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Summary. Let E be a Banach space and ~:  E ~ N +  be symmetric, con- 
tinuous and convex. Let {U/} and {rz} be independent sequences of random 
variables having, respectively, U(0, 1) and symmetric Bernoulli distributions, 
and let {U~/"~} and {r~ )} for j =  1,2 . . . .  ,d be independent copies of these 
sequences. We prove two-sided inequalities between the quantities 

EI~)( 2 vii "'" ~dF_/(g/l' " ' ' '  U/d)) 
!~za+ 

and their "decoupled" versions 

!~zd+ 

for Bochner integrable ~ :  [0, 1 I d l E .  This generalizes results of Kwapiefl 
and of Zinn. 

1. Introduction 

Decoupling inequalities for convex moments  were introduced by the authors in 
[8] (see also [10]) as a tool in the study of multiple stochastic integration, and 
were extended in [9]. A number  of further extensions and related results are 
now known ( [2 ,  4, 5, 11]). In the present paper we prove a decoupling 
inequality which has direct application to the study of stochastic integration of 
vector-valued integrands. The proof  is based on a convexity result (Lemma 2.2) 
which may be of independent interest. 

A nonnegative convex function �9 defined on N or, more generally, on a 
Banach space E, is said to satisfy A 2 if there is a constant /~ such that 
~(2x)__<fi45(x), for each x in E. Let X i be independent symmetric random 
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variables and let {X}J)}/~176 for j =  1 ,2 , . . . , d  be independent copies of this se- 
quence. Let a~, jeZd+ be an array of real numbers such that a ! = a j  whenever i 
is a permutatfon of_j. Also assume that all but finitely many q variish and that 

vanishes when any pair of indices in _/agree. Let ] le denote any Orlicz norm 
on L~(Y2). In the case E = IR, it is known that if �9 satisfies A 2 then one has 

F,a. ,x ,~ ... x , ~ l ~ r E  a._,x~:~ ... ~,~<~ , .  (1.1) 

(Unless otherwise specified, all sums are over Za+.) Here and elsewhere in this 
paper two positive quantities are related by ~ and said to be comparable if 
their ratio is bounded below and above by positive finite constants. The right- 
hand inequality in (1.1) was proved in [9]. For  the left-hand inequality see [4]. 

The restriction that ~ satisfy A2 rules out many interesting choices of ~, for 
example q~(x)=e I~l. The following result of Kwapiefl removes this restriction 
and, further, allows the ~ to take values in a Banach space E. It is convenient 
to introduce the notations X~_ for X h X ~  ... X~ and J(i for X(~)X ( 2 ) h  ~ ... X~(~). 

Theorem 1.1 ([4]). Suppose cp: E~IR+ is continuous, convex and satisfies q~(x) 
= ~ ( - x ) .  Let Xi, X} J) be real-valued symmetric random variables as above, and 
ai as above but E-valued. Then 

_ _ -  { d3e a_i2_~). (1.2) Eq~(d-d ~ ai 2i  ) <_ E ~ ( ~  al X )  <= E ~  \ ~ .  
/ 

We shall use only the special case of this theorem in which the X~ are the 
Rademacher functions r~ (independent symmetric Bernoulli random variables). 

The following theorem is the main result of the present paper. 

Theorem 1.2. Let F/: [0, 1]a~E, j~Zd+, be Bochner integrable, symmetric under 
interchange of their arguments and vanish on the diagonals of [0, 1] d. Also 
assume j ~  is symmetric. To avoid convergence questions, assume that all but 
finitely many Fi_ are identically zero. Let U i be i.i.d. U(O, 1) random variables and 
{U/(j)} be independent copies of this sequence. Then, with ~ as above, 

E q~(d - 2a ~, ~_ FI( U}: ), . . . , Ui~))) <= E ~( Z ri F_i_( Ui~, . . . , Uid) ) 

/d 4d ) (1.3) 
_~E~b | - -  ~'~ t~f/(g/(1), )) \d' .  z.,_, _ , "",Ui~ " 

This result with different constants was obtained by J. Zinn [11] when E 
=IR and ~ (x )=  Ix l p. His proof works also in the non-convex cases 0 <p  < 1, but 
it does not generalize to the Banach-valued case. 

