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Summary. Various sufficient conditions for the law of the iterated logarithm 
are given extending the main result of the author's previous paper [,-16] and 
Kolmogoroffs  law of iterated logarithm. As a byproduct we give a unified 
approach to various old and new stability results 

1. Introduction 

Throughout  the whole paper (X,) will be a sequence of independent random 
variables satisfying 

E(Xi) = O, E(X 2) < oo (ieN). 

We will use the following notation 

i = i  i = i  

l~  g x i f x > e ' i f  x<e,  l ~1 7 6 1 7 6  x) 

F,(e):=E(l{ix, l>~VB,/log2B.}X~) (e>0) 

L, (~): = B;  1 ~ E(i{ix,i >~ 7B,:og2B,} X{) < 1. 
i = 1  

We always assume that 
lim B, = oe. 
n--+ c~ 

In [-16] we have proved the following 

Theorem 1.1. Let 2 < p < 3 and assume that 

(i) ~ (B, log 2 B,) -'/2 E(IX, I P) < oc  

n = l  

(ii) limsup B,+ 1 < oe. 
n ~  oo B n 
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Then the law of the iterated logarithm holds, i.e. 

limsup(2B.logz B.)- l/2 S.= l a.s. 
n - ~  oo 

Besides its proof the novel point of this theorem consists in the absence of 
the condition 

(*) lim L.(e)=0. 
n--+ oo 

This condition appeared explicitly or implictly in all previous results about the 
law of the iterated logarithm. It is a strengthend Lindeberg type condition and 
implies therefore the central limit theorem, whereas in [-16] examples were 
given which satisfy the assumptions of the above theorem but not the central 
limit theorem. It was also shown in [16] that Theorem 1.1 is in a certain sense 
sharpe. Nevertheless two important questions remained unanswered: 

1. Does Theorem 1.1 also hold when p > 3 7  (For 3 < p < 4  this was already 
shown in [16] under the additional condition E(X~)= 0.) 

2. Can the essential condition 1.1 (i) be weakened if we assume also 

P{rx . I>el /B . logzB.}  (e>O)? 
n = l  

This condition excludes the counterexamples in [16] and is almost necessary. 
Independently and with quite different methods Alt [1] obtained a partial 

answer to question 1 in the setting of Banach space valued random variables 
and Einmahl [-4] answered question 1 completely in the affirmative by giving 
very general a.s. invariance principles. The method of [-4] however doesn't 
seem to be adequate to solve question 2. In this paper we answer both 
questions in the affirmative. Though Kolmogoroffs  law of the iterated loga- 
rithm is too weak to prove our results by the usual truncation technique, his 
ideas are fundamental for this paper. The method of [16] is based on con- 
vergence estimates in the central limit theorem and therefore entirely different. 

The plan of our paper is as follows. In Sect. 2 we introduce the technique 
for the proof of the lower class part in the law of the iterated logarithm and 
give very general lower class results for symmetrically distributed random 
variables. In Sect. 3 we use an exponential inequality similar to Teicher [-13], 
Lemma 1 to prove various old and new stability results. In particular we 
reprove a famous theorem of Egorov [-5] in a completely new way. In Sect. 4 
we combine results of the two preceding sections (which are completely inde- 
pendent of each other) to prove our main results. We can even replace the 
moment condition by weaker truncated moment conditions. 

2. A Lower Class Result for Symmetric Random Variables 

All our lower class results are based on a very refined application of the 
subsequent exponential inequality which is an immediate consequence of Kol- 
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mogoroff [7], Hilfssatz IV (unfortunately the corresponding statements in 
textbooks are not strong enough). 

Lemma 2.1. For any e > 0 there exists K~ > 0 and (3 > 0 such that for any finite 
sequence (Xi)m <i<=, of independent random variables satisfying 

(i) K2- 1 ~_~ J~m, n: = ~ E ( 2 2 )  < oo, E(XI) -~ 0 
i=m+ 1 

(ii) 

we have 

(i) 

(ii) 

Denoting 

12,1 < K~ 1//~m,./log2/~m,. 

P{  ~+ )(i>(1-e)]/2/~,"l~ > ( l~  a-a B m , . )  �9 
i ~  1 

The next lemma is fundamental for this and the last section. 

(1 - e)2 
Lemma 2.2. Let 0<e, 6o<1, p . -  2 K s and d>0  be such that 

B~- 1(log+ B.) a~ F~(p) Le.(e 3 p) < c~ 
n = l  

B21(log+B.)~ E(X~.)=~ (5>0) 
n = l  

we have 

A.:= {tX.I < p]/B./ log2 B,~}, 

Xn: = Ia. Xn - E(IA. X.), 

i=m+ 1 

limsup(2B, log 2 B.k)- 1/z S . . . . .  k>(1 - - /3)  3 
k~co  

for any sequence (nk) satisfying 

(iii) e-lB.k<=B.k.l<=e-3B.k+l keN). 

For the proof we need the following 

Lemma2.3. Let (a.) be an increasing sequence m ]0, oo[, 
sequence in E0, oo[ such that 

Ca. <a . . . .  <C'a.~+l (keN) 

for some C' > C > 1. Then we have 

( C - 1 ) C  -~ ~ b,k__< 
k=2 

a.s. 

