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Summary. Almost  sure convergence theorems are p roved  for Cesaro aver- 
ages of cont inuous  functions in the case of  the symmetr ic  exclusion pro- 
cesses in dimension d > 3. For  the occupat ion  time of a single site the same 
result is proved in all dimensions. 

1. Introduction 

In 1970, Spitzer [11] in t roduced a wide class of  Markov  processes, now 
generally referred to as interacting particle systems. In general these processes 
have more  than one invariant  measure  and therefore the term ergodic has been 
reserved for the exceptional si tuation in which there is only one such measure. 
Mos t  of  the at tent ion for these processes has been focused on the analysis of  
the set of  invariant  measures and their domains  of  at t ract ion;  much  less is 
known  about  the behaviour  of the flow induced by these M a r k o v  semigroups 
under  some initial measure v. Of course, it follows from s tandard  ergodic 
theory that  v is an extremal invariant  measure if and only if for every bounded  
cont inuous  f and for v-almost all 

IPn lira 1/T~f(rls)ds= ~fdv = 1  (a)  
I T ~  co 0 

where IP, is the probabi l i ty  measure on the space of trajectories representing 
the process when it starts f rom the initial state t/ and r/s is the r andom 
configurat ion obta ined at t ime s. 

However  more  informat ion is needed to decide when the above limit exists 
with probabi l i ty  one for some specified t/. An  early impetus to the study of this 
type of p rob lem was given in [6]. 

In non  ergodic situations, (i.e. when there is more  than one invariant  
measure) it seems that  the only results of this available concern the contact  
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process ([4-6J). In the present paper we study the symmetric exclusion process 
on Z d. This process has been extensively studied and for background on it the 
reader is referred to [9]. 

Because of the existence of a dual process it has been possible to give a 
condition on t/ that ensures that the distribution of the process at time t 
starting from the configuration t/ converges to a given extremal invariant 
measure ([7, 8, 12]). It follows from the results of [3J that this last condition is 
satisfied for a large class of configurations. What we prove here is that if t/is a 
configuration such that the distribution of ~/t converges to an extremal v then 
(A) holds if f depends only on whether one site is occupied or not. The same 
result is also proved for all continuous f when d >  3. Proofs of these results are 
in Sect. 2. Finally, in Sect. 3 we remark that the proof of the second result 
applies to the voter model too, thus proving in dimensions greater than or 
equal to 3, one of the conjectures stated in the final remark of [2]. 

2. Symmetric  Exclusion Process  on 7/. d 

To describe the symmetric exclusion process we let S be a finite or countable 
set and p(x, y) a symmetric irreducible probability matrix on S. The state space 
of the process will be X = {0, 1} s and if t /sX we interpret t/(x) as the number of 
particles present at site x~S. Each particle will wait an exponentially distribut- 
ed time of parameter one and then attempt a jump according to the matrix 
p(x,y). The interaction between particles is given by the following rule: the 
attempted jump of a particle from x to y occurs if and only if y is vacant. In 
the sequel we will identify t/~X with the following subset of S: {xeS: t/(x)= 1} 
and #p will denote the product measure on X such that #p{t/: t/(x)= 1} = p  for 
all xsS, 0 < p < l .  When S is the integer lattice Z d and p(x,y) is translation 
invariant the set of extremal invariant measures is known to be {/~0} 0 < p  < 1 
(see [7] and [12]). For  our proof it is convenient to think of the symmetric 
exclusion process in terms of a stirring process [1]. We recall here that this last 
term means that to each pair of sites {x,y} we attach an independent Poisson 
process with intensity p(x, y) and that the configuration is changed at the times 
corresponding to this pair of sites by exchanging the occupation variables at x 
and y. 

The formulation has the advantage of making clearest the association 
property of the symmetric exclusion by concentrating all the randomness on 
the random permutation generated by the Poisson processes of transpositions. 
Reading backwards in time from time t the Poisson processes of transpositions 
we define a random set Atr(co) for O<r<t that satisfies 

{~o: Att(co)crl}={co: tlt(co)=A } (1) 

and of course (At,)o<r<_t evolves according to a simple exclusion process with 
initial configuration A. If A is a singleton we will freely use xt~ instead of {x}t~ 
when no confusion is possible. 

Our first result deals with a particular function f namely: f(t /)=t/(x) the 
occupation variable of a single site. 
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Theorem 2.1. If  tl~ converges in distribution to #p then 

1 r 
l i m ~ ! G ( x ) d s =  p a.s. for allx~S. 

Proof Fix xeS and let k be a positive integer. Define Sk, . by the formula 

Then 

n-1 
Sk,n= Y~ ~h/k(X) �9 

i = 0  

E(sk, 
1 n- -1  2 n - - 2  n- -1  

-- ~0 -~i+l GOv("i/k(X)' n~ y~ (.,~(x)-E%/~(~))) ~ +~-  n~/~(x)) i = 0  i =  1 = .  