Various choices of F_i in (1.3) lead to various generalizations of Theorem 1.1. 
For  example, to extend Theorem 1.1 to the case in which the a i and X_~ take 
values in a commutative Banach algebra E, choose gi: [ 0 , 1 ] ~ E  such that 
gi(U3 has the same distribution as X i and use 

( x l ,  . . . ,  xd)  = a ! g , l (x~ )  gi2(xg . . ,  g,~(xd). 

(The same result holds in a noncommutative algebra if each ~ is symmetrized.) 
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All of our results translate directly into statements about multiple stochas- 
tic integrals of vector-valued integrands with respect to symmetric, infinitely 
divisible processes. This is because work of Le Page [6], and more recently 
Pisier and Marcus [7], implies that such integrals, whenever they exist, may be 
represented as limits of expressions of the sort occurring in (1.3). 

We should emphasize here that the symmetrizing presence of the Rade- 
macher functions is essential to our methods. In some special situations this 
represents no loss in generality, for the Rademacher functions may be inserted 
by means of martingale transform inequalities. For  example, see Proposition 
4.2 below and the discussion preceeding it. On the other hand, there are 
interesting decoupling phenomena which are not covered by our methods, 
most notably, the decoupling of random Fourier quadratic forms. For  further 
insight on the effects of asymmetry see the example on p. 965 of [2]. 

The proof of Theorem 1.2 is given in Sect. 3 and is based on a convexity 
result which is proved in the next section. 

In Sect. 4 we consider results analogous to (1.3) in which the summations 
extend only over the tetrahedron 7+ a = {jEZa+: i 1 < i  2 < . . .  <id}. An example, 
due to J. Bourgain, is given which shows that such results do not hold for 
general E. Some additional, geometric, conditions on E are necessary. We 
recall two such conditions which are sufficient to give the desired result. 

2. The Convexity Lemma 

Throughout  this section f2 denotes a fixed finite sample space on which, unless 
otherwise specified, all random variables under consideration are defined. Also 
E denotes a fixed finite dimensional topological vector space over ]R, and ~b: 
E~IR+  a convex function. We need the following simple result about convex 
functions. 

Lemma 2.1. Fix a ,b~E and let g (2 )=Eq) (a+2qb)  where r 1 denotes a Rade- 
reacher function. Then g is nondecreasing on ~ + .  

Proof Let 0_<2~<22 and put p=21/22, p + q = l .  Then g(21)<=pg(22)+qg(O ). 
But by Jensen's inequality g(0) < g(22) , hence g(2 0 < g(22). 

Lemma 2.2. Let X_=(X1,X 2 . . . .  ,Xd) be a vector of  mean 0 E-valued random 
variables and X_'=(X' 1 . . . . .  X'd) a vector with the same marginal distributions as 
X,  but whose components are independent. Let q , . . . , r  e be a Rademacher se- 
quence which is independent of  X_ and X_'. Let T: E(e)--*R be convex. Then 

E}[/\[rl-X/ld .... ' rdd)) :-~ E ~t(gl Xl' . ..,raXa) (2.1) 
and 

F~'(X )<-_E~(dX' dX') 1 '  " " , X d  1 '  " ' ' ,  d " (2.2) 

Proof  Let ~z 1 denote the cyclic permutation of {1,2, .. . ,d}, and ~z2, .--,~a the 
successive powers of ~z 1 (re a is the identity). Let _iX 1, _X 2, ..., _X a be independent 
copies of _X. Set 
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= ( x ? " ) ,  . . . ,  x;~(k), . . . ,  x2(e))  

and note that each W/has the same distribution as _X'. Thus, since _X has mean 
zero, we have by Jensen's inequality, 