(b.) a 

a[_a(ai_ai_1)bi<=(C, 1 ) ~ b.k. 
i = n l + l  k= l 

decreasing 
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Proof The assertion follows from 

L b.,,=<(C-1)C - i  L a~l+~(a.~+,-a.~)b.~+l 
k = 2  k = l  

L Ok+ 1 
a-1 E (ai-ai-1) = ( C - l )  C -1 b,~ . . . . .  1 

k =  1 i = n k +  1 

_-<(C-1) C - i  ~ a?l(ai-ai_i)bi 
i = n l + l  

L n k + l  

< ( C - 1 )  C - i  b,~aZl+, ~, ai-ai_ 1 
k =  1 i =  nk+  1 

< ( C - 1 )  c - i ( c ' - I )  L b.~. 
k = l  

Proof of Lemma 2.2. We denote 

By (iii) we have 

i = m + l  i = m + l  

I:={k>_2:/~.~_1.. < (1 -8 )B  . . . . . . .  } 

J:={k=>2: k~I,B.k ..... =>(1-e)-2K[1}. 

(1-e)B. <B. -B.k I=B . . . . . .  k" 

Clearly keI if and only if 

nk 

2 y 
i = n k - l + l  

nk 

F~(p)> ~ Fi(p)+(E(Im X,))Z>eB .. . . . .  k>8(1 -8)B. . 
i = n k - l +  1 

By the definition of Lm(8 3 p) and Fi(8 ) we have 

L,.(8 3 p) => BL ~ ~ Y~(p) 
i=nk-l+l 

For any kaI we define 

and we get 

(k=>2, nk_ 1 <m<=nk). 

mk:=inf m<=nk: ~ Fi(p)<�88 
i = m + l  

nk 
~, F/(p) >�88 0 B.~ 

i =  mk 

rn k 

E Fi(p) >�88 - e ) B . .  
i = n k - l + l  

Together with (1) we get from (3) that 

Lm(e3 p)>=�88 --8) (kEI, m k <= m <= nk). 

(1) 

(2) 

(3) 

(4) 
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Using (2), (4) and (i) we can conclude 

(�88 -e)) d+l ~, (log+ B . y  ~ < ~ B~I (log+ B . y  o-1 

Thus we have 

k a I  

nk 

~, Fi(p)Ld(~3 p) 
k ~ [  i ~ m k  

< ~, B F ~(log+ B y  ~ F~(p) L~(~ 3 p) < o(3. 
i = 1  

(log+ B.~) a- 1 < oe 

for any 0 < 6 < 6  o. On the other hand (ii) and 2.3 yield 

~, (log + B..) ~- 1 = oo. 
k = l  

Putting both things together we obtain 

(log + B . y -  a = oo (6 > 0). 
k s J  

Since for any k e J  and i < n  k 

I X i l < 2 p ~ B i  

< (1 - 0 2 Ks 1 /B~ B.~ 

< (1 -- 0 K~ ]//B.k_' ,.k/log2 B.k_~ ' 2 

< K~ ]//3.~ . . . . .  flog 2 / 3  . . . .  

we may apply Lemma 2.1 to find 6 > 0  such that for any k~J  

P{S . . . . .  > (1 -e) ] /2 /~  . . . . . .  klog2/3.._~,,,.} >(log+ B" ......... )~-1 

Since also 

/3 . . . . . .  >(1 - e ) B  . . . . . . .  

> (1 - 0  2 B.~ 

for any keJ,  this implies 

P {S. . . . . . .  > (1 -e )  3 ]/2B.~ log 2 B } > (log+ B . y  -1 

whence together with (5) we obtain 

P{S . . . . . .  >(1 - e ) 3 ] / 2 B .  logzB.~} = o9. 
k e y  

By the converse to the Borel-Cantelli Lemma the assertion follows. 

(5) 
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The main result of this section now reads as follows 

Theorem 2.4. Assume that the X .  are symmetrically distributed and that for any 
p > 0 there exist 6 o > 0 and d > 0 such that 

(i) ~ B~- ~ (log+ B.) ~o- ~ F~(p) L~(p) < oo 
n = l  

~ B~- 1(log+ B.) ~-1 - (6>0).  
n = l  

(ii) 

Then we have 
lira sup (2B. log 2 B.)-  1/2 Sn ~ 1 a.s. 

n ~ o o  

Proof Since the S. are also symmetrically distributed we need only show that 

lira sup (2B. log z B.)-  1/2 [S.[ > 1 a.s. (1) 

To this end let 0 < e < l  be given. By [16], L e m m a  3.3 there exists a sequence 
(nk) satisfying 

e-2B.k<=B.k+l<=e-6B.k+l (keN). 

Using the notat ion introduced in L e m m a  2.2 and denoting S..-=5~o,., a . : =  

I//2B. log 2 B. we have 

{S.k-1,.k > (1 - e) 3 a.~ i.o. 1} = {~.~ > (1 - e) + a.~ i.o.} w {;~.~_1 < - e(1 - e) 3 a.~ i.o.}, 

{S.k ~ < --e(1 --e) 3 a.  i.o.} c {~.~_, < --(1 --e) 3 a.~_~ i.o.} 

and therefore 

{S.~ . . . .  k>(1-~)3  a.~ i.o.} = { [S . [>(1-e )4a .  i.o.} (2) 

L e m m a  2.2 and (2) now yield (1) 

l imsupa~ -1 ]S . ]> (1 -e )  4 a.s. (3) 
n ~ o o  

Using L e m m a  1 of Teicher [-12] we get from (3) that  

l imsupa .  -l [S.[ > ( 1 - e )  5 a.s. 
n ~ c o  

Making e > 0  arbitrary small the assertion (1) follows. 
1 P 1 P P 1 

Since F.(e)__<e -~-B.-~(log 2 B.)g- g(lxn] p) for any p > 2  we get 

Corollary 2.5. Let the X n be symmetrically distributed. I f  there exist 6 o > 0  and 
p > 2 such that 

(i) ~ B2p/2(log+ B.) 6~ E(]X.f)< oo 
n = l  

(ii) ~ B21(log+ B.)6-~ E(X2)=oo (6>0)  
n = l  

1 i.o. =infinitely often 
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then we have 
l imsup  (2B. log 2 B.)-  1/2 S. > 1 a.s. 

