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Summary. A non zero-sum stopping game of a symmetric Markov process 
is investigated. A system of quasi-variational inequalites (QVI) is introduced 
in terms of Dirichlet forms and the existence of extremal solutions of the 
system of QVI is discussed. Nash equilibrium points of the stopping game 
are obtained from solutions of the system of QVI. 

O. Introduction 

Zero-sum stopping games (so called Dynkin games) of Markov processes have 
been studied by many authors, e.g., Bensoussan-Friedman [-2], Bismut [4], 
Dynkin [5], Friedman [6], Krylov [-8, 9], Lepeltier-Maingueneau [10], Mo- 
rimoto [11], Stettner [15], etc. Above all in [2], [6] and [8, 9] it has been 
known that the value function of a Dynkin game can be identified as a 
solution of a certain variational inequality and the saddle point of the game is 
constructed from the solution. J. Zabczyk largely extended their results to 
symmetric Markov processes by using theory of Dirichlet forms (cf. [16, 17]). 

On the other hand in the study of non zero-sum stopping game of a 
diffusion processes Bensoussan-Friedman introduced a system of quasi-varia- 
tional inequalities (QVI) and showed that a Nash equilibrium point of the 
game can be constructed from a regular solution of the system of QVI (cf. [3]). 
Regularity problems however remained open so far. 

In the present paper, treating with a non zero-sum stopping game of a 
symmetric Markov process, we introduce a system of QVI of obstacle types in 
terms of a Dirichlet space and show the existence of Nash equilibrium points 
of the game by establishing direct relationship between the system of QVI and 
the stopping game. We can dispense with regularity arguments of the solution 
of the system by using potential theory of Dirichlet forms and Markov pro- 
cesses which was useful for the studies of various stopping problems such as in 
[12-14] and [16, 17]. 

Our system of QVI is different from Bensoussan-Friedman's but equivalent 
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to it (cf. w 6). To introduce our system of QVI the notion of e-reduced functions 
is necessary. We devote w 1 to introduction of the notion cited from [7]. Main 
results are in w 2. 

1. Preliminaries 

In the present section we introduce a notion of e-reduced functions in terms of 
theory of Dirichlet forms and its probabilistic interpretation according to I-7]. 
Then we will formulate variational inequalities related to optimal stopping 
problems, which we will utilize in the following section to introduce a system 
of quasi-variational inequalities concerning non zero-sum stopping games for 
symmetric Markov processes. 

Let m(dx) be a nonnegative everywhere dense Radon measure on a locally 
compact Hausdorff space X with a countable base. Suppose that 
(~2,Y),Nt,P~,Xt) is an m-symmetric Hunt process on X whose Dirichlet space 
(~,,g) relative to L2(m(dx)) is regular. Let us take any e-excessive function 
0 ~ o  ~, and any set B c X .  We set 

Lo,~={v~..~;~>(t q.e. onB},  

where ~ denotes a quasi-continuous modification of a function v ~ -  then it can 
be seen that Lq,,B admits a unique element OB~Lo, B minimizing g~(w,w) on 
Lq,.B. Here g~(w,w)=g(w,w)+e(w,w),,, e>0 .  This OB satisfies the following 
inequality: 

g~(OB,V)>O, VW~, ~=>0 q.e. on B. (1.1) 

Moreover 0n has the following properties: 

~9~ is e-excessive, (1.2) 

OB<O m-a.e., (1.3) 

~ B = ~  q.e. on B (1.4) 

(cf. [7]). ~'B is called the e-reduced function of 0 on B. We note that e-reduced 
function 0 B ( x ) c a n  be written as tpB(x)=U~#B(X) by a unique measure pn 
supported by B, where U~# is a function uniquely determined by equality 
N~(U, #, v) = ~ v(x) #(dx) for v e ~  c~ C 0. 

We can see e-reduced functions from another point of view. Let us set 

~ x _ B = { u e ~ ; f i = 0  q.e. on B} 

for each Borel set B. ~x-B being a closed subspace of the Hilbert space (~,g,)  
o ~ admits a orthogonal decomposition 

where we denote by ~ B  the orthogonal complement of ~'~x-B. We can see by 
(1.1) and (1.4) that 
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= (~O - 0B) + g'B (1.5) 

represents the orthogonal decomposition of the e-excessive function Oeo~ That 
is, e-reduced function OB on the set B is the projection of ~ on the space 24~ ~. 