F ~ 7 , ( X ) < ~  X k = E ~  ~ = d  - - 
k = l  i-- i=1  

which is (2.2). 
To obtain (2.1) let rl,_r 2 . . . .  ,r_ d be Rademacher sequences which are inde- 

pendent of all other variables under consideration, and, in particular, inde- 
pendent of_r. Then 

{ _X X ~ '  ' {1 r~1(1)X~(1) 1 r~l(a)X~(~) ~ E T  , ' l d l , . . . , r d d d j = E T J [ ~  1 1 . . . . .  ~ a d ] 

l d r -2"1 ) [ _  V r~,(1)X~a 1) 1 < = ~  \d ~ ~ 1 1 , . . . , ~  r~rU~X2 ~"~ 
i = I  i= 

;: = E T  ~ ' r iq ,1 ) r lX1 , . . .  , ri(l, ~t) ~ l , 
l = i  ' / = 1  / 

where i(1,j) is defined by i ( l , j ) = i  if =i(j)=l .  For each fixed l the sequence 
r l ~(~,a)r), j = 1 , 2 ,  . . . ,d, has the same distribution as r and hence, for each 1 the 

{ri(~d)r)Xj} has the same distribution as {~)Xfl. Thus the expression sequence t t 
above is dominated by 

d 
1 =Z'al 1 l ~ ~ g ~ I ] ( F i ( l ' l ) r ! X !  ' l l _  - " ' ,  riq,d) r iXd)- -  E ~(r 1X1, ..., r aXe), 
dr= 

and the proof is complete. 

3. Proof  of  Theorem 1.2 

Suppose first that each ~ assumes only finitely many values. (We shall remove 
this restriction at the end of the section.) To obtain the left-hand inequality in 
(1.3) it is sufficient, by (1.2) and the independence of the r i and U~, to prove that 

E ~ (  d -~  Z ~ 5(~(, ' ,  ..., ~))__<E~(F. ~5(~ , ,  ..., V,d)). (3.1) 

(Note the replacement of ~ by ~ on the right-hand side.) 
For each l=1 ,2 , . . ,  put Ij(/)={j: i j=I}  and Io(/)={i: ik:t:l, k =  l, ..., d}. 

With l fixed, set 

x ; :  Z ~5(~1, .... < ) ,  j = 0  .... ,d. 
_ie~At) 

Thus X o comprises all those terms which do not involve U~, and Xj comprises 
those terms which contain U~ in the ,,jth slot" of their 4" Also, let 

X~= y, ~ ( ~ , . . . ,  q~) . . . .  , < ) ,  j = l , . . . , d ,  
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and let j denote the a-field generated by all variables except r~, ..., r~, Uz, and 
U~ ~, ..., U~ a. Note that, conditional on ~ X o is a constant vector in E and 
(Xi, ..., Xd) and (X'i, . . .  , X'e) are symmetric sequences of E-valued random vari- 
ables which satisfy the hypotheses of Lemma 2.1. Applying (2.1) with 

we obtain 
tff(Yl . . . . .  Y~/) = r  q-Y1 q - " "  +Yd) 

~ E  [q) 1 d 
t = fj(l) 

We now apply this argument to each l in turn. At each stage, those terms 
which do not appear in the corresponding X o are multiplied by 1/d. But this 
will happen for a given term exactly d times, once for each argument of its F~. 
This proves (3.1). The opposite inequality is proved the same way, using (2.2) 
instead of (2.1). 

There remains only to remove the restriction on the ~.  Note that all 
expectations in (1.3) are well-defined (possibly infinite) since the integrands are 
nonnegative random variables. Let ~ denote the n *h dyadic a-field of [0, 1] a, 
and put F_/"=E(FiI~) which is well-defined as an E-valued function on [0, 1] a 
since each Fi is Bochner integrable. Put 

zo = E ..., v , )  
and 

z'o = E 'i _ _ - - . ,  q ~  ) .  