n---~ oo 

Corol lary  2.6. Let (b.) be a sequence ~ with ~ b2. = oo, (Yn) be an independent 
n = l  

sequence of random variables with P { Y n = I } = P { Y . = - 1 } = - 1 / 2  and Xn:--  
b. Y.. I f  there exist 6 o > 0  and p > 2  such that 

(i) i Byp/2(I~ Bn) ~~ Ib.l p <  oo 
n = l  

i B~- 1(log+ Bn)~- 1 2 _ _  ( 6 > 0 )  b n - 0 9  
n = l  

(ii) 

then we have 

l imsup (2B ,  log 2 Bn)- 1/2 Sn = 1 a.s. 
n ~ o o  

Proof Even for an a rb i t ra ry  sequence (bn) with b n = oo it follows f rom the 
work  of Marcinkiewicz  and Z y g m u n d  [8] that  .= 1 

l imsup(2B,  logeBn)- l /ZSn<l  a.s. 
n ~ o o  

The " > "  half  is of course an immedia te  consequence of Corol la ry  2.5. 

The  condi t ion (ii) in the above  theo rem and corollaries looks somewha t  
complicated.  But it is a l ready satisfied if 

l imsup Bn+l < oo. 
n ~  oo n n 

This is a consequence of 

L e m m a  2.7. Let (an) be a sequence in ]0, oo1- increasing to oo such that 

M :  = lira sup a,  + 1 < oo. 
n ~  oo a n 

Then we have 

i a~- a (log+ a , ) -  1 (log z a , ) -  1 (a, - a . _  i) = oo. 
n = 2  

In particular, we have 

• a2 1(log+ a,) ~- l (a ,  - a , _  0 = oo 
n = 2  

for any 6 >_> O. 

Proof Let  M:  = 2 M >  1 and define inductively 

nl := inf {ne]N" an'+ l < ~I2 V m >=n 

nk+ i : =  i n f{n~N:  a,  > 37I a,,~}. 
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Then we have for any k > 2 

and therefore 

M a.u<=ank+,<=l~/13 a.k 

a.k<=M3kanl. (1) 

Applying now Lemma 2.3 to (a.) and b.:=(log+a.)-l(log2a.) -1 we see that 
the assertion is equivalent to 

~, (log+ a.k )- 1 (log2 a.k)- 1 = c~. 
k = l  

But using (1) this follows from 

(log+ (a., 1(log 2%1 >__ c Z (3 k log 3 k)-I = 
k = l  k = l  

Remark. If we would strengthen condition (ii) a little bit then we could weaken 
condition (i) considerably in the above theorem and corollaries. For instance, 

limsup (2 B. log 2 B,)- 1/2 S, => 1 a.s. 
n ~ G o  

holds for symmetrically distributed random variables if for any p > 0  there 
exists d > 0 with 

(i') ~ B~- 1(log+ B.)- 1 (log2 B.)-I F~(p) Le.(p) < oo 
n = l  

(ii') ~ B[l(log+ B.)-l( logzB.)-l  E(X~)=oo (3>0) 
n = l  

(note that (ii') is again quite weak by the last lemma). This was essentially 
proved in a first draft of the article. But since in our main result Theorem 4.1 
the above condition (ii) is in a certain sense necessary and since (i') is too weak 
for the " < "  half of the LIL the above arrangement seems to be better if one 
doesn't want to write down the same arguments twice. 

3. Stability Results 

Throughout the whole section (a.) will be a sequence in ]0, oe[ increasing to 
infinity. In what follows the subsequent exponential inequality will be funda- 
mental. It is closely related to Teicher [13], Lemma 1. 

Lemma 3.1. Let m < n. I f  

then we have 

IXi[<=C.a . ( i = m + l  . . . . .  n) 

P{S,.,.>a.} < e x p ( - � 8 9  ~cm,.) 
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where Sm,n:=S n-S , .  and ~:~,. is the unique solution of the equation 

Km, n ---- Bm,- ln an2 exp( -Km n C . ) ,  (B~,n: = Bn - Bm). 

Proof Since the function f ( t ) : =  t is strictly increasing and 

2 exp ( - t Cn) g(t) ." = Bin) n a n 

is strictly decreasing on [0, oo[ and 

f ( 0 ) = 0 ,  g(0) = B,~,tn a.2 > 0, 

l imf ( t )  = oe, lira g(t) = 0 
t ~ o o  t ~ o O  

517 

there exists exactly one Kin, . such that  f(~:m,.)=g(G., .) ,  i.e. the above equat ion 
holds. 

Using 1 + x < e x p ( x )  we have for any t > 0  

t k c~ t k  + 2 

t 2 
G 1 + ~ E(X 2) exp(t  C. a.) G exp(�89 t 2 E(X 2) exp(t C. a.)), 

E(exp(tS~,.))=- f i  E(exp(tXi))<exP(�89 B~,. exp(t C.a.)), 
i=m+l  

P {Sin,. > a.} < exp( - t a.) E(exp(tS,.,.)) <_ exp( } t z B,.,. exp(t C. a.) - t a.), 

Inserting a~ -1 G., .  for t into the last inequali ty we obtain 

P{S m . ~ a . }  1 -2 2 , < exp(~ a. B,.,. G~,. exp(G~,. C . ) -  G . . )  = e x p ( ,  _ gl G~,.)- 

L e m m a 3 . 2  (Ottaviani-Skorohod).  For any :~,e>0 and m,n~N with m<n we 
have 

P{ max tSm, k[>~+e }. rain P{ISk,.t<e} <=P{IS,.,.l>c~ }. 
m<k<~n m<_k <n 

A proof  of this well known 1emma can be found in Chung [3], p. 120. 

