteristics just in t roduced can be non-zero if0 < ~ < h 
thena~,u,, ( )--- . It can be shown that  i f0  < T < h then only, since if zj = hj for s o m e j  #(J) x 0 

~(a) ( , ) and dh,,(- -) are metrics in ~k (see, e.g., [14], Theorem 2.2). It is easy to 
check that  for all z, h ~ IRk, 0 < V < h ; z e IRk; j,  p = 1 . . . . .  k ; F, G e ~ the following 
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inequalities are valid: 

dh,,(F, G) =< ~ e~,,t"(a) (F, G) . (2.6) 
J s ~  

aft,h,, C a2f*'h'" (X) < C (2.7) 
sup, 3Xj (X) < ~ ,  sup, 3X~aXp Z~ v '  

Fh,,(F ) < Q(F, h) (2.8) 

(see (2.4), (2.5)). We shall need the following auxiliary results. 

Lemma 2.1 [18]. Let  F ,G,  U e ~ k .  For helP,  k, h > 0 ,  denote ;@=Q(U(J) ,h j ) ,  
7~= min 7(h ~). Suppose that f o r  all J ~ ,  and for  all v , h ~ l R  k such that 0 < z < h ;  

l<j<k 
(J) < ~,(J) h =4Z .  , j =  1 . . . . .  k, the following inequality is valid 

e(2).(F. C) <-_ c(k)~ ~. (lln ~,1 + I)P + ~: (~) 

where a > O, fi > O, e 1 > 0 and c, 2 (T,) is a non-increasing non-negative funct ion o f  a 
parameter ~ ~ IRk. Then fo r  all J ~ ~ and for  all ~, h ~ IRk such that 0 < ~ < h the 
inequality 

k a_ 13 
0(hJ ), (F, G) < c (k, ~,/~) ea M ((';(h j~) k (lln ~(hJ)l + 1 f )  

j = l  

holds. 

We shall denote by 

1 Cd ) '~ 
j = l  

[X],={yelRk: inf rlx-yll~}, ~>0, 
x E X  

the closed z-neighbourhood of  a set X c  IRk. Define the set 

K,,(u)={~i=~ niui:nieTZ' I n ~ l ~ m , i = l  . . . . .  l } c l R  ~ (2.9) 

for ue lW,  m e N .  The following lemma is a special case of  Corollary 3.1 [18]. 

Lemma 2.2. Let  r ~ N and let a distribution L o ~ ~1 be represented in the f o r m  
L o = s o U o + v o R  o where 0<=%<=1, s o = 1 - % ;  Uo, R o e ~ l  and there exist such 
z o >= O, l ~ N ,  u ~ IR ~ that U o {[ - Zo, %]} = R o { [K t (u)]~o } = 1 and 

XVo dx =o, rso  Vo dx =o 
-(x) - c c  

Then fo r  any y >= 0 and fo r  all integers d>= rv o the inequality 
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(Lo)'{IRt\[K~(u)]~o+~} 

<2max{exp  - ~  , exp - 

(d-rv~ exp(  d4rv~ 
+max{exp  ( 4rvo ] 

holds. 

Lemma 2.3 below is an analogue of Lemma 4.1, Chap. III [2], obtained by Arak 
[1]. 

Lemma 2.3 [18]. Let 0 < r < h; l, m ~ N;  u ~ IW ; z ~ IR 1. There exist the functions w (x) 
and g (t) having the following properties." 

a) O<w(x)<fz,h,~(x) for all x~]R1; 
b) w(x)=f~,h,~(x)for x~  [Km(u)]m~ ; 
c) the function w(x) is infinitely differentiable on the real line and 

d~x , w(x) <c@) sup p = 1,2, " 
x = T P  ' " "  ' 

d) for all t ~ IR 1 the inequality I~ (t)l < g (t) is valid where 

~( t )=  ~ ei~Xw(x)dx 

is the Fourier transform of the function w; 
e) the function 9(t) is even, does not increase for t >= O and takes a constant value 

g(O) for [ t l<2h-1;  

f) ~ g(t)dt<cl21n(lm+ l). 
- o o  

For h~IR g, h>  0, and for an arbitrary finite measure A defined on !B k we 
introduce the following characteristics: 

vj(A, hi)= S min {1, x 2 hj -2} A {dx}, j = 1 . . . . .  k ; (2.10) 
p a 

oq(A,h)= max vj(A,hj); (2.11) 
l < j < k  

k 

v(A,h)= S Z xZh;ZA{dx}+A{IRk\[-h ,h]}  �9 . (2.12) 
[ - h , h ]  j = l  

It is not difficult to check that v(yA, h)=yv(A, h) for any y > 0 and 

co(A, h) <v(A, h) <kco(A, h). (2.13) 

Lemma 2.4. Let H ~  1, y>0 ,  r>0 ,  D = e ( y H ) ~  I, ?=Q(D,r) .  Then 
a) 7<c(v(yH, r))-1/2; (2.14) 
b) there exist l ~ N ,  u~IW such that 

l~c ( l lnT[+ l ) ,  (2.15) 
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ya{IRa\[K~(u)]~} <= c(lln 71 + 1) 3. (2.16) 

The statement a) was proved by Le Cam [7] and the assertions b) were obtained 
by Arak [1 ], see also [2], Chap. III, Theorem 3.3. The following lemma may be easily 
deduced from [4], Lemma 6.1. 

