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Summary. This paper  is concerned with the characterization and invariant 
measures of certain reflected Brownian motions (RBM's) in polyhedral 
domains. The kind of RBM studied here behaves like d-dimensional 
Brownian motion with constant drift # in the interior of a simple polyhe- 
dron and is instantaneously reflected at the boundary in directions that 
depend on the face that is hit. Under  the assumption that the directions of 
reflection satisfy a certain skew symmetry condition first introduced in 
Harrison-Williams [9], it is shown that such an RBM can be characterized 
in terms of a family of submartingales and that it reaches non-smooth parts 
of the boundary  with probabili ty zero. In [9-1, a purely analytic problem 
associated with such an RBM was solved. Here the exponential form 
solution obtained in [9-1 is shown to be the density of an invariant measure 
for the RBM. Furthermore,  if the density is integrable over the polyhedral 
state space, then it yields the unique stationary distribution for the RBM. 
In the proofs of these results, a key role is played by a dual process for the 
RBM and by results in [9-1 for reflected Brownian motions on smooth 
approximating domains. 

1. Introduction 

This paper is concerned with certain d-dimensional diffusion processes called 
reflected Brownian motions (or RBM's) that have applications in queueing and 
storage theory [6, 7, 13, 19, 221. An RBM behaves like d-dimensional Brown- 
ian mot ion with constant drift in the interior of a simple polyhedron and is 
instantaneously reflected at the boundary of the polyhedron in directions that 
depend on the face that is hit. Under the assumption that the directions of 
reflection satisfy a certain skew symmetry condition first introduced in [9], it is 
shown that such an RBM can be characterized in terms of a family of 
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submartingales and that it reaches non-smooth parts of the boundary (e.g., 
edges and corners for d---3) with probability zero. In [-9], a purely analytic 
problem associated with such an RBM was investigated. It is shown here that 
the solution of that analytic problem is the density of an invariant measure for 
the RBM and furthermore, if the density is integrable over the polyhedral state 
space then it yields the unique stationary distribution for the RBM. This 
invariant density has an explicit exponential form, which is the constant 
function when the drift is zero. In the proofs of these results, a key role is 
played by a dual process for the RBM. 

The notation used here is consistent with that in [91. In particular, the data 
for an RBM are as follows (primes denote transposes, vectors without primes 
are column vectors, and diag(-) denotes the vector formed by the diagonal 
elements of a square matrix): 

(a) integers k > d > 1, 

(b) a k x d matrix N such that d iag(NN')= 1 and N contains an invertible 
d x d submatrix .~, 

(c) a k x d matrix (2 such that 

diag (QN') = 0, 

(d) a vector b =(b 1 . . . .  , bk)'elR k, and 

(e) a drift vector l~ER ~. 

Let n' i and q'i denote the i th rows of the matrices N and Q respectively 
( i = l , . . . , k ) ;  thus ni and q~ are both d-dimensional column vectors. Let G 
denote the convex polyhedron defined by: 

G=-{x~e :  Nx>-_b}. 

It is assumed that the interior G is non-em.pty and that this representation of 
is irreducible. That is, for any matrix N and column vector b formed by 
removing one of the rows of N and the corresponding row element of b, the set 
{x~Nd: N x > b }  is strictly larger than G. This is equivalent to the assumption 
that each of the faces 

F/-= {x~G: x.ni=bi}, i = l , . . . , k ,  

has dimension d -  1. The reader will observe that n~ is a unit vector normal to 
F~ that points into the interior G, whereas q~ is a vector parallel to F i. The 
vector v i-= n~ + ql is called the direction of reflection associated with face Fi; nl 
and q~ are called the normal component and tangential component respectively of 
v~. A vertex of G is a point x~3G where d or more of the faces F~ intersect. A 
mild non-degeneracy assumption is made here, namely that the polyhedron 
is simple, i.e., precisely d faces meet at each vertex. 