Taking the symmetric Markov process ((2, #), N,, P~, Xt) associated with the 
Dirichlet space (~ ,g)  we set aB=inf{t;XteB} for a Borel set B. Then 
Ex[e . . . .  ~(X,~)] is a quasi-continuous modification of the c~-reduced function 
SB (cf. [7]). 

Let us consider the following variational inequality (1.6) for a given func- 
tion qSE~#: 

g~(u,v-u)>O, V v > $  a.e. u>q~ a.e. (1.6) 

Then this inequality (1.6) has an unique solution u e ~  Therefore, when we 
denote by U(~b) the solution of (1.6) for given function ~beJ ~ U(.)  define an 
operator from ~,~ to ~ We note that U(q~) is e-excessive for each ~be~- (cf. [-12, 
173). 

Let us set 
u* (x) = sup E x [e -  =~ ~b (X~)], 

where r ranges over all stopping times. Then, owing to [12], it is known that 
u*(x) is a quasi-continuous modification of the solution U(~b) of (1.6) and 

u*(x) =E,, [e -~* q5 (X~.)], 

** = inf{t; U(c))(X,) = ~b(Xt) }. 

Remark. Any function f(x)  is extended to a function on X a = X w A  by setting 
f ( A) =0 ,  where Xa is a one point compactification of X. When X is already 
compact A is regarded as an isolated point. Since (Px, X,) is a Hunt process Xt 
=A for each t>((co), where ((co) is a terminal time. Therefore we can define 
Ex[e-'~f(X~)] for any stopping time ~ and any quasi-continuous function 
f (x)eo ~. 

2. System of QVI and Nash Equilibrium Points 

Let us assume that quasi-continuous functions 4)i,Oie~, ~ such that qSi_<_O~ m- 
a.e., i = 1, 2 are given. We set 

J~( z l , z j=Ex[e  . . . .  ~91(X~,)I{,,<~2}+e-~2~,l(X~2)I { . . . . .  }] (2.1) 

j2(zl,.c2)=Ex[e . . . .  ~02(X=2)I{~z<~}+e . . . .  ~2(X~)I  { . . . .  z}] (2.2) 

for any stopping times % and %. Our problem is to look for a pair of stopping 
times tz* r*~ such that 1~ 2Y 

i * * > j 1  , aJx("cl,'c2)= x ( ' c l ,  "c2),  V'Cl,  

2 . , ~ 2 , Jx (T1, T2)=J~ (TI, T2), VT2' 
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Such a pair (z~,r~) is called a Nash equilibrium point of non zero-sum 
stopping game with pay-off functions J~ and j2 .  Corresponding to the above 
stopping game we consider the following system of quasi-variational inequali- 
ties (QVI) (2.3): 

g~(ua,v-uO>O, V v > r  v U(Ol)B(,2,r ut__>~b 1 v U(Ol)B(,2,4,~ ) (2.3) 

g~(u2,v-u2)>-_o, v v > r  u~>~vU(~2)B~u~,~), 

where B(ui,(al)={x;fii(x)=~i(x)}, U(O~) is the solution of the variational in- 
equality (1.6) for a given function 0~ and U(Og)B(,j,~j) is the e-reduced function 
of the ~-excessive function U(0i) on the set B(uj, Oi), i,j = 1, 2, i4=j. 

Then we have the following existence theorem of the system of QVI (2.3). 

Theorem 2.1. There exists a pair of solutions (ffl,U-z) and (u_a,ffa) of (2.3) such 
that any solution (Ul, u:) of (2.3) satisfies 

r < u_, < u~ < a~ < u (0 , ) ,  i = 1, 2. 

Concerning existence of Nash equilibrium points of the non zero-sum 
stopping game with pay-off function J2 and j2  respectively defined by (2.1) and 
(2.2) we have the following result under the assumption (A): 

{x; U(qS,)=qSi} c { x ;  U(~j)=~gj}, i , j = l , 2 ,  i=t=j, (A) 

except a set of capacity zero. 