Lemma 2.5. Let F e  ~k, h ~ IR k, h > O. Then 

k 

Q(F ,h )<c(k )  ~ li(t)ldt 1~ hj (2.17) 
[ - h -  1,h -1  ] j = l  

where h -1 ~ IRk is a vector with coordinates h71, j =  1 . . . . .  k. 

For  h ~ IRk, h > 0, introduce the class A(h) of  functions 9(0, t 6  ]R k, representable 
in the form 

k 

g(t) = I-[ gj(tj) 
j = l  

where the functions gj ~ L 1 (IR1),j = 1 . . . . .  k, are even, non-negative, non-increasing 
for t j>0 ,  and equal to 9j(0) for Itjl<h71. 

Lemma 2.6 [18]. Let H e  ~ ,  h ~ IR k, h > O. Then .for any g E A(h) the inequality 

9 ( t ) H ( t ) d t < c ( k ) Q ( H , h )  ~ g( t )dt  (2.18) 
irk p k 

holds. In particular, 
k 

/ q ( t )d t<  < c ( k ) Q ( H , h )  1~ h j  1. (2.19) 
[ - h -  l , h  - t  ] j = l  

3. Beginning of the Proof of Theorem 1.1 

Let F ~  ~ , ,  n ~ N and let for all t ~ IR k the inequality i(t)__> - 1 + ~, 0 < ~ < 2, be valid, 
i.e. F s ~ .  Denote 

A = n F ,  D = e ( n F ) ~  ~)kC~ q~ . (3.1) 

It is not difficult to see that  for all t ~ IRk the following relations hold true: 

D(t) = exp (n ( i ( t )  - 1)), 

Iff(t)l_-< max {exp (if(t) - 1), e -  ~}, (3.2) 

1i"+1 (t)l < [i"(t)l < m a x  {D(t), e-"~}, (3.3) 

Iff" (t) - i "  +1 (t)[ < max {en- 1, 2 e-"~}. (3.4) 

In order to prove the inequalities (3.2)-(3.4) it is sufficient to consider separately the 
cases F ( t ) > 0  and i f ( t )<0 .  The inequality (3.4) shows that  an analogue of  the 
inequality (1.4) is valid for the uniform distance between characteristic functions of  
distributions to be compared. 
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For  v ~ IRk, V > 0, set 

7(,J)=Q(D(J),vj), 7v= rain 
l<=j<k 

The inequalities (2.17), (2.19), (3.3) imply that 

Q(F", h) < c(k) 
[ - h -  1 ,h - i ]  

for any hGiR k, h>0 .  
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(3.5) 

k 

IF"(t)ldt 1-I hs 
j = l  

k 

<c(k)  ~ ( /5( t)+e-"~)dt  l~ hj 
[ - h -  1,h -1 ] j = l  

<=c(k) (Q(D, h) + e  -"~) 

< c (k) (7h + e-"~). (3.6) 

Fix z ~ IRk, z > 0, and apply the statement of item b) of Lemma 2.4 to the 
distributions D (j) =e(nF (s)) ~ 7~ 1 . By (2.15), (2.16), (3.5), for j =  1 . . . . .  k there exist 
l s ~ N, u (s) ~ IRij such that 

l s < c(]ln 7(,s)[ + I) ,  (3.7) 

r (s) { I R I \ [ K 1  (u(J))]zj } ~ CH - l ( l l n  y<,s)l + 1) 3 . ( 3 . 8 )  

For m e N we define the sets Km c IR k as direct products of the sets [K,,(u(J))]m~j : 

k 
K m = | [K,,(u(S))],,~,. (3.9) 

j=l 

Remark 3.1. The sets K~ are symmetric with respect to zero, contain the point 0 and 
grow when m increases. In addition, if XeKml, y sK , .  2 then x+yeKml+, ,2 .  

Setting 

s = e { [ - , ,  z]}, v =F{K~\ [ -v ,  "l}, w =F{IRk\K,}, 

(3.10) 

we represent Fas  a mixture of distributions U, R, P s ~,  concentrated on the disjoint 
sets [ - ~ ,  ~], KI\[ - v ,  T], IRk\K 1 , respectively: 

F = s U + v R + w P ,  
(3.11) 

u { [ - ~ ,  ~1} = R { K I \ I - ~ ,  ~1} = p {iRk\/q } = 1. 