The requirement that N contain an invertible d x d submatrix means that 
no line can lie entirely within the polyhedron G. That  is, the boundary of the 
polyhedron must bound each dimension in at least one direction; this is of 
course automatic if G is bounded. 
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Loosely speaking, an RBM associated with these data is a strong Markov 
process with continuous sample paths in G that (a) behaves like d-dimensional 
Brownian motion with constant drift g in G, (b) is reflected at the boundary of 
G in the direction v~ on F~ and (c) spends zero time (in the sense of Lebesgue 
measure) on the boundary of G. Without further restrictions on the data, there 
need not exist a well defined process satisfying these conditions. Indeed, such 
processes do not fall within the realm of the general theory of multi-dimension- 
al diffusions because the boundary of the state space is not smooth and the 
directions of reflection are discontinuous across non-smooth parts of the 
boundary. However, some instances of such processes with various restrictions 
on the data have been studied. When G is a two-dimensional wedge and /~=0 ,  
the questions of existence, uniqueness and characterization of such a process 
were resolved in [18]. Even this simple case required non-trivial analysis and 
led to some surprising results such as the possibility of sufficient reflection 
toward the corner forcing any continuous strong Markov process satisfying (a) 
and (b) to be absorbed there. The case of a general polygon G in IR 2, can be 
reduced to that of a wedge by localization. Several authors have given suf- 
ficient conditions for a path-by-path construction of an RBM from a d- 
dimensional Brownian motion. These range from the simplest case of normal 
reflection treated by Tanaka [17], through cases requiring the polyhedron and 
vectors of reflection to be suitably approximable by smooth domains and 
vector fields as in Lions and Sznitman [10], to a construction on an orthant 
given by Harrison and Reiman [8] where Q has non-positive entries and 
spectral radius strictly less than one. In [22], deZelicourt  gave abstract suf- 
ficient conditions for certain RBM's to exist as diffusion approximations to 
queueing and storage processes. One of these conditions requires that the 
RBM's do not reach any non-smooth parts of the boundary. A few concrete 
examples of two-dimensional RBM's for which this holds were given in [22]. 
In this paper it is shown that when the following skew symmetry condition 
(1.1) holds, the d-dimensional RBM associated with N, Q, b and /~ does not 
reach the non-smooth parts of the boundary of G: 

NQ'+QN'=O. (1.1) 

A submartingale characterization is given for this RBM in Theorem 1.1 below. 
This is in the spirit of Stroock and Varadhan's [15] approach to diffusion 
processes on smooth domains with smooth boundary conditions. For  the 
statement of Theorem 1.1, the following notation and terminology is needed. 

Let S denote the union of G with the smooth part of the boundary of G, 
and let ~2 denote the set of continuous functions co: [0, oo )~G satisfying 
c9(0)~S. Suppose Q is endowed with the rr-algebra ~=c~{co(s): 0=<s<oo} 
generated by the coordinate maps, and for each t~[0, oo), let ~=o-{oJ(s):  
O<_s<_t}. A function T: f2-~[0, oo] is a stopping time (relative to {~t}) if 
{T<t}6~ for all t>0 .  The a-field ~T associated with such a T is defined by: 

~r--{A~f2: An{T<=t}~ for all t_>O}. 
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For each (t, co)~[0, oo) x f2, define 

X (t, co) - Xt(co ) = co(t). (1.2) 

Let C~Z(G) denote the set of functions that are twice continuously differentiable 
with compact support in some domain containing G. Let A and V denote the 
Laplace and gradient operators respectively in Na, and define the differential 
operators 

L=�89 +# .  V in G, (1.3) 

D i = v i �9 V on F/. (1.4) 

For typographical convenience, the dependence of L on/~ has been suppressed. 
Finally, define a differential operator D on c~G by (a) setting D=D~ at all points 
on face F~ that are not also on some other face, and (b) setting D to zero at the 
intersections of faces. Define the stopping time z by: 

r=inf{t__>0: co(t)r 

Theorem 1.1. Fix N, Q, b and #, and suppose (1.1) holds. Then for each x~S, 
there is a unique probability measure Px on (f2, ~ )  that has the following two 
properties. 

(i) P~(co(0) = x) = 1. 