Recalling that each of these sums is actually finite, we obtain from the 
Martingale Convergence Theorem that 

2 ~(U~, ,  ..., U~)= lira Z, ,  a.s., 
t l ~ o o  

�9 Z t " and a similar statement for hm , Moreover, we have 
n + o o  

E ~ ( ~  ~(U,: , ,  ..., U~d))= lim Ecb(Z,) 
n ~ c o  

and 
. . . ,  Z t E~b(~" ~ F~(U~(1), U~))) = lim E ~ ( , ) .  

n ~ o o  

(One inequality results from Fatou's lemma and the other from Jensen's 
inequality applied to the conditional expectations given ~ . )  The desired results 
now follow from the special cases proved above. 

4. Inequalities for Tetrahedronal Sums 

It is often useful to have inequalities analogous to (1.3) in which the sum- 
mation extends only over the tetrahedron 

7+~ ={-/eZa+ : i l< ia  <-. .  <ia}- 
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Unfortunately, such inequalities do not hold for general E even if the ~ are 
constant. This was noticed by J. Bourgain, and we thank him for communicat-  
ing to us the following example. 

Example 4.1. On the space 2 2 I, |  of tensors of rank 2 over (1,2) * we consider two 
norms, the "project ive" norm defined by 

Ilxlr ̂  = infY,  Hei[[ [/fljl], 
i , j  

where the infimum extends over all representations x =  ~ cq| as a finite sum, 
and the "injective" norm defined by ',J 

[JxH v = s u p  I , rx f i l ,  

where the supremum extends over e, fle(12) * having norm one. Here each 
tensor x is identified with an n x n matrix via its expansion, x = ~ xijei|  in 

i,j<=n 

terms of the standard basis el, e2, ..., en of l~. We shall need the inequality 

[tr(xry)l ~ [[xl[ v ]rYl[ ̂  (4.1) 

which follows easily from the definitions. 
Let {r[} be an independent copy of the Rademacher  sequence. Put 

ei| 

x~j=] ej@ei, 

tO, 

i<j ,  i even, j odd, 

i<j ,  i odd, j even, and 

otherwise. 
Then 

Ell ~ ri~x~jll 2 =Ell( ~ rieg)| ~ ~ej)ll 2 
i<j<=n i even, j ocld, 

~n  -<n 

=(Nil ~ r~e~ll,~)(E[I ~ 5ej][}~)<= n2. 
i even, j odd, 

~n  ~ n  

On the other hand, conditioning on r~, i even, we obtain 

rlrj xijN ,, _ II ~ ' 2 ri~)(ei| ^ 
i<j<=n i<j<=n, 

i even, j odd 

Now it is straightforward to check that there is an absolute constant c~ such 
that 

II , e, Oejll  2 
2., r i ~ - - - -  = 

E ie~J~n 1 - - J  v < ~ 2 .  
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Thus, by (4.1) and Schwartz's inequality, 

(Ell ,~, r~o'(ez| ~/z 
i < j < n ,  

i even, j odd 

1E t r  2rit)'(ei.@e.J)] T 
OC \L i :#  j I - - J  d 

1 
=-I  ~ 1/(i-J)l 

OC i < j < n ,  
i even, j odd 

>->=cnlogn, 

i< j<n,  
i even, j odd 

for some constant c. 

It follows from this that Theorem 1.1 (hence Theorem 1.2) does not hold with 
summation over T+ z when E = 12 (~ 12. 