Theorem 3.3. Let M > 1 and (nk) be a sequence satisfying 

(i) Mank~_a,k+lG_M6a,~+1 (k~N). 

Let further (Cn) be a sequence in ]0, o9[ such that (Cnan) is increasing and 

(ii) ~. P {]X~J> �89 C. an} < oo. 
n = l  

Let K,.,n>O be the unique solution of 

Kin, ,, =B-lm, n an2 exp( -- G.,n Cn) - 

Finally assume that 

(iii) ~ e x p ( - � 8 9  . . . . . .  ~)< oe 
k=2 
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holds. Then we have 

lim sup a.~ 1 

and in particular 

m a x  
?lk--1 <rn <=nk 

l imsupla~-ls .[=< 1 -  M 6 a.s. 
n ~ c o  

R. W i t t m a n n  

Proof For  any n o n  we set 

j~.(o)): = {O.(~o ) if otherwise,IX"(~ <�89 C" a" 

X.,  =Xo - E ( 2 . )  

and define/~ ..... S . . . .  S. as usual. Obviously we have 

IXil<C.a" ( i=  1, . . . ,n) .  

S ince/~m. .<B. . , .  we have ~Cm,.<#m, . where t~,.,,,>0 satisfies 

- -1  2 e x p ( _ # , . .  C.). ~m,n= Bm, nan 

Applying L e m m a  3.1 to (Jr.) we obtain 

P{S  . . . . . . .  _>_a.k } __<exp(-�89 . . . . . .  ~) < e x p ( - � 8 9  tc,,~_,,.~) (1) 

and analogously 
P {S . . . . . .  ~ < - a J  __< exp( - �89 ~c.k_ 1,.~). (2) 

F r o m  (iii) we get lim ~: . . . . . . .  = oe and therefore for any e > 0  there exists k .EN 
such that  k-~ ~o 

a~ 2 B . . . . . .  <=a (k >=k~). 

Hence  for any k__> k~ we have using (i) 

k 

B~ < Bnk ~- i + E Bnj . . . .  j 
j=  k~ 

~Bnk-l  +ea2k ~ M -2 
j = o  

whence using again (i) 

lira sup a~- 2 B. < M 1 z lim sup aL 2 B.~ < M a 2 ( 1  - -  M -  2)  - 1 g. 
n ~ O 0  k ~ c o  

Making e > 0 arbitrari ly small we obtain 

lim an- 2 B. = 0. 
n ~ o o  

By Tschebyscheffs  inequality this implies 

lim max P{[S . . . .  ] > e a J = 0  
k~eJ,3 n k _ l  <m<=nk 
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for any e>0.  Hence for any e > 0  there exists k~eN such that 

min P{IS . . . .  [<e%}>�89 
n k - i  < m = < n k  

for any k>k~. Together with (2) and Lemma 3.2 this entails for any e > 0  and 
k ~  k~ 

P{ max IS . . . . . .  [>( l+e)a ,~}<2P{[S ,~  . . . .  [>a,,k} 
nk 1 < m < n k  

__<4exp(-�89 ,,~ 
whence together with (iii) we obtain 

P{ max IS . . . . . .  I> ( l+e )a ,k}<oo .  
k = 2  n k - l < m < - - n k  

Thus, by 
such that for any k > k~,o) 

max IS . . . . . .  (co)[ <(1 +e)Gk. 
n k -  1 < m  <=nk 

Hence for almost all co~f2, k>k~, o and G-1 < m < G  we have 

k 

a2, 11gm(co)l <%1 ig.k~, co) I + a ~ l  ~ (1 +e)a , j  
j=l 

~an-kllSnk (e))l +(1 +e) a,k 1 ank 
~,~ 1 - M  -1"  

Making e > 0 arbitrarily small we obtain 

l imsupa~ 1 max ISmI_-<(1-M-1)-I a.s. 
k ~ o9 nk  - 1  < rn <-- nk  

By (ii) and the Borel-Cantelli Lemma this implies 

( l i m s u p a ~  1 max IS.-b.I  < 1 -  a.s. 
k~c~3 n k - 1  < t n ~ n k  

where b , :=  ~ E(_~i). The assertion follows now from 
i = 1  

a21b < a2 2 E(X 2) <(a2eB,) 1/2 
i = 1  

Corollary 3.4. Let (G) and M > 1 be such that 

(i) M a . < a  . . . .  =<M6ank+l (keN). 

I f  there exists d > 0 such that 

(ii) ~ r { l x . l > e a . } < o o  (e>0) 
n = l  

(iii) ~ (a~ 2 B,,~_ ~,.~)a < oo 
k = 2  

the Borel-Cantelli Lemma for almost all co~f2 there exists k ~ , ~ N  

" ~ o .  

(3) 
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then we have 

lira a~- 1 S, = 0 a.s. 
n ~ o r )  

Proof Because of (ii) we can find (C,) such that (Cna,) is increasing 

lira C , = 0  (1) 

P {]X.[ > �89 C. a.} < oo. (2) 
n = 0  

Let e > 0  be given and define xm, . by 

~Cm, . =B2,,1.(e a.) 2 exp( --tom, . e-  1 C.). 