Define also the probability measures L, WE ~,  and the numbers b, q by the relations 

b L = s U + v R ,  q W = v R + w P .  (3.12) 

It is evident that 
F = b L  + w P = s U + q W ,  (3.13) 

s + v + w = l ,  b = s + v = l - w ,  q = v + w .  (3.14) 

The numbers and the distributions just introduced depend on the choice of a 
parameter v. From (3.5), (3.8)-(3.10) it follows that 
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Set 

k 

w ~ cn - ~ ~ (lln Y~J) l + 1)3 ~ ckn - 1 (lln y, I + 1)3. (3.15) 
j = l  

A~ = n b L  = A - n w P .  (3.16) 

The relations (2.10), (2.12), (3,15), (3.16) imply that for ~ 6 IR k, 6 > 0, the following 
inequalities are valid 

vj (A, 6~) < v i (A, ,  6~) + ck ([ln ~,1+ 1)3, j = 1 ....  , k ; (3.17) 

v ( A , O ) < v ( A , , 6 ) + c k Z ( [ l n T , [ +  l)  3. (3.18) 

In addition, by (3.1), (2.12), (3.11)-(3.14) we have the equality 

k 

v ( A , F ) = n s  ~ Z x Z z ] - z u { d x } + n q  �9 (3.19) 
Nk j = l  

For h~IR k, h > 0 ;  G, H e ~ k  define 

oh(H, G ) =  0~to.h~(H, G) (3.20) 

(here and further ~ A is the indicator function of a set A). Instead of  Theorem 1.1 we 
shall prove the following more general result. 

Theorem 3.1. For any h ~ IRk such that h > 0 the inequality 

k 1 

o h ( F ' , F ' + l ) < c ( k ) n  -1 I-[ ((Y(h~)) 3k (llnT~J)l+l)z) 
j = l  

+ c (k) exp ( - nc~ + ck (In n + 1)3) (3.21) 
is valid. 

Theorem 1.1 may be easily derived from Theorem 3.1 since 

~(F',  F '+  t) =< sup oh(F,,F"+a).  
h 

Note that the inverse assertion is false because the factor after c (k )n -a  in the right- 
hand side of (3.21) can be small, but (1.4) implies only that 

Qh (F', F" + 1) < c (k) (n - 1 + exp ( - nc~ + ck In a n)). 

We can interprete the inequality (3.21) as a non-uniform bound for 0h(F", F"+I), 
taking into account the possible smallness of T(f for sufficiently small h i , j =  1 . . . .  , k. 

To prove Theorem 3.1 we shall need the following Lemmas 3.1 and 3.2. 

Lemma 3.1. For all J ~ Y, and for  all v, h ~ IRk such that 0 < v < h the following 
inequalities holds: 

O(s) iF" F" + 1 ~ < c (k)  (n - 1 Yh v (A, ~) + e-"~) 

< c ( k ) ( n - ~ y h ( V ( A , , v ) + ( l l n y ,  l + l ) 3 ) + e - ' ~ ) ,  (3.22) 
{ ( ('ln Y'l + 1)3k'] 

,,(a) ~v. v . + l ~ < c ( k )  n -~ ~ h , , ~  , - -  J =  7,([ln7,[+1) 3-~ ( v (A , , h ) ) l / 2 )  

+ exp ( --nc~ + ck (lln 7,1 + l)a)~ - (3.23) 
t 
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Lemma 3.2. For all J ~ Z  and for  all z, h6IR k such that 0 < z < h ;  7(hJ)<4~, (J) 
j = 1 . . . . .  k, the inequality 

e(ha),(F ", F" + 1) < c (k )n - 1  ~)1/3 ([ln 7,,I + 1) 2k 

+ c (k) exp ( - na + ck (lln 7,1 + 1)3) (3.24) 

is valid. 

The proof of Lemma 3.1 will be carried out in Sect. 4. Lemma 3.2 will be proved 
in Sect. 5 with the help of Lemma 3.1. Finally, in Sect. 6 we shall derive Theorem 3.1 
from Lemma 3.2. 

4. Proof  of  Lemma 3.1 

We shall prove Lemma 3.1 for J = 0 only. The fact that this does not imply the loss of 
generality follows from the symmetry argument. We assume below that h, v s IRk are 
fixed (although arbitrary) vectors satisfying the Lemma 3.1 conditions. 

First we shall prove the inequality (3.22). Using (3.13) and the definition of the 
metric ~Oh,,(.,.) we find that 

o~h,, (F", F" + 1) < sQh, ~ (F", UF") + q~h,, (F", WF") .  (4.1) 

It follows from (2.1), (2.2), (2.5), (2.8), (3.6) that for any Ge~k  the following 
inequalities hold true' 

~h,,(f", G F " ) < m a x  {Fa, , ( f"  ) , F h,,(GF")) 

In particular, 

<= Q(F", h) =< c(k) (7n +e-"~). 

F n Qh,, ( , WF") <= c (k) (Th + e-"~). 