(ii) For each f ~  CZ~(G) that satisfies 

we have 
D f  >= 0 on •G, 

{ f (co( t ) ) - iL f (co(s ) )ds ,  t=>0} 

(1.5) 

(1.6) 

is a submartingale on (~2, ~,  {~t}, Px)- 

Moreover, for each x~S, 

(iii) Px('C < oo)=0. 

It follows from the uniqueness and (iii) that {Px, xeS}  is Feller continuous 
and has the strong Markov property ([15], p. 196). The RBM (associated with 
N, Q, b and #) is then defined to be the strong Markov process on (f2,~) 
associated with (1.2) and the family of probability measures {Px, x~S}. When it 
is necessary to stress the dependence on S and/or/~, the qualifiers "in S" and 
"with drift #" will be used. In the above characterization, the points in G \S  
have been excised from G to yield the reduced state space S. For the purpose 
of studying the invariant measures, there is no loss of generality in doing this 
since by property (iii) and the strong Markov property, an RBM for which 
(1.1) holds will never return to the non-smooth part of the boundary G\S  once 
it has escaped from there. For d>3 ,  the question of how to construct and 
characterize an RBM starting from a point in the singular set G\S  is an 
interesting open problem. The case d = 2  is covered by [18]. 

For a two-dimensional convex polygon G, (1.1) is equivalent to the require- 
ment of a constant angle of reflection over the entire boundary [9]. Moreover, 
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by applying the results in [18] locally and using the connectedness of the 
boundary, it follows that in this two-dimensional case if G is bounded then 
(1.1) is also necessary for Theorem 1.1(iii) to hold. The question of whether the 
same is true for d > 3 is an open problem. Implicit in this is the problem of 
determining general conditions for existence of an RBM with given data. 

In [9], a purely analytic problem was studied. It was shown there that (1.1) 
holds if and only if for each #eiRd there is a solution of the exponential form 
p(x)=exp{7(#) .x} ,  where 7(#)~IR a, to the following basic adjoint relation: 

~ p L f d x + � 8 9  p D f d a = O  for all f ~  C~(G). (BAR) 
G 0G 

Here dx denotes integration with respect to Lebesgue measure on IR a and da 
denotes integration with respect to surface measure on OG. The vector 7(#) is 
unique and is given by the formula: 

7(#) = 2(1 - ~ -  10)-1 #, (1.7) 

where N denotes the invertible d x d submatrix of N referred to in specifying 
the data of the RBM, and (~ denotes the corresponding d x d submatrix of Q. 
Although it may at first appear that 7(#) depends on the choice of N, in fact it 
does not because (1.1) implies that _~-1(~ is independent of the particular 
choice of N [9]. The following complements to the formal results of [9] are 
proved in this paper. 

Theorem 1.2. Fix N, Q, b and #. Assume (1.1) holds. Consider the measure p on S 
whose density function with respect to Lebesgue measure is p(x)=exp{7(#)-x}. 
Then the RBM's  associated with (N ,Q,b ,# )  and ( N , - Q , b ,  7 (# ) -# )  are in 
duality relative to p and p is an invariant measure for these two processes. 

By duality here we mean "strong duality", although "weak duality" (cf. Eq. 
(3.3)) would have sufficed for our purposes. For further details on duality, the 
reader is referred to [4]. 

Corollary 1.1. Assume the hypotheses of Theorem 1.2 hold. Suppose # f i r  e is such 
that 

C(#) = j exp {7(#). x} dx < oc. (1.8) 
s 

Then the R B M  in S with drift # has a unique stationary distribution. This 
stationary distribution is absolutely continuous with respect to Lebesgue measure 
and has density function { C(#)}- 1 exp {7(#)' x}. 