By Theorem 3.3 we have to show 

exp(-�89 . . . . . .  ~)< oo. (3) 
k = 2  

To this end we choose k o so large such that for any k >  k o 

2d8-1C.k<�89  eB~-/Z.ka.k>lo~= o~-.(eB-~/z.~-i,.k a.k)" (4) 

If there would exist k > k  o with 

~c.k . . . .  ~ < 2 d log + (B L 1_1 ,.k e2 a~k) 

then we would get from (4) the contradiction 

~c.k . . . .  k>B~l_l,.ke2aZ exp(_2dlog+(B.211, .~ ~2 2 -1 %)e C.) 
>Bz1/2  n ea .  >-log+(eBz1/2 a n ) 

k - l ,  k k - -  k - l ,  k k " 

Hence we have for any k >_ k o 

. . . . . . .  > 2 d l o g + ( B ~  1_ -2a2~ 
1,  n k  ~5 n k ~ "  

Using (iii) the assertion (3) follows from 

e x p ( -  �89 ~.~ . . . .  k) < ~ ( a ;  z B . . . . . .  ~)e < oo. 
k = ko k = ko  

The above theorem and its first corollary look very technical, but Corollary 
3.4 will be one important ingredient for the upper class part in the proof of our 
main result 4.1 and it implies a famous result of Egorov [-5] which has its 
origin in Teicher [,11]. For  this purpose we need the following 

Lemma 3.5. Let (b,) be a sequence in [-0, oo[ and d~N.  
(a)  For any rn, n ~ N  with m<=n we have 

b~ <=d! b~ b s 
i i =  m " =  - -  J m 

R. Wittmann 
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(b) Let further (nk) be a sequence and M >  1 be such that M a . < a  . . . .  

<=M 6 a.~+ 1 for any k~N. Then the following conditions are equivalent 

(ii) a2 ~ b. b i < oo. 
n = l  i= 

Proof (a) follows from 

b~ <d! ~ bjlb;2...bjd 
i = m  - -~ -  r a < = d l  < < ' a < n  = . . . = d  = 

= d ! ~, b i ~ b j, b j2.. .  bj~_l 
i = r a  m < "  < < "  <_i ~ J 1  = . . .  = J d  - 1 _ 

/ i \d-1 

For the proof of (b) we assume first that (ii) holds. Setting n~: =0  and using (a), 
property (i) follows from 

~a.-~ 1 bl <=d! ~ bj ~__lbi ~ a.-~ 1 
k = l  i-- j = l  i --  n k > = j  

_-<d[ ~ bj b, a}-l(1-M-~) -'. 
j = l  i = 1  ' /  

Assume now that (i) holds. Then (ii) follows from 

a2 ' b . b i = ~. a21b. bl 
n = n l +  1 i =  k =  1 n = n k +  I i 

k =  1 n = n k + l  \ i - -  

< M6 k~.la~= 1+, i= l bi " 

Corollary 3.6. Assume that there exists d > 1 such that 

(i) ~ P{ iX . l>e a . }<  oo (e>0) 
n = l  

".--2d'd-'~ oo. 
n = ,  

(ii) 

Then we have 
l ima  2 1 S . = 0  a.s. 
n--+ oo 

Proof By [16], Lemma 3.3 there exists a sequence (rig) satisfying 3.4(i). Assume 
first that deN.  Applying Lemma 3.5 with b . :=E(X  2) we see that (ii) implies 
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condition (iii) of Corollary 3.4. Hence in this case the assertion follows from 
Corollary 3.4. If p - 1  < d < p  for a p e n  then setting I : = { n e N :  B , > a  z} the full 
assertion follows from the already shown special case by observing 

a2 2p Bp-I  E(X 2) =< ~ bln~ - 2d DnDd--1 E ( X  2) 
n~N\I n= 1 

a22V+2B~-ZE(X2)< ~ ~-2ao.-~ 2 , ,  ~ , E(Xn). 
n~l n= 1 

Corollary 3.6 is slightly weaker then Egorov's original statement. Though 
his result can be deduced in full strength Corollary 3.4, we prefer the above 
somewhat simpler formulation which is just as good in all resonable appli- 
cations. As a new application of Egorov's theorem we give now a strengthened 
and widely generalized version of a classical result of Brunk, Chung and 
Prohoroff (cf. [2], p. 333 or [10], p. 154). By more elementary methods a 
weaker result was obtained in Wittmann [17]. Again we need a real variable 
lemma: 

Lemma3.7.  Assume that a , < a , +  1 for any n e N  and let (b,) be a sequence in 
[0, c~[. Then for any p e n  

implies 

• a21(an_ 1-p p a,_ ~) b, < oo 
n = 2  

a 2 P b, b~ < oo. 
n = l  i =  

Proof Setting q: = (p - 1)- 1 p and a0: = 0 H61der's inequality yields 

bi= ~ (ai-ai_l) l /qbi(ai-ai_l)  -1/q 
i = 1  i = 1  

< { 2 a l - a i _ i )  br(al-a,_l)  -p/q) <=a:/q (a i -a i_ l ) l -Pb f  (1) 
\ i = l  / i = l  / i= 

Let now M >  1 be given. Then by [16], Lemma 3.3 there exists a sequence (nk) 
with 

Ma,k<a . . . .  <M3a,k+l (keN). 

Applying Lemma 3.5 with d--1 our assumption yields 

a,-k I ~ (a l -a  i_ 1) I-p b ~ < ~  
k = l  i = 1  

whence taking (1) into account we get 

Y~ aG ~ b i a-",k a~/q.~ (a~ - a  i - 1) 1 - "  b~' < oo. 
k =  i = 1  - - 1  i = 1  

Applying Lemma 3.5 once more with d =p  the assertion follows. 
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C o r o l l a r y  3.8. Let  p > 1 and assume that 

(i) 

(ii) 

(iii) 

Then we have 

a ,<a ,+  1 (neN)  

~ P { l X . [ > e a . } < o o  (e>0)  
n = l  

a ;  - a h  1) 1 - "  < 
n = 2  

lira a~- 1 S, = 0 a.s. 
n ~ o o  

Proof  By L e m m a  3.7 condi t ion 3.6(ii) follows from 3.8(iii) if p e N .  For  the 
2 proof  of the general case let d - l < p < = d  with d e n  and set I : = { n > 2 :  a, 

2 <E(X2)}.  Then  the assertion follows from the special case by observing - a n -  1 

oo 

2 a.(a n - a . _  = ._. a . (a  n - a n _ i )  E(Xn) 
n e N \ I  n =  2 

a .  ( a .  - a  n_ 1) 1 - ( a -  = a .  ( a .  - a n_ 1) E ( X . )  . 

n ~ I  n =  2 

The next corollary is a wide general izat ion of the sufficiency part  in 
Prohoroff 's  [9] law of large numbers.  