Let us estimate Oh,,(F", UF"). For this we consider the integral 

(4.2) 

(4.3) 

I =  S f (x)  (F" - UF") {dx} (4.4) 
p k 

where f= f , , h , , ,  Z 6 IRk, and introduce independent random vectors ~, t/~ IR k with 
distributions 5~ U, 5g(g)=F". Then the integral I can be rewritten as 

I =  E (f(t/) - f ( t / +  ~)) = E(f(q) - f ( t / +  ~)) 7J,(g) (4.5) 

where 7J~ is the indicator function of the parallelepiped [z-v ,  z + h + v]. We have 
used that U{[ -v ,  ~]} = 1 and f (x)  =0  for x6  [z, z+h].  

Let us apply under the expectation sign in the right-hand side of (4.5) the Taylor 
formula to the function f* (c0=f ( t /+c~) ,  c~cIR 1. Note that E ~ = 0  since U ~ , .  
Using (2.7) and taking into account the mutual independence of t/and ~ we obtain 
that 
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II[=lE{{f(q)-f(q)-a~=l gJ ~ (x)[x=~ 

1 CA. ax ex. 

k 

___ c (k)E ~ ( , I ) E  2 ~2 ~j-2 . 
j = l  

Since 0 < �9 < h, with the help of (3.6) it can be easily deduced that 

E ~,(~/) < Q(~(r/),  h + 2,)  

<c(k)Q(F",h) 

<= c(k) (Th + e-"=). 

Using (4.4), (4.6), (4.7), we obtain 

(4.6) 

(4.7) 

c (k)/"/--1 (lln g,I + 1) 3 (gn + e-"~). (4.9) 

Obviously, (4.9) implies (3.23) if w > 1/2. Therefore we shall further assume that 

w<-�89 (4.10) 
By (3.13), we have 

Oh,,(F, ' in+ l) <boh,,(F ~, LF ~) + wQh,,(F, ' PF") (4.11) 

and from (3.15), (4,2) it follows that 

WOh ,.  (F", PF") < c (k)  n - 1 (lln 7,1 + l)a (74 + e-"=). 

Let us est imate bOh.c(F n, LF"). It can be easily derived from (3.13) that 

~ ,  r r n - r  F"= C,b w LrP n--Y 

r=O 

where C2 = n  ! / ( ( n - r )  !r !) are binomial coefficients. Using (2.1), (2.3), (2.5), (4.13) 
we find 

(4.12) 

(4.13) 

~0 tFn  F n+lx h,,~, , )<c(k)(~h +e-"~)<c(k)w(Th +e -'~) 

k 
F" UF")<c(k) e -"~) 0r,,(  , (Th+ y, -2 -2 E ~ j  z j  (4.8) 

j = l  

Since ~.W(~)= U, the inequality (3.22) follows immediately from (4.1), (4.3), (4.8), 
(3.18), (3.19). 

Let us pass on to the proof of the inequality (3.23). Suppose, at first, that w > 1/2. 
Then, applying (3.15) and the inequality (4.2) for G=F, we get 
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~h, , ( Fn, LF")  = Fh, , ( F" --  LF")  

<i 
r=O 

r ~ . - r  r U + I )  < C,b w ~h, , (L,  
r=0  

By (3.12), the distribution L may be written as 

C~,b~w,-r ~h,,(U p .-~, U+ l p .-~) 
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(4.14) 

L=soU+vo R where So=Sb-l, Vo=vb -1. (4.15) 

Note  that  (3.10), (3.14), (4.10) imply 1 > b = 1 - w > 1/2 and, hence 

S<So<2S, V<Vo<2V. (4.16) 

Fix r s N ,  j e N ,  where 1<_r<n, l < j < k ,  and apply Lemma 2.2 for Lo=L (j), 
Uo= U (j), R o = R  (j), Zo=Z j, l=lj, u = u  (j), 

(72 = 2 __ ~ X j (7i -rSo 2 u<J){dxj} =rSo ~ ~ U{dx}.  (4.17) 
-- co ~ k  

By this lemma, the inequality 

(L(J)) r { IR 1 \ [Ke (u (j)) ]a:~ + ,j } (4.18) 

=< 2 exp ( - y  j~8 T j) + exp ( -- d/8) 

is valid, if 
yj>a~/2zj, d>2rv o . (4.19) 

In addition, f rom (2.13), (2.14), (3.1), (3.5) it follows that  

])'r ~ C (CO (A,  "c)) - 1/2 ~ c 1 ~ - ( U  (A ,  ~')) - 1/2 (4.20) 
o r  

v(A,v)<ck?; 2 (4.21) 
Let  

m e N ,  m>_cok7~ 2 (4.22) 

where c o is a sufficiently large absolute constant .  We shall apply the inequality (4.18) 
for  yj = mz/2,  d= m/2. The validity of  the inequalities (4.19) is ensured by a suitable 
choice of  c o with regard to the relations r<n, v<q, (3.19), (4.16), (4.17), (4.21). 
Setting now yj = mr j/2, d= m/2 we obtain f rom (4.18) that  

(L(J)) r {IRI\[Km (u(J))]m~j} < 3 e -  m/t6 (4.23) 

F r o m  (3.9), (4.23) it follows that  

U {]Rk\Km} =< 3ke-m/16 (4.24) 

for each r ~ N  such that  1 <r<n. The inequality (4.24) is also valid for  r = 0  since 
L ~  and 0eK , , .  