In the remainder of this section we give sufficient conditions on E for 
tetrahedronal analogues of Theorem 1.2 to hold true. Let A2(E ) denote the set 
of all convex 4~: E~IR+ satisfying a A 2 condition, ~(-x)=~b(x),  and ~b(0)=0. 
For any map a: Ze+~E we set 

Q,(a)= ~ a(j)r!, 
_i~Ta+, 

and i~_<n 

(~,(a)= 2 a(i)~. 
i~ Ta+ , 
id<=n 

Note that both Q, and (~, are martingales. Also let {ei}ie~d + be a family of 
symmetric i.i.d. Bernoulli random variables, and set 

(~,(a)= ~ a(j_)ei. 
i ~ T a ,  
ia<n 

Szulga and Krakowiak [-3] say that E satisfies the multilinear contraction 
principle (MCP) if there exists 1 < p <  oe and d > 2  such that 

][Q,(a) Np ~ ]l(~,(a) llp~ [l (~, (a) ll p, (4.2) 

for all n and a: 2U+ ~ E .  Moreover, they show that (4.2) holding for one such p 
and d implies (4.2) for all such p and for all such d. 

Appealing to results of Pisier, the authors of [-3] show further that a 
sufficient condition for E to satisfy MCP is that E should have local uncon- 
ditional structure (L.U.S.T.) and not contain copies of l~ uniformly (see [-3] for 
definitions). 

The symmetry assumptions on the ~ in Theorem 1.2 were necessary only in 
order to apply Kwapiefi's result, Theorem 1.1. The rest of the argument, i.e., 
the proof of the inequality in (3.1) and of the reverse inequality, made no use of 
these assumptions. Here, inequalities (4.2) replace the result of Theorem 1.1. 
Therefore we may deduce the following result. 
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Theorem 4.1. Let E have L.U.S.T. and not contain copies of  I. ~ uniformly. Then 
under the hypotheses of  Theorem 1.2 we have for each 1 < p <  oo 

H ~, rl/~)(Uq, .. Uid)Hp~ [I ~ ~ Et[Z(1) u~))lrp �9 (4.3) 
_ - ' ~ _ i', i l  ~ " " " ' 

i_eTa+ !ETa~ 

We conjecture that the same result holds with the L p norms replaced by the 
norms I I~, ~ A 2 ( E )  �9 

Another family of Banach spaces for which results like (4.3) hold is the 
class UMD introduced by Burkholder [1]. A Banach space E is UMD (for 
unconditional martingale differences) if for some 1 <p  < o0 there is a constant c 
such that for every E-valued martingale difference sequence d, and ei~ { _+1} we 
have 

n di  p ~1~i _---clp~dillp. 
i i 

This is equivalent to the statement that for every 4~A2(IR) one has 

E sup ~b e i d i ~ E sup �9 (4.4) 
n \1~ i=  1 liE / n i 

with the constants in ~ depending only on �9 (see [1]). 

Proposition 4.2. Suppose E is UMD. Then for 1 < p <  0o one has 

IIQ,(a)llp~ ]l (~, (a) H p, (4.5) 

for all n and a: Ze+ ~ E .  

Proof For convenience we give details only in the case d=2.  We prove a 
stronger version of the right inequality. Put dj=(~a(i , j)r~)7) and let (b~A2(N). 
Then by (4.4) and L6vy's inequality ~<J 

E~(/I Q,(a)ll)<E sup ~(]l ~ dill)<cE sup q~(I] ~ ~'dj]l) <c'E~(II ~ rjdjl]) 
m <n j<=m m<n  j < m  j < n  

= E~(ll(~,(a) ll). 

The left-hand inequality for ~(x)=lxl~, 1 < p < o %  is proved similarly, using 
Doob's inequality in the last step. 

For the same reasons as above we obtain 

Theorem 4.2. Suppose E is UMD. Then under the same hypotheses as in Theorem 
1.2 we have for l < p < o o ,  

i 6 T ~  isYa+ 

We conclude by remarking that neither of Theorems 4.2 and 4.1 includes 
the other. For example, the space 1 a satisfies the hypotheses of Theorem 4.1 but 
is not UMD, and the spaces Cp for l < p < o o  are UMD but do not have 
L.U.S.T. It is therefore of interest to know the precise class of spaces E for 
which the tetrahedronal analogues of Theorem 1.1 carry over. 
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