Corollary 3.9. Let  (nk) and M > 1, L, C > 0 be such that 

(i) Man~<ank+ <=M6a.~+l (k~N) 

(ii) IX.[ =< C(log 2 a.) -1 a. (neN)  

�9 _.@ exp( 1 - 4LCn-1  2 x  (iii) - -  ~ e Dnk - 1, nk ank) < O0 
k = 2  

(iv) ~ (log+ an~)-L< o0. 
k = l  

Note that the last condition is always satisfied for  L > 1 by (i). 
Then we have 

limsupan~ 1 max [Sm[< 1 -  , l i m s u p a , - l l s ,  l<  1 -  M 6 a.s. 
k ~ O 0  nk  l < m ~ n k  n ~ o o  

Proof  Setting C.: = 2  C(log 2 an)-1 and defining gm,n as in Theorem 3.3 we have 
to verify the assumptions of Theorem 3.3. Condit ions 3.3(i), (ii) are obvious. 
Now if ~c . . . . . . .  < 2L  log 2 a.k then 

1 2 e x p ( -  C n 2L  log 2 an~ ) = e *CL(B . . . . . . .  ) -  1 a 2 tr . . . . . . .  > (B  . . . . .  k)- a . . . .  . 

Hence 

exp(-- �89 tr . . . . . . .  ) <  ~ e x p ( -  L log 2 an~ ) + ~ e x p ( -  �89 e-4CL(B . . . . . .  ) - i  aZ). 
k ~ 2  k = 2  k = 2  
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Since the last two sums are finite by (iii) and (iv) also condition 3.3 (iii) follows 
and the proof is complete. 

Corollary 3.10. Let (G) and M >  1, L, C > 0  be such that condition (i), (ii), (iv) of 
Corollary 3.9 are satisfied. Instead of (iii) we assume the stronger condition 

1 - 4 L C  - 1  2 (iii') e x p ( - ~ e  B,~ a,~) < oo. 
k = 2  

Then we have 
l imsupa211S. I~M 6 a.s. 

n ~ o o  

Proof. We use the technique of Tomkins [15]. To this end we fix p e n  and 
define for any 0 < i < p a subsequence n(i)k: = Gv + i satisfying 

MP an(i)k<=a,(i)k+l<=M6p an(i)k+l (keN) 

~ e x p ( - g e  Bn(i)kl,n(i)kan(i)k)<=~ 1 - 4 L C B - 1 2  1 -4Lc - 1 2 e x p ( - 3  e n(i)k a.(i)~) < oo. 
k = 2  k = 2  

Thus the assumptions of Corollary 3.9 are fulfilled for the subsequences (n(i)k). 
Hence 

limsup a -  1 max [Sml <(1 -MY) a.s. 
k ~ o o  n(Okn(i)k l < m < n ( i ) k  

Since for any m>nv+ 1 there exists O<i<p,  k > l  with n(i )k- l<m<n(i)k  we 
obtain from (i) that M6 

limsup a,~ 1 [Sin[ < a.s. 
m~oo = l - m  - 6 p  

Letting p tend to infinity the assertion follows. 

In most of the above results there appear certain sequences (G)- With the 
aid of the next lemma, which is an immediate consequence of Wittmann [18], 
Lemma 3.2 one can nearly always remove these subsequences in the assump- 
tions. 

Lemma 3.11. I f  M : = l i m s u p  a " + l <  oo then for any e > 0  and any sequence (b,) 
in IR + satisfying ,400 a, 

~ a 2 1 ( a , - a , _ l ) b ,  <oo 
n = 2  

there exists a subsequence (G) such that 

k = l  

(1 +e)a.~__<a . . . .  <(1 +e)6 M3 a.~ (keN). 

The essential difference between 3.11 and 2.3 is that the sequence (b.) need 
no more be increasing. 

As an example of applicability we give the following (slightly weaker) 
variant of Prohoroffs  law of large numbers. 
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(i) 

(ii) 

Then we have 

Corollary 3.12. Assume that there exists C > 0 such that 

IX.l _-< C(log2 n)-1 n (keN) 

~ n - l exp ( - - en2(B2  - B . )  z)<c~ 
n = l  

(s > O) 

Proof Let e > 0  be given. 
sequence (ink) such that 

lim S" =0  a.s. 
n ~ m  17 

Then by Lemma 3.11 and (ii) there exists a sub- 

2m2 B - - B m k ) -  1) < (1) e x p ( - e  k( 2mk aO 
k = l  

~/~mk <mk+ I <~m k (keN). (2) 

Setting nk=2m k we get from (2) that nk- -nk_ l<mk_l<mk  and therefore B.~ 
--Bnk_ l ~ Bzm k -- Bmk. Hence (1) implies 

~ e x p (  - e  2 nZ(B.~-B.~ 1)- 1) < 00. 
k = l  

Setting L : = 2  and a , :=e  n2e 4Lc we see that 3.9(iii) is satisfied. Obviously (ii) 
holds and (i) follows from (2). Since for L > I  condition 3.9(iv) is always 
satisfied we obtain 

( l i m s u p S " < g 2 e  4Lc 1 -  M 6 a.s. 

Making e > 0 arbitrarily small the assertion follows. 