Let  us estimate o r U  L r + ~ for r =0 ,  1 , . . . , n .  For  this we take an arbi t rary ~h ,~ \  ~ / 
z ~ IRk and consider the integral 
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I o = ~ f,,h,,(X) (L r - U  +~) {dx}. (4.25) 
N k 

By Lemma 2.3, for j =  1, . . . ,  k there exist the functions wj(xj), 9j(tj) such that  
a) 0 = wj (x~) <fzj, hj,~j (X~) < 1 for all xj e IR1 ; 
b) wj(xj) =f~j,hj,~j(Xj) for xj e [Kin+ 1 (u(J))](m+l)~j ; 
c) the functions wj(xj) are infinitely differentiable on the real line and 

d~xy i c(p) sup~j wj(xj) ~ r~ , p =  1,2 . . . .  ; (4.26) 

d) l~j(tj)l <gj(tj) for all t je  IRa ; 
e) the functions gj(tj) are even, do not  increase for t j > 0  and take constant  

values g~(0) for Itjl < 2 h / 1  ; 

f) ~ gj(tj)dtj < cl~ In (lj(m + 1) + 1). (4.27) 
- - o O  

For x e IR k, t e IRk set 

k k 

w(x)=  I ]  wj(xj), h (x) =f , ,  h, , (x ) - w ( x ) ,  g ( t )=  I ]  gi(tj). (4.28) 
j = l  j = l  

By property a) of  the functions w j, for all x e IRk the inequalities 

0 <h(x )  < 1 (4.29) 

are valid, and from (2.7), (4.28) and f rom properties a), c) it follows that  

8 h  (x) c 82h (x) c sup < - - ,  sup < (4.30) 
x ~Xj = Zj x OXj ~Xp ---- Zj Zp 

for all j ,  p e N  such that  1 <j<k,  1 <p<k.  In addition, property b) and (3.9) 
imply that  

h ( x ) = 0  for XeKm+ 1. (4.31) 

Represent I 0 as a sum 

where 
I o =SoI 1 + VoI 2 +13 (4.32) 

I 1 = ~ h(x) ( U -  UU) {dx}, (4.33) 
Nk 

I2 = S (4.34) 
Nk 

I 3 = ~ (4.35) 
Nk 

(see (4.25), (4.28)). 
Let us estimate I 1 and I 2. For  this we introduce independent random vectors 

~, q, ~ e IRk with distributions Y (~)= U, &a0t)= L r, ~ (~)= R and define a random 
event I71 by 

Y1 = {I/r Kin}. (4.36) 

h(x) (L r - R L  y ) {dx}, 

w(x) (L r - L  ~+1) {dx} 
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In view of (4.24), 

It can be easily seen that 

E~r =p{y1} <3ke ~/16. (4.37) 

since U =  &a(r ~ ~],. It follows from (2.9), (3.9), (3.11), (3.12) that L{K1} = U{KI} 
=R{K1} = 1. Hence, if t / eK  m then, using (4.31) and Remark 3.1, we obtain that 
h (r/) = h (t/+ ~) = h (t/+ ~) = 0. Taking (4.36) into account, we get 

h(t/)=h(t/)~r,,  h(tl+r162 h( r /+~)=h( t /+~)~r , .  (4.39) 

Applying (4.30), (4.33), (4.36)-(4.39), the Taylor formula and the mutual 
independence of  1/and r we find that 

1/11--IE(h 0t) -h(~t + r 

= [E (h (rt) - h ( ~ / +  ~))~ yll 

=12 E ~r, j : l  v=l ~J~P c3xjSxp (X)x:~+0e 

j = l  p = l  

k 

<c(k) Z E~}~f2E~r~ 
j=l 

k 

<c(k)e -m/16 ~ E~}r f  2. (4.40) 
j = l  

With the help of (4.29), (4.34), (4.37), (4.39) we can similarly derive the inequality 

t/21 = IE(h (r/) - h ( q  +if))[ 

= IE {(h (q) -hOt  + ~))~ rl}[ 

__<P{Yx}<3ke -m/l~. (4.41) 

Now from (3.14), (3.19), (4.16), (4.40), (4.41) and from the fact that ~ ( r  = U it 
follows that 

IsoI 1 + %12] < c(k)n- iv(A, v)e- m/16. (4.42) 