Theorem 2.2. Let (u,, u2) be a solution of (2.3) and "c* =inf{t;  ~i(Xt)= (oi(Xt)}, i 
= 1, 2, then under the assumption (A) (z,, %) is a Nash equilibrium point of the 
non zero-sum stopping game with pay-off function J~ and Jff. 

Remark2.1. If Oi is e-excessive for each i, or if r  for each i, then the 
assumption (A) is always satisfied. 

Remark2.2. When ~b~= - O j ,  ieej, i=1 ,2  in (2.1) and (2.2) the game is called a 
zero-sum stopping game or Dynkin game, which has been studied by J. 
Zabczyk in the context of symmetric Markov processes and Dirichlet forms (cf. 
[16, 17]). 

Remark 2.3. In general pay-off functions are defined as follows: 

Igl i g2 J i ( z l ,Zz )=e  x e-~Sfi(X,)ds 

+ e . . . .  Oi(X~,) I{~ <=~j} + e- =~j Oi(X~j) I{~j < ~}] (2.4) 

i+j, i,j = 1, 2. The non zero-sum stopping game with pay-off functions (2.4) can 
be reduced to the above mentioned our case by taking q5 i - G ~ f  and O i - G ~ f  
in place of q5 i and Oi, i = 1, 2. 
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3. Existence of Solutions of a System of QVI 

Let us introduce for a given function w ~  a closed convex subset 

KI(W) = { V ~ ;  V ~  ~b i V g(@i )B(w ,q ) j ) } ,  

i,j=i, 2, i4=j of a Hiibert space (o ~,g~). Then we consider the following varia- 
tional inequality (3.1) 

o~(u,v-u)>O, VwKi(w),  u~gi(w ) (3.1) 

for each i. Since (3.1) has a unique solution we can define an operator S~ from 
~- to ~- such that S~w is the solution of (3.1) with the convex set Ki(w ) for 
each i. Let us set T = S  2 S1, then T has the following properties. 

Lemma 3.1. T satisfies the following properties." 

i) T u < r w  if (o2<__u<=w 
ii) if wn<w,+ 1 for each n and {w,} converges to w in (~,~),  then {rwn} 

converges to rw in (o ~, ~). 

For the proof of Lemma 3.1 we need the following lemma. 

Lemma3.2. Let ~ , e g  be an c~-excessive function and {Bn} be a sequence of 
subsets of X, then we have the following: 

i) /f {B,} is a nondecreasing sequence and B= ~) B,, then OB, ~ ' B  in 

ii) /f {B} is a nonincreasing sequence of quasi-closed Borel subsets and B 

= ~ B ,  then OBn ~ Oe in (~,~, g~). 
n~ I 

Remark. A subset B of X is called quasi-closed if there exist a quasi-continuous 
function g(x) and a closed subset F of R ~ such that B=g-~(F). 

Proof of Lemma 3.2. i) We first note that (0B~)B~-----0m for B 1 ~ B  2 because of 
the definition of e-reduced functions and (1.4). Therefore it follows from (1.3) 
that (JB~ <0B~ if B~ ~ B ; .  Thus {0B,} is a nondecreasing sequence of e-excessive 
functions such that 0B,----<0B, which means that ~(0~, ,  0E,,) is a nondecreasing 
sequence dominated by g~(~bB,Oe ). Accordingly {0~,} converges strongly in 
(g,d~) to a certain function 0 , ~ .  It is clear that 0 ,  is e-excessive and 
r Moreover there exists a subsequence of {O~,} which 
converges a.e. to 0 , .  Then we have O,(x)>~,(x)=(9(x)=~B(x ) q.e. on B for 

each n. Since B =  ~j B we obtain ~,(x)>t~(x)  q.e. on B. Hence we conclude 
that 0 ,  =0B. ,=1 

ii) Let {B,,} be a nonincreasing sequence of quasi-closed Borel subsets of X, 
then it is easy to see that {~'R,} is an g~-convergent sequence. We denote by t) o 
its limit. According to Theorem 3.1.4 in [7] g~-convergent sequence {0~,} of 
quasi-continuous functions has a subsequence which converges q.e. to ~o. 
Therefore to see that ~o = ~s q.e. it suffices to show that 