4. The Law of the Iterated Logarithm 

The two main streams are now flowing together in our main 

Theorem 4.1. Assume that for any ~ > 0 there exists d > 0 such that 

(i) ~, B~- 1 (log2 Bn) -a ~(~) L~(e) < 
n = l  

(ii) ~, p {IX.I > ~ ]/B. log2 B~} < oo 
n = l  

B2 l(log+ B.) ~-1E(X~)= o0. (iii) 

Then the law of the iterated logarithm holds, i.e. 

limsup(2B, log 2 Bn)- 1/2 Sn = 1 
n~co 

a.s. 
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Addendum to Theorem 4.1. If  4.1 (i), (ii) and the law of the iterated logarithm 
hold, then (iii) must also hold. 

Proof Let 0 < e < l  be given and use (i) to choose d > 0  such that 

B/- 1 (log2 Bi)-a- 1 F/((1 + e)- 3 8) zd((1 _~_/;)- 3 ~) < 00. 
i = 1  

(1) 

We denote for any n e N  

a.: = ]//2B. log 2 B. 

A. :=  {IX.I > ~ ] /BJlog2 B. } 

Xn: = IA,, Xn -- E(IA. X. )  

2.:=x.-2. 
M : = l + e  

and define S. and S. as usual. By [16], Lemma 3.3 there exists a sequence (nk) 
such that 

m a .  <a.~+l<m3a.~+l (k~N). (2) 

Since a"<B"< a2 for any re<n, we get from (2) that 
~ 2 am Bm a m 

Denoting 

observing 

MB. <=B . . . .  <_M6Bk+I (keN). 

i = m + l  i = m + l  

B,~ 1 ~, F/(0<(1 + 0 6  Lm((1 + 0 - 3  0 (nk_l<m<=nk) 
i = n k - l + l  

and using Lemma 3.5 (a) we obtain from (1) 

a.~-z(a+ 1)Bn ~d+l_ 1, .k <= a~2(d+ 1)(d+ 1) ! ~ e(Jf})/3, e . . . .  i 
k = 2  k = 2  i=nk 1 + 1  

(3) 

~ ( ]  -kg) 6(d+ 1)(d+ 1) ! ~ a/-2(a+ 1)/~/(~) ((1 -k~) 6 B i Li((1 +e)-3  e))a 
i = 1  

< K ~ B? l(log2 Bi)-d- t Fi((l + e)- 3 e)Lai((l + ~)- 3 ~)< oo. 
i = 1  

Hence all the assumptions of Corollary 3.4 are fulfilled and we obtain 

lim a~- a ~. = 0 a.s. (4) 
n ~ o o  

By the definition of J(. we have for any h e n  

I)~.1 < 2e]/B./log z B. <4e(log 2 a.)- 1 a.. (5) 
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Defining/~m,, as usual, setting C :=4e ,  L.-=2 and ~, :=(1 +~)e2LCa, we have 

exp(--l e-4LCB~ 1 ~k)< ~, exp(--(1 +e)21og2 B,k)< oo. 
k = 2  k = 2  

Hence condition (iii') of Corollary 3.10 is satisfied for ()~n), L, C, M. Condition 
3.9(ii) follows from (5) and 3.90) is obvious. Finally as already remarked 
3.9 (iv) is always satisfied when L >  1. Now Corollary 3.10 entails 

limsupfi~ -11Snl=<M 6 a.s. 
n ~ c o  

and therefore 

limsupan -1 [S~l s +e) 6 a.s. (6) 

Together with (4) and l imsupa 21 ~ IE(IA, Xi)[ < lira a 2 1 1 ~ ,  =0  we obtain 
~ c O  i =  1 n ---> oO 

l imsupa n ISnl < 1 a.s. (7) 
n ~ c o  

by making 5 > 0 arbitrarily small. We now assume that e > 0 was chosen small 
enough such that 

e 16~(1 + 5) 7 < 2. (8) 

Using again [-16], Lemma 3.3 we can find a sequence (ink) such that 

5-iBmk<=Bm,+1<=c-3Bmk+l (kEN). 

Because of a . . . .  < 5 a ~  and (6), (8) we have 

limsupam -1 1S,,~_~1<25 a.s. (9) 
k ~ o o  

From Lemma 2.2 we get 

limsupa2,~ Sm . . . . . .  _->(1-5) 3 a.s. 
k--* o0 

Together with (9) this implies 

limsupa,~2 S m > ( 1 - e )  3 - 2 e  a.s. 

Letting e > 0 tend to 0 and recalling (4) we obtain 

limsup a~- ~ S, > 1. 
~ o o  

Together with (7) the assertion now follows. 

Proof of the Addendum. Assume that there exists 0 < ~ < 1 such that 

B21 (log+ B,) ~-1 E(X~) < oo. (10) 
n = l  
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We choose N, M > 1 and (nk) such that (2), (3) and 

M 6 < N < (1 - 3)- i/2 (11) 

hold. By Lemma 2.3, (10) is equivalent to 

~ (log+ B )~- < 1 
nk/  

k = l  

Setting L: = 1 - 6 and 8,.- = N -  1 8, we have then also 

~, (log+ 8,k)-L< ~ .  (12) 

We now choose e > 0 so small such that 

e -16LN~ N -2~> 1 - - 0 .  

Defining X, as above and setting C : = 4 N z  we get 

1 --4LC ^-- 1 e x p ( - ~ e  Bn k fi2)<_k -- ~ exp(--e-16LN~N-Zl~ ) 
k = 2  k = 2  

= ~ (log+ B,k) ~- 1 < ~ .  
k = 2  

Hence condition (iii') of Corollary 3.10 is satisfied for (X,), (6,), C, L, M. 
Condition 3.9(iv) was shown in (12) and 3.9(i) is trivial. Finally condition 
3.9 (ii) follows as in the proof of the theorem. From Corollary 3.10 we get 

l imsupd;1S ,< M6 < N  a.s. 
n ~ c o  

Together with (4) we obtain 

l imsupa~aS,<=MeN-a<l  a.s. 
n ~ 3  

Hence the taw of the iterated logarithm cannot hold and the proof of the 
Addendum is complete. 