Let us pass on to the estimation of 1/31, Put 

- 2 w  c~-2w 
/~ = -- (4.43) 

1 - w  b 

If f l<0  then the inequality (3.23) follows immediately from the inequalities 
~h,,(F", F" +t) < 1 and (3.15). Therefore we further assume that 

/~>0. (4.44) 

E~ = 0, (4.38) 
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If for some t ~ IRk we have/2(t) < 0 then, using the fact that F~ ~ ,  and the relations 
(3.11), (4.15), (4.43), it is not difficult to show that 

0 >- s = b-  1 (sU(t) + v/~ (t)) >- b-1 (F(t) - w) 

- l + ~ - w  
-> - - 1 + f t .  
- 1 - w  

Hence /3<1 and [/~(t)l<(1-/3)~{o=<p<l}. If now s  then [s163 
< e x p ( s  Thus, for all t~lR k we have 

]s < max {exp (s - 1), (1 -f i )~ co_-< a =< 1}}- (4.45) 

Define the distribution D*~ ~)k n ~ -  with characteristic function 

/5 * (t) = exp (r (/2(t) - I)/2). (4.46) 

From (4.45), (4.46) it follows that 

I s  D*(t),  2(1--/3)r'{0~_<1}} (4.47) 

for all t 6 lRk. 
By the Parseval equality, (4.28), (4.35), (4.47) and in view of property d) of the 

functions wj and g j, the following inequality holds: 

where 

1 6 [ = 1 ( 2 ~ )  - k  .~ ~(-t)(s163 
IRk 

t - c ( k )  
4--F- ~ -  ~ g(t)/5*(t)dt,  

IRk 

(4.48) 

(4.49) 

15 =c(k)  (1 -fl)r~r ~ g(t)dt .  (4.50) 
IRk 

Property e) of the functions gj ensures the function 9 to belong to the class A(h) and 
to satisfy the Lemma 2.6 conditions. By this lemma, 

g(t)/5*(t)dt<c(k)Q(D*,h) ~ g(t)dt  (4.51) 
IR k IRk 

(see (2.18)). From (4.27), (4.28) it follows that 

k 
g(t)dt<c(k) 1-I l~. ln(lj(m+ l)+ l). (4.52) 

IRk j=  1 

In view of (4.46), D* =e(rL/2). Using the assertion a) of Lemma 2.4 we obtain 

Q(D*, h) <c(k) ((r+ 1)v(L, h)) -1/z (4.53) 

(if r = 0 then (4.53) follows from the evident inequalities Q (D*, h )<  1, v (L, h )<  k). 
Define r n ~ N  more exactly, setting m=[cokT~2]+l where [.] means the 

integer part of  a number. It is evident that (4.22) is then satisfied. With the help of 
(4.21) we get 
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v(A, "Qe -m/16 <- cky~ 2 exp ( - cok7~2 /16 )  

< c exp ( - c k 7 ~  2) (4.54) 

and (3.5), (3.7), (4.52) imply 

g (t) d t <  c(k) (lln 7,1 + 1) 3k- (4.55) 

In view of  (4.49)-(4.51), (4.53), (4.55), the inequalities 

/4 < c (k) (lln M,[ + 1)3 k (r + 1)-  3/2 (v (L, h)) - ~/2 (4.56) 

15 <c(k) (]ln 7, I + 1)3k(1 --fl)~(o_<p_<~ (4.57) 

hold true. F r o m  (4.25), (4.32), (4.42), (4.48), (4.54), (4.56), (4.57) it follows that  

Oh,,(L", U + 1) < c(k ) {n -1 exp ( - c k 7 7 2 )  

+(llny,[+l)ak((r+l)-a/Z(v(L,h))-~/2+(1 --fl)r~(0__<,=<ll)}. (4.58) 

Let us re turn  to the formula  (4.14). By using (3.14), (4.10), the binomial formula  and 
the H61der inequality it is not  difficult to show that  

~ C~b~w"-*(r + 1) -3/2 ~cr1-3/2 . (4.59) 
r = O  

In addition, with the help of  (3.14), (3.16), (4.43) we obtain 

C~,b~w"-'(l-fl)~=(b(1-fl)+w)"=(1-e+2w) ", (4.60) 
r = 0  

(1 - ~  + 2w)"~o <~ <1/< ex p ( -n(c~ - 2  w)), (4.61) 

v(L, h) >n -~ v(A,, h).  (4.62) 

Now the inequality (3.23) follows immediately f rom (4.14), (4.58)-(4.62), (3.15). 
Hence Lem ma  3.1 is completely proved. 