Note that if G is bounded, then (1.8) automatically holds for all #~iRa. 
By Theorem 1.2, the dual process associated with an RBM satisfying (1.1) is 

also an RBM for which the skew symmetry condition holds. In particular, the 
dual process has constant drift 7 (# ) -#  and adjoint directions of reflection: t~ i 
= n l - q v  On the other hand, a reflected Brownian motion with constant drift # 
in a smooth bounded d-dimensional domain with smooth reflection field on the 
boundary has a unique stationary measure of the form pu(x)dx, where Pu is a 
smooth strictly positive probability density. The associated dual process is a 



464 R.J. Williams 

reflected Brownian motion with constant drift if and only if Vp,/p u is a 
constant vector [11], i.e., if and only if p,(x) = C(#) exp(7(/0" x) for some ~(#)~ 
R e and C(#)> 0. In [9], it was shown that the latter holds for all #clR d if and 
only if a smooth analogue of the skew symmetry condition (1.1) holds. This 
and the results in [9] suggest that for a simple polyhedron an analogous result 
should hold, but with some i~eN e in place of all #eIRe. Thus, it is conjectured 
here that assuming G is bounded and #~IR d, then relative to a stationary 
measure an RBM associated with (N, Q, b,/0 has a dual process that is an 
RBM with constant drift if and only if (1.1) holds. Of course, the if part follows 
from Theorem 1.1. An implicit problem for the only if part is that of determin- 
ing suitable conditions (other than (1.1)) under which there is a well defined 
RBM. 

The remainder of this paper is organized as follows. The existence and 
uniqueness result, Theorem 1.1, is proved in Sect. 2. By means of a Girsanov 
transformation, the proof is reduced to the case where the drift is zero. Then, 
Theorem 1.1 is proved when G is a cone using explicit knowledge of the cases 
d = l  (a half-line) and d = 2  (a wedge [-18]), and an induction argument involv- 
ing some scaling properties and an associated dual process [16, 20]. The result 
for a cone is then applied locally and combined with a piecing together 
argument to deduce Theorem 1.1 for a general simple polyhedron. In Sect. 3, 
Theorem 1.2 and Corollary 1.1 are proved. The approach adopted there is to 
approximate G by smooth bounded domains with smooth vector fields on their 
boundaries. These domains and vector fields are chosen such that the as- 
sociated reflected Brownian motions have stationary densities proportional to 
p and these approximating processes converge weakly to the RBM in S. The 
property that p is the density of an invariant measure for these processes is 
preserved in the limit. Corollary 1.1 follows by a simple ergodic argument for 
finite invariant measures. 

2. Existence and Uniqueness of the RBM 

For the remainder of this paper it is assumed that the skew symmetry con- 
dition (1.1) holds. Also, the following additional notation and terminology is 
needed. For each i and j, let F~ = F i c~ Fi, the intersection of two (possibly non- 
distinct) faces, and define 

j * i  

so that U Fi ~ is the smooth part of the boundary of G. Then, S = G u ( U F I  ~ 
i i 

and G \ S =  U U Fij. If (f2,~,{Nt},P) is a filtered probability space and 
i j , i  

M: [0, ~ ) •  d, then we say M is a (d-dimensional) (sub)martingale on 
(~,~,{~t},P)  if each real-valued component Mi, i - -1 , . . . ,d ,  of M is a 
(sub)martingale on (~2,~, {~t},P). If M ( O ) = m o ~  d P-a.s., then M is a local 
(sub)martingale on (~, fq, {~qt}, P) if there is a sequence of stopping times {a m, m 
=1,2,  ...} relative to {~t} such that as m~o% amT~ P-a.s. and for each m, 
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M("/x a,,) is a (sub)martingale on (f~,N, {Nt},P). A process {Y(t), t>0}  defined 
on (f2, ~, {~t}) is said to be adapted if Y( t )e~  t for each t>0 .  A process defined 
on a probability space is said to be continuous or increasing (i.e., non- 
decreasing) if it has that property almost surely. It is said to be unique if it is 
unique up to indistinguishability. 

Several times in the sequel it will be necessary to approximate G by smooth 
bounded domains. For  this, let {G,,, r e = l , 2 ,  ...} be a sequence of non-empty 
bounded domains with C 3 boundaries such that for each m and i: 

G , ~ G m + I ~ G ,  OG,.~F~~ OGmm(G\S)=O; 
and 

G = U G  m, Sc~OG=Q)(OGmc~OG ). 
r n  m 

For each domain Gin, let n~ denote the inward unit normal vector field on OGm 
and let u m be a C 2 vector field on OGm such that u m.nm=l and um=v i on 
~?G,~ c~ F/~ for all i. The symbol l" J will be used to denote the Euclidean norm. 