E~ [e- ~ ~ (X~)] = lim E~ - ~ "  " [e 0 ( X J ]  q.e. (3.2) 
n~oo 
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where a,=inf{t;XteB,} for each n and %=inf{t;XteB} (cf. Sect. 1). e ,  being 
nondecreasing we set a =  lira a, to see (3.2). Since each B, is a quasi-closed 

Borel set we have X ~ B ,  P~ a.s. on {a<  oo} q.e .x .  Therefore lira X ~  B k 
n--* oo k = l  

=B, P~ a.s. on {o-< oe} q.e .x.  By using quasi-left continuity of our process we 
see that P~(Xa~B, o-< oo)=Px(a< oe ) q.e. x, which means o->%,  Px a.s., q .e .x .  
Converse inequality is obvious by definition of o-. Accordingly we have o-= % 
P~ a . s . q . e . x .  Hence we obtain E~[e . . . .  (t(XJ]--->E~[e . . . .  ~(X~,)] q.e. x as 
n ~  because of quasi-left continuity of our process and dominated con- 
vergence theorem. 

Proof of Lemma3.1. i) Since &~<u<w we have B(u, O2)=B(w,~2 ). Therefore 
we have U(01)B(,,o~)> U(0I)~(w,O~) in the same way as the proof  of Lemma 
3.2i). Accordingly we obtain K~(u)cKl(w), from which it follows that 
Sau>S~w. It is obvious that S tw>~ , .  By repeating similar arguments as 
above with respect to S 2 we obtain T u : S  2 S 1 u ~ S  2 S 1 w=- Tw. 

ii) We first note that {B(Wn,~2)} is a nonincreasing sequence of quasi- 

closed subsets of X and B(w, q52)= (~ B(wn, O2). Therefore we see by Lem- 

ma3.2 that U(~P~)B(w,,O~) converges in (~,,E,) to U(~1)8(~,4~ ). Then we have q51 
v U(~bl)B(~,,4~)~q~ a v U(~bl),(w,e~)in (~,,g,) by Anconna's lemma (cf. [1, 17]). 
Therefore we obtain S~w,--->S~w in ( ~ , ~ )  by Theorem 5.1 in [14]. Moreover 
we have S~w,J, Slw>()  1 q.e. Now we have B(Slw,,(Da)cB(Saw,+~,4) ~) and 

~)B(Saw,,(~O=B(S,w,(a~). Therefore by similar arguments as above using 
n = l  

Lemma 3.2 i) in place of ii) we conclude S z S~ w, ~ S 2 S~ w in (o ~, ~,). 

Proof of Theorem2.1. We first note that ~b2<Tq52. Then we obtain 
T" -  1 q52 < T" ~b z by Lemma 3.1. It is clear that T" q5 z < U(02) because T" q52 is a 
solution of (3.1) with Kz(S1Tn-IOz ). Thus {T"q52} . is a nondecreasing se- 
quence of e-excessive functions dominated by e-excessive function U(O~). 
Therefore it has a (strong) limit point T ~ ~b~. We set ~2 : T~ ~b~, then we have 
T_~2=~2 because of Lemma3.1ii).  Hence, setting ff~=S~u 2, we see that 
(if,, u~) is a solution of (2.3). 

Let us define an operator T from ~ to ,,~ by T = S ,  $2, then it follows that 
Tu<Tw for ~ <u<w and that Tw,--> 27w in (o~, g~) for nondecreasing se- 
quence {w,}, which converges to w in (o ~, ~).  Therefore, setting u~ = T~ ~b~ and 
~2=$2u~, we can see by similar arguments as above that (u~,ffz) is a solution 
of (2.3). It can be easily seen that ~b i < u~ < u~ <ff~ < U(O~), i=  1, 2, using the above 
mentioned monotone property of T and T. 

4. A Variational Inequality and a Stopping Problem 

Suppose that a Borel quasi-closed subset B and quasi-continuous functions ~b 
and tO~o~ such that ~b__<~b m-a.e, and ~b is c~-excessive are given. Then we 
consider the following variational inequality. 
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g,(u,v--u)>__O, VvsK(B) ,  usK(B) ,  (4.1) 

where K ( B ) = { v e ~ ;  v>~b v OB m-a.e.}. We note  that  the unique solut ion u of 
(4.1) is the excessive majoran t  of ~b v Os (cf. [12, 14, 173). Therefore  by our  
assumptions we have the following lemma. 