5. Proof of Lemma 3.2 

Let z , h~ lR  k satisfy the Lemma 3.2 conditions, i.e. 0 < ~ < h  and "(J)<4~'{~)rh = z, for  
j = 1 , . . . ,  k. Taking into account  the obvious symmetry  of  the situation considered in 
Lemma 3.2 with respect to a parameter  J we shall consider again the case J -- 0 only 
and shall prove the inequality (3.24) for  '~ IF,  F, ,+l~_~(o)~p,  p ,+l~ Put  

1s = ~)h 2/3 (lln Yh[ + 1)2k. (5.1) 

We shall construct  the numbers  r e Z, 0 < r < k;  el, . . . ,  at, using the following rule. 
We shall denote  by z(i) e ]R k, j =  1 . . . . .  r + 1, the vectors having the coordinates  
zl ~) = e I for  l < j  and zl j) = zl for  l > j .  Suppose that  the numbers  e 1 . . . . .  e j_ 1 are already 
constructed.  So, we know the vectors z (1) . . . . .  z (i) (of  course, for  j =  1 we have 
constructed the vector -c (1) = z). 
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Consider separately three possible situations: 

a) va(A,u,, "cj) <= ~c h ; 

b) v j (  A , ( j ) ,  h j )  < tr h < v j ( A , u , ,  "c j )  ; 

C) v j ( A , u ) ,  ha) ~ ~c h �9 

(5.2) 

(.5.3) 

(5.4) 

In the case a) we set ej = "c a. In the case b) we take as ~ the solution of  the equat ion 

va(A,<~,, e j) = ~Ch- (5.5) 

This solution exists and zj < ej < hj because the funct ion v~(A,u~, u) is non-increasing 
and cont inuous  with respect to u, u > 0 (see (2.10)). Finally, in the case c) we denote 
r = j - 1  and complete  the construction.  If  on constructing the numbers  ej, 
j =  1 . . . .  , k, the case c) does not  appear,  we take r=k.  

Denote  by hlJ) e lRk, j = I, . . . ,  r, the vectors with the coordinates  h}J)= e z for l=j  
and h}a)=h z for  l~j .  Then 

fo, h, ,~'J' =fo,  h, .U +.  +fo,  hU',.U'' 
Hence 

Ot,,u,(F",F"+I)<=Ot,,u+I,(F",F"+I)+OhU,.,u,(F",F"+I ) . (5.6) 

With the help of  an induct ion one can easily derive from (5.6) the inequality 

Oh,. (V", V "+a) = Oh,.(. (f", F "+') 

< ~ Qh,J ,J,(F",F"+I)+~h,,,,+,(F",F"+I). (5.7) 
j = l  

F r o m  the L e m m a  3.2 condit ions and f rom the definition of  the vector ru) it follows 
that  

]ln 7,(~1 _< Iln 7hi + In 4,  j = l  . . . .  , r + l ,  (5.8) 

(we use (3.5) and the fact that  rj<ej<hj). 
Consider  more  explicitly the process of  construct ion of  numbers  ei. If the case a) 

occurs for  a number  j then, of  course, 

Oh(j),,j,(F", F "+1) = 0 (5.9) 

since h (j) --  'r (j) --  ~ --  ~ ..j - _ j  - v a - _  j. In addition, in view of  (3.17), (5.2), (5.8), 

v j ( A  , ea) = v j ( A ,  ~j)  

<= vj(A,~u),  "cj) -I- ck(lln 7,(J)l + 1) 3 

< ~:h + ck(lln 7hi + 1) 3. (5.10) 

If now the case b) occurs then, by (2.10), (2.11), (2.13), (5.5), we have: 

v(A,c(j ) (J) > (J) - -  ,h  )=vj(A,(j~,hj )--Ir (5.11) 

Using the inequality (3.23) and taking into account  (5.1), (5.8), (5.11), we find that  
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(]ln ?,,J,I + 1) 3k } 
~h(J), '~(J)( Fn, Fn + 1) ~ C (k) n -1 ~h,J)(]ln ~),(j)[ q- 1)3 nt ( ~  ~ ~ ) ) ~ 2  

+ c(k) exp ( -nc~ + ck([ln 7,~J~l + 1) 3) 

< c (k) (n-2 Y~/3 (lln Y,I +/)2k 

+ exp ( - no~ + ck ([ln Ykl + l)a)) (5.12) 

(it is clear that  h (j) < h and Yh~J~ < 7h)- The relations (3,17), (5.5), (5.8) imply now that  

vj(A, E~) <vj(A,,j , ,  ej) + ck (]ln 7,~1 + 1) 3 

< ~ch + ck(lln 7hi + / ) 3 .  (5.13) 

If the construction of  the numbers e~ . . . . .  e~ is completed by the realization of  the 
case c) f o r j = r +  1 then, in view of  (2.11), (2.13), (5.4), 

v(A,,r+ ~,, h) > vr+ I (A,~r + , ,  hr+ 1) => ~ch- (5.14) 

Using again the inequality (3.23) and taking (5.1), (5.8), (5./4) into account we 
obtain 

~Oh, ,(r -t- I)(F", F" + ~) < c ( k )n -  1,y~/3 (lln 7hi + 1) ak 

+ c ( k ) e x p ( - n ~ + c k ( l l n T h l + 1 ) 3 ) .  (5.15) 

In this case the inequality (3.24) follows from (5.7), (5.9), (5.12), (5.15) (of course, 
I In ?hi < Iln ~,l). 