The following lemma enables us to reduce the proof of Theorem 1.1 to the 
case #=0 .  Here ~ u  denotes the completion of ~- with respect to P~ and 4 "  
denotes the augmentation of ~ by the P~-null sets in ~u.  This completion and 
augmentation are introduced for technical reasons. In particular, for each fixed 

t 

t, the stochastic integral ~ 1G(co(s))d(o(s ) in (2.1) is defined as an g-measurable  
0 

random variable, but in the proof of Lemma 2.1 we shall need a continuous 
version of the stochastic process defined by these integrals. Such a version is 
only known to be adapted to the family of augmented a-fields { ~ ~  t>0}  
where # 0 - 0 -  (The superscript #o is used here to denote 0 so as to avoid 
conflict with the standard practice of using the superscript 0 to denote a raw 
(unaugmented) a-field.) 

Lemma 2.1. Let xeS.  I f  pO satisfies conditions (i)-(iii) of Theorem 1.1 for # = 0 ,  
then for any f ixed # e N  d , 

is a martingale on ([2, ~,  {4} ,  pO) and there is a unique probability measure P~" 
on (f2, ~ )  such that: 

dPx" 
dp o -~( t )  on ~,~ for all t >O, (2.2) 

and P~ satisfies (i)-(iii) of Theorem 1.1 for this ~t. Conversely, if p u satisfies 
conditions (i)-(iii) of Theorem 1.1 for some pelR a, then {(c~(t)) -1, t=>0} is a 
martingale on ((~, ~,, {~},  Px u) and there is a unique probability measure po on 
((2, Y )  such that 

dP~ -1 on ~ for all t>O, (2.3) 
dP2 

and po satisfies conditions (i)-(iii) of Theorem 1.1 for # =0 .  
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Proof. Suppose pO satisfies conditions (i)-(iii) of Theorem 1.1 for #=0.  Let 
{Gin} and {Urn} be the sequences of approximating domains and vector fields 
described above. For each m, 

Tm-=inf{t_-> 0: co(t)~Gmu(OGmr~OG)} (2.4) 

is a stopping time relative to {~}. By Doob's stopping theorem, condition (ii) 
of Theorem 1.1 holds with t A T m and p0 in place of t and Px, respectively. For 
each m such that xEG m, let P~ denote the probability measure on ( ~ , ~ )  
associated with the driftless reflected Brownian motion in G,~ that has re- 
flection vector field u m on 0G~ and starting point x. Then, since G~ c G and u m 
=v i on OGm nF~ ~ for each i, it follows from the submartingale characterization 
of pm on ~'~rm [15, Theorem 5.6] that: 

p o = p y  on ~r~" 

In words this says that the RBM in S associated with po behaves like that in 
G,~ up to the time T~. In particular, since the following depend only on the 
history up to the time Tm and are true for P~ [151 they are also true for po. 
On the probability space (Q, j , o ,  po) where #0 -= 0, we have 

{'? } (a) 1G(co(s))do~(s),~, t>O is a d-dimensional martingale that has a 

continuous martingale version M ~ -  {Mm(t), ~t "~ t>0} with mutual variation 
process: 

<M~,M~f>t=(}ij(tA Tin) for i, je{1 .... ,d}, 

(b) there is a continuous, increasing, {~t"~ real-valued process 
{vm(t), t > 0} satisfying the following three properties P~ 

vm(o) =0, 
V" can only increase at those times t for which o)(t)~(OG m ~3G), 
V~(t)= Vm(Tm) for all t >  T~, 

(c) the following decomposition holds P~ 

k'  
co(t /x T~)=x + M~(t) + vi~ lvo(o~(s))dVm(s) for all t>0 .  

i = i  0 

Moreover, V m is uniquely determined by (b)-(c). 
Now, as rn'foo, Gmu(OG~nOG)'FS and by Theorem 1.1(iii), Tml"OO P~ 