L e m m a  4.1. The solution u of (4.1) is a-excessive and satisfies 

q~ < u < ~ m-a.e. (4.2) 

~ = O  q.e. on B. (4.3) 

Let us set a I =inf{ t ;  g(Xt) = ~b(Xt)}, a 2 = in f{ t ;  ~(Xt)=~8(Xt)}, r = in f{ t ;  XteB} ,  
a * = i n f { t ; ~ ( X t ) = r  2 and z * = a l A a  3. Then, owing to the 
theorem in [12] we have 

fi(x) = sup E~ [e-~'(ck v 6B)(X~)] 
t 

=Ex [e-~'(q5 v ~8)(X,,,)] 

= E~ [e-='* a(X~,)] q.e. (4.4) 

Now, using the propert ies  of an c~-reduced function ~ ,  we have the follow- 
ing lemma useful for the p roof  of Theorem 2.2. 

L e m m a  4.2. We have 

~(x) = E  x [e -~T* ~(X**)] = E  x [e-~**(q9 v ~ , ) (X, , ) ]  q.e. 

Proof By (3.4) we have 

~(x) = E~ [ e - ~ * ( 4  v ~B) (X**)] 

=E~Ee - ~  r ] q.e. 

Since $B(x) is an e-reduced function of  ~ on B we obtain 

r =Ex  [e . . . .  ~ (X~a)] 

= E~ [e -~" . . . .  Ex(~ ^ ~ ) [ e  . . . .  @ ( N o . 3 ) ] ]  

= E~ [e - ~  ~ ~B(X(a,/x  a 0)] q.e. 

We further note  that  a2<as ,  P~ a.s .q .e ,  x, P~(X~fiB; a 3 < o o ) = 0  q.e. x and 
~(x) = ~B(x)= O(x) q.e. on B. Therefore  we obtain 

E~ [e . . . .  ~B(X~) I{ . . . .  ~}] 

=E~ [e - ~  t~B(X~ ) I{~, <~,} + e . . . .  ~B(X~) I{ . . . .  , =< ~}] 

<Ex[e  . . . .  5 ( X , r s ) l { a s < ~ , } + e  . . . .  5(X~) t{  . . . . .  <~3}] q.e. 

Hence we have 
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~(x) < E~ [e . . . .  ~(Xr I{o, <~} + e -~r ~(Xo~) I{ . . . . .  }] 

__< E~ [e . . . . . .  s ~ (X~, ^ ~)] 
=E~[e . . . .  fi(X**)] q.e. 

Converse inequali ty fi(x)>E~[e-=~*fi(X~,)] q.e. is obvious because u is e-ex- 
cessive. 

5. P roo f  of Theorem 2.2 

N o w  we give the p roof  of Theo rem 2.2. Let  (u 1,/A2) be a solut ion of the system 
of QVI (2.3). We set 

"c* = inf{t;  XteB(u i, ~b~)}, i = 1, 2. 

We note that  B(ul,dpi), i=1,2, are quasi-closed and therefore P~(X~reB(u~,(a~), 
~*< oo)=0,  q.e., i=1 ,2 .  Then  we have 

axl 1 ~t'l,[r T2*" 12! = Ex [e- ~ ~ 1 (X,:*I) I{r < d} + e- ~ ~ 1 (X~3) I{~ < ~}] 

=E~ [e -~s Ul(Xz~) I{,~_<43 + e-=~1 fil(X~1) I{~1 <~}] 

= E x [ e  -~'r ^*~ 5 ~ ( X r  ^ ~)3, q.e. 

because f i~(x)=~z(x)  q.e. on  B(/22,q402) by L e m m a  4.1. We obtain by L e m m a  4.1 
and L e m m a  4.2 

E,~[e -~*~ ̂  ~I a~(X,1 ^,~)] = ~ ( x )  

> E x [ e -  ~ '  ~b ~ (X~) I{~ =< ~[} + e -  ~ ~, t (Xr I{~[ < ~3] 
- -  l * - Y ]  (%,'c2) , q.e. 