Remark. If we would replace condition 4.1(i) by the stronger and less natural 
condition 

(i') (B, logzB,)-d- '~(e)  Fi(e) < ~  
n = l  i 

then the proof would be much simpler. A slightly weaker condition appears in 
the work of Egorov [5]. But in this paper also the restrictive condition (*) 
discussed in the introduction was imposed to show the law of the iterated 
logarithm. In [-2], p. 345 Egorov's condition is replaced by a twice truncated 
moment condition. In this case condition (.) cannot be removed completely 
but the following much weaker condition would be sufficient 

(**) lim By 1 ~ E ( I [ I x , I > ~ v ~ X ~ ) = O  (e>0). 
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This can be shown by using the arguments of Sect. 2 for the " > "  part and the 
arguments of [2] for the "__<" part. 

P 1 p ; E([X.[ ) for any p > 2  and since L.(~)<I Since F.(e) < e l -~  B.-7(log2 B.)? --1 v 
we obtain the following 

Corollary 4.2. Assume that there exists p > 2 and d > 0 such that 

(i) ~ Byp/2(log2 B.)-" g ( l x . f )  < oo 
n = l  

(ii) ~. P{IX, I>e]/B. log2B.}< oo (e>0) 
n = l  

(iii) ~, B~ -a (log + B.) ~-1 E(X2.) = co (e > 0). 
n ~ l  

Then the law of the iterated logarithm holds. 

Remark. The above Corollary seems to be sharp in the following sense: For 
any sequence (a.) such that 

lira a~- 2 2 d B. (log 2 B.) = 0 
n ~ o o  

for any d>0.  Then there exists a sequence (X.) of independent random vari- 
ables such that 

E(Xn) = O, E(X 2) = 1 (n~N) (1) 

a2~' E(IX, IP) < oo (2) 
r l = l  

P{IS.l>~l/B.log2N~ (e>0) (3) 
n = ]  

limsup(B, log 2 B,)- 1/2 Sn = oo a.s. (4) 
n ~ o o  

A proof should go along the lines of [6], Sect. 5. 
Since 

~, P{IX, I>el/B.  logzB.} < ~ g-P(B, log2B,)-p/2 E(IX.[ p) 
n = l  n = l  

we obtain the following generalization of [16], Theorem 1.2 

Corollary 4.3. Assume that there exist p > 2 such that 

(i) ~ BEp/2(log 2 B,),  p/2 E(IX.I v) < o0 
n = l  

(ii) ~, BE1(log+B,)'-~E(X2.)=oo (~ >0). 

Then the law of the iterated logarithm holds. 

Acknowledgement. I would like to thank R.J. Tomkins for pointing out some errors in the preprint. 



530 R. Wittmann 

References 

1. Alt, J.C.: Sur les comportement asymptotique presque stir des sommes de variables aleatoires a 
valeurs vectorielles. Preprint Strasbourg 1986 

2. Chow, Y.S., Teicher, H.: Probability theory: independence, interchangeability, martingales. 
New York Heidelberg Berlin: Springer 1978 

3. Chung, K.L: A course in probability theory, 2rid edn. New York San Francisco London: 
Academic Press 1974 

4. Einmahl, U.: A useful estimate in the multidimensional invariance principle. Preprint K61n 
1985 

5. Egorov, V.A.: On the strong law of large numbers and the law of the iterated logarithm for 
sequences of independent random variables. Theor. Probab. Appl. 15, 509-514 (1970) 

6. Egorov, V.A.: Some theorems on the strong law of large numbers and law of the iterated 
logarithm. Theor. Probab. Appl. 17, 86-100 (1972) 

7. Kolmogoroff, A.:/,)ber das Gesetz des iterierten Logarithmus. Math. Ann. 101, 126-135 (1929) 
8. Marcinkiewicz, J., Zygmund, A.: Remarque sur la loi du logarithme it6r6. Fund. Math. 29, 

215-222 (1937) 
9. Prohoroff, Y.V.: Some remarks on the strong law of large numbers. Theor. Probab. Appl. 4, 

204-208 (1959) 
10. Stout, W.F.: Almost sure convergence. New York San Francisco London: Academic Press 

1974 
11. Teicher, H.: Some new conditions for the strong law. Proc. Natl. Acad. Sci. USA 59, 705-707 

(1968) 
12. Teicher, H.: On the law of the iterated logarithm. Ann. Probab. 2, 714-728 (1974) 
13. Teicher, H.: Generalized exponential bounds, iterated logarithm and strong laws. Z. 

Wahrscheinlichkeitstheor. Verw. Geb. 31,293-307 (1979) 
14. Tomkins, R.J.: On the law of the iterated logarithm. Ann. Probab. 6, 162-168 (1978) 
15. Tomkins, R.J.: Limit theorems without moment hypotheses for sums of independent random 

variables. Ann. Probab. 8, 314-324 (1980) 
16. Wittmann, R.: A general law of iterated logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68, 

521-543 (1985) 
17. Wittmann, R.: An application of Rosenthal's moment inequality to the strong law of large 

numbers. Stat. Prob. Lett. 3, 131-133 (1985) 
18. Wittmann, R.: A limit theorem for double arrays. Proceedings 6th Pannonian Symp. Math. 

Stat., Bad Tatzmannsdorf 1986 (to appear) 

Received May 20, 1985; in revised form March 27, 1987 