1 2 n--2 n-i-1 

However  (1) implies that 

= ~ e (~, x, y) cov[rl(xil~,), '/~ rl (y i/k)] 
y 

t n 

where p(t, x, y) is, as usual, ~ e-~(p(")(x, y). 
n = 0  

By Lemma  4.12 in Chap. VII I  of [9] the covariance of the random vari- 
ables t/(xil~) and t/(yil~)is non positive if x . y ,  therefore 

Hence 

J cov%/k(x), q(,+ j)/k(x)) < p (p  x, x) . 

E(Sk'"----En(Sk'n))2 l=<n+n2--2"-2n-'-l~ ~ p(J~,x,x) 
i = o  j = l  

1 2 &  j 

From Proposition P.6 in Chap. II  of [10] we know that there exists a 

constant C such that p , x, x __< C for all j >  1. Using this upper bound 

we see that there is a constant L such that 

for all noN. 

Applying Theorem 3.7.3 in [13] we obtain 

lim Sk'" =li ra  E(Sk,n) =p a.s. 
n n 

(2) 
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It follows from the construction of the process that if r/s(x)+tl~/k(X ) for some 

se , - -  then there exists a y for which an event of the Poisson process 
[ i  i+1~  

associated to {x,y} occurs in the time interval [~, ~ ] .  However these last 
1 

events are independent for different values of i and they all have probability ~. 
It then follows that 

and 

1 Sk n 1 
lira r sup ~- ~ tl~(x) ds <_ lira .... +T_ a.s. 

- -  n n /.~ 

l i m i n f l  ~tls(x)ds>_limSk,n 1 
r T - , n - k  a.s. 

Since these two inequalities as well as (2) hold for all k the theorem is proved. 
Our second theorem deals with arbitrary continuous functions but its proof 

requires the dimension to be at least 3: 

Theorem 2.2. Let d>=3 and suppose that tlt converges in distribution to #p as t 
tends to infinity. Then for all f e  C(X), 

lim i i fOls) ds= ~ f(q)d#p(~l) a.s. 
0 

Proof First note that the subspace generated by functions of the form ~ ~/(x), 
x~A 

where A ranges over all finite subsets of Z d, is dense in C(X). Hence it suffices 
to prove the theorem for these functions. To do so we introduce the following 
notation: 

n - - 1  

r/(A) = I~ r/(x) and Sk, n = ~ tli/k(A ). 
x~A i= 0 

Then we proceed as in the proof of our first theorem and obtain 

E ( Sk ' " -  (Sk'") < _ 1 + 2  ~, ~ COV(qi/k(A),rl(i+l)/k(A))" 
~ n  n2  o<_i<_n-2 1 N l < _ n - i - 1  

To complete the proof as before it suffices to show the following lemma. 

Lemma 2.3. Suppose d > 3 and let A be a finite subset of 7Z d. Then there exists a 
constant C such that for any t and s and any f leX 

[En(r/~(A ) r/~+~(A)) -En(~,(A)) En(r/,+~(A))[ =< C IAI 2 s-  ~- (3) 

where [AI denotes the cardinality of A. 

Proof By (1) the left hand side of (3) is equal to cov(tl(At), rl(A~t~)). To prove 
the inequality we will modify the random variable t+s rl(At+s) on a set of small 
probability and obtain another random variable independent of t/(W~). For  this 
purpose take another independent copy of the Poisson processes associated to 
pairs {x,y}. This defines another stirring process independent of the first one. 
The original and the new stirring processes will be called the co-stirring process 
and the co'-stirring process, respectively. 
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Now construct for the time index r such that O<_r<_t+s a new process ~t§ 
which evolves according to the co-stirring process except when the following 
two conditions are met  simultaneously: 

1) r > s ,  
2) {x,y}c~Atr_s#r and {x,y}c~Atr+s+~b. 

In this case the ~t+s process will exchange the occupation of x and y according 
to the m'-stirring process. Since the A t, process is built only with the use of the 
m-stirring process the processes A t. and A[ +s depend on independent Poisson 
processes. Hence they are independent, and 

cov(~(A~), '+s '+s ~ ' + ~  tl (A t + ~)) <= P(A  t +~ # -:t + s,. 
Noting that 

t + s  - - t -cs - - t §  t P ( A t + , # A t + , ) < P ( A ,  ~ A ~ _ , # O  for s o m e s < r < _ s + t )  

 EEP - ' + '  ' ({xL ={YL-~ for s o m e r > s )  
x~A yeA 

< ~, P(a random walk starting at x hits y after time s) 
x, y~A 

we obtain the lemma as a consequence of a continuous time version of 
Proposition P.6 in Chap. II  of [10]. 

3. Remarks 

3.1. The method of proof  that was used to prove Theorem 2.2 can be applied 
also to the voter model in dimension d > 3  since the same method of duality 
gives the inequality (3). 

3.2. The estimate (3) is crude and in particular the method to prove it is not 
good enough to show that Theorem 2.2 holds in dimension one or two. 
However  after completion of this paper  the following inequality was proved by 
one of us (E.A.): 

For  a symmetric exclusion process if A and B are finite disjoint subsets of 
Z d then 

E. (t/t (A u B)) =< E. (~t (A)) E. (t/t (B)) 

for any ~ X  and any t>=0. This will appear  in a future paper and allows one 
to extend Theorem 2.2 to all dimensions by the method used in the proof  of 
Theorem 2.1. 
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