( % , % ) : Y d ( ' c l , r ~ )  q.e. x, for each for any stopping t ime r 1. Thus we o b t a i n d ~  * , > 1 
12[~* ~*]> T2/T* r ] q.e. x, for each stopping t ime z , .  In the same way we h a v e , x t ~ , , o 2 ~ = o x ~  ~, 2, 

T 2 �9 

6. Equivalence of Two Systems of QVI 

Bensoussan-Fr iedman in t roduced the following system of QVI in [3]:  

~ ( w l , v - w , ) ~ O ,  V ve/~,(w2), w, e/{~(w2) 
(6.]) 

G(w2,v-wj>O, vwRdw,), w2cR2(w,), 

where Is ~=Oi  q.e. o n  {l,~j=~j} and v>4)i}, i# j ,  i , j = l , 2  and ~b i 
and Oi are given quasi-cont inuous functions belonging to ~,~ such that  ~bi<O~ 
and 01 is e-excessive for each i. We are now going to show equivalence of (6.1) 
and our  system of QVI (2.3) in the case that  0i is e-excessive for each i. It is 
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sufficient to prove the equivalence of the variational inequality (4.1) and the 
following variational inequality (6.2). 

g~(u,v-u)>O Vv6KB, uaKB, 

K B = { V e ~ ;  ~ = 0  q.e. on B and v>0} .  
(6.2) 

Proposit ion 6.1. (4.1) and (6.2) have common unique solution. 

Proof Suppose that u (resp. w) is the solution of (4.1) (resp. (6.2)). Since fi=t9 
q.e. on B and u >= ~b m-a.e, u belong to K~. Therefore we have 

$~(w, w) < $~(u, u). (6.3) 

On the other hand we can show that w~K B as follows. Since Iw-OBI, w 
--0Be~X_B we have 

G(~'B+Iw - ~PBI, ~'~ + I W --~BI) 

= G(~bB, ~',)  + 2 g~,(OB, Iw -- O~l) + G(Iw --4'~1, Iw -- ~'BI) 

----< G(0 . ,  r + G(W -- ~ ,  W--,/,~) 

=G(w, w)+ 2G(O~, O~-w) 
= G ( w ,  w). 

It can be easily seen that ~%+[w--~,BlaK B. Therefore we have w=O~+lw 
--~bBI, which means w>OB m-a.e. Accordingly we obtain w>q~v~b 8. That is 
waK(B). Hence we have 

g~(u, u) < g~(w, w). (6.4) 

From (6.3) and (6.4) it follows that u=w. 

7. Exam p l e  

We give a simple example of the solutions of system of QVI (2.3) in the case of 
absorbing Brownian motion on the interval (0, 1), where the Dirichlet form is 

~(u ,v )=l idudv  ~ d x  

{ i dv~ with the ) domain J =  v; v is absolutely continuous, o ~xx dx<oo and v(0) 

=v(1)=0~.  We note that Theorem 2.1 and Theorem 2.2 are valid for c~=0 in 
d 

the present case because g is already coercive. 
Let ~91, qSi, i= 1, 2 be functions as follows: 

r -~<~=<5~ 
[-~3x+} }<x<l, 
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/-~ 0<~_<_{ 

4x 0 < x < � 8 8  

O~(x)= 1 �88188 

[ - 4 x + 4  3 < x < l ,  

4x 0<x__<~ 

~(~)= �89 ~<~_-<~ 
- 4 x + 4  7 < x < l .  

Then extremal solutions (u l, ~72) and (ul, u-2) are the followings 

~ x  

2 1 g x + g  

u_~(x) : 
2_ --11 

- - S X •  
8 8 

- - g X +  5 

4x 

2x+�88 

~2(x) = 1 

-2x+~- 
-4x+4 

/~1 (X) : I/-/1 (X) and 

O<X< 1 

-~<~_<_~ 
3 5 ~<x__<[ 

~ < x < l ,  

O<x<{- 
1<~<~ 
~<~<~ 
~<x<~ 
}<x<l, 

u_~ (x) -- 4,~ (x). 
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