If, on the contrary,  for al l j  = 1 . . . .  , k we deal with the cases a) or b) then r = k and 
v('+l)=(ea . . . .  , gr). According to (2.1t), (2.13), (5.10), (5.13), we have 

v(A,, .... , ) < k  max vi(A, ei ) 
l<=j<=k 

< kl~h + ck 2 (lln ?hi + 1) 3. (5.16) 

Applying the inequality (3.22) of  Lemma 3.1 and taking (5.1), (5.16) into account we 
find that  

Oh,,,r+ ~(F",F"+ l) < c ( k  ) (n-  l'fhv(A, z(r+ l)) + e-"~ ) 

<c(k)(n- l?~, /S( l lnyhl+l)2k+e- '~) .  (5./7) 

The inequality (3.24) can be derived from (5.7), (5.9), (5.12), (5.17). Thus, Lemma 
3.2 is completely proved. 

6. Proof of Theorem 3.1 

Let h ~ N  k, h > 0 .  Assume that  7h<2n 2. Then from (2.1), (3.5), (3.6), (3.20) it 
follows that  
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Oh(F", F "+1) < m a x  {F%,.~(F"), F~t0.,~(F" + 1)} 

< F~to,~a(F" ) = Q(F", h) < c(k) (7h q- e-"=) 

<c(k)(n-~7~/Z+e-"~)<=c(k)(n -~ J=~I~I (7~'))2~-+e-"~). (6.1) 

The inequality (6.1) implies (3.21) for 7h < 2n -2. 
Let now 7h>=2n -2. Define the set 

T= {je N : 1 <=j<=k, Q(D ~ 0) < 2n-2}. 

For j e T we can find the points z* such that 

O<'c*<=hj, n-Z<Q(D~ -2. 

(6.2) 

(6.3) 

The existence of z* follows from elementary properties of one-dimensional 
concentration functions. Let 6 > 0 be an arbitrary number which is less than 
min{min{z*, jeT},  min{hj,j=l,...,k}}. Define the vectors ~=,(6) ,  

= ~(6) e IR k, setting 
ej=cS, j = l , . . . , k ;  

zj='c*, j e T ;  (6.4) 

rj=6 , j=1, . . . ,k ,  jq} T. 

By (2.4), (2.5), (6.2), (6.4) we get that 
j - 1  k 

fo,h,,(x)=fo,h,,(X)-- ~ fo:j:flxj) H fo,h,:,(x,) H fo,h,,~,(X,). (6.5) 
jET  / = i  / = j + l  

From the definition of concentration functions and from (2.4), (2.5), (6.5) it is not 
difficult to deduce that for J = 0 

(at :~n rn+l~,~(a)(Fn Fn+I)+ h , . ~ ) ~ - - , ~  : - -~h, .V-- ,  Z Q ( ( F O ) ) " " c * )  �9 (6.6) 
j e T  

For arbitrary J e 5 the validity of the inequality (6.6) is established in a similar way. 
It is clear that i f F e  ~,  then F~ ~ for all j =  1, ..., k. Applying the inequality 

(3.6) to the distributions F ~ and using (3.5), (6.3) we obtain that if j e T  and 
7h>=2n-2 then 

Q ((F~ ", z*) < c (Q (D o), z*) + e-'~) 

<=c(n-: +e-'~)<c(n-ly~/Z +e -'~) 

<c(k)(n -1 J=lI~I (7{hi))Z~-+e-"~). (6.7) 

Lemmas 2.1, 3.2 imply that for all J e 5  
k 1 

O(ha,)~(g ", F "+~) <c(k)n 1 ]71 ((Y(hJ)) 3k (lln y(hJ)[ + 1) z) 
j = l  

+c(k)exp(-nc~+ck(llny,l+ l) a) h in21n ~ +  l . (6.8) 
j = l  
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In view of (3.5), (6.2)-(6.4) for all j =  1 .... ,k  we have 7~)>n -2 and, hence 

7(~J) 
In 7( ~ < [In 7~ j)] < [ln ~,l =< 2 In n. 

It is clear that 

(6.9) 

Oh(F",F'+l)<_limsupd (F" F "+1~ (6.10) 
_ h, 8(5) \ ~ ) ,  

6~0 

d ~r" F '+ I~<  ~ "(a) ( F ' , F  "+1) (6.11) 
h , ~ ( a ) ~  , / , = ~ ' h . ~ ( ~ )  

(see (2.4)-(2.6), [18], p. 85). From (6.6)-(6.11) we can easily derive the inequality 
(3.21) for 7h > 2n-2. Theorem 3.1 is completely proved. We have already noted that 
Theorem 1.1 follows from it. 
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