By letting m ~ co in the above, we obtain on (~2, ~-,o, po): 

(a') { i la(oo(s))do(s) ,~, t>-_O}isalocalmartingalethathasacontinuous 

local martingale version B---{B(t), ~ ,o ,  t >  0} with mutual variation process: 

(B i ,  B]>, = 6 u t, 

(b') V(t)=limsupV~(tAT~) for all t>O defines a continuous, increasing, 
m~co 

{~"~ process such that P~ 
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v(o)=o ,  
V can only increase at those times t for which co(t)e~G ~S, 
(c') the following decomposition holds P~ 

L '  
(~ ( t )=x+B( t )+  vi~ lf?(oJ(s))dV(s) for all t>0 .  (2.5) 

i = 1  0 

In the definition of V, the lira sup there is P~ equal to the limit as m-~oo 
since by uniqueness the Vm's are consistent. 

Now (see e,g., [3], Sects. 2.12, 2.13, 8.4), (a') characterizes B under po as a d- 
dimensional Brownian motion starting from the origin, and for # e R  e, {e(t), 4 ,  
t>0}  is a P~ that has a continuous martingale version on 
(~, ~,~,o, {j~t,o}, po) which satisfies the following P~ 

( i )  e ( t ) = l  + # .  e(s)dB(s) for all t>0 .  (2.6) 

Then (2.2) is a special case of Girsanov's formula. This uniquely determines 
a probability measure P~" on (f2, Y), i.e., P2 can be uniquely extended from a 
finitely additive set function defined by (2.2) on 0 gt  to a probability measure 
on ~ - =  ~/ ~tt ([3], Sect. 8.4). t~m+ 

t ~ - . +  

Suppose f~C~(G) such that Df>O on ~G. Then by the local semimar- 
tingale decomposition (2.5) of ~o and It6's formula we have P~ 

' Li f(o~(t)) - f (co(0))=  ~ Vf(o~(s)). dB(s)+ v~. Vf(o~(s)) te?(co(s))dV(s) 
0 i = 1 0  

t 

+ �89 ~ A f (c~(s)) ds 
0 

= vf(m(s)), dB(s) + ~ Df(m(s))rig(s) + �89 [. 3f(o~(s)) ds. (2.7) 
0 0 0 

Note that this gives an explicit form for the submartingale in condition (ii) of 
Theorem 1.1. Let gr d and let L be given by (1.3) for this g. Define 

)~(t) =f(c~(t)) - ~ Lf(o)(s)) ds. (2.8) 
0 

Then by combining (2.6)-(2.8) with the product rule of stochastic calculus we 
obtain P~ 

t t 

e(t) z(t) = ~(0) z(0) + ~ co(s) dz(s) + ~ z(s) d~(s) + <c~, Z>, 
0 0 

t t 

=f(co(0)) + ~ e(s) Vf(o)(s)). dB(s) + ~ e(s) Df(o)(s)) dV(s) 
0 0 

t I t 

- ~ ~(s) y. Vf(co(s)) ds + ~ Z(s) de(s) + ~ e(s) y. Vf(o~(s)) ds 
0 0 0 

t t t 

=f(co(0)) + ~ cr Vf (o~(s)). dB(s) + ~ Z(s) de(s) + ~ a(s) Df(w(s)) dV(s). 
0 0 0 
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In the line above, the last term is non-negative since e>0 ,  Df>O on the 
support OG of V, and V is increasing. The second and third terms are local 
martingales on (f2, ~ito, L~"~ J, po). Hence, c~(.)Z(. ) is a local submartingale on 
(f2, o~ito, ~,~~ ,, po). However, since c~(.) is a continuous martingale and Z(') is 
bounded on each bounded time interval, it follows that c~(.))/(.) is in fact a 
submartingale on (f2, ~ito, {o~ito}, px o) ([2], Proposition 1,8). By the definition of 

~.  follows that is submartingale on Pf  and since Z(') is adapted to { ~}, it Z(') a 
(~, ~,, {~}, Pf). Moreover, since p0 and P~it are mutually absolutely continuous 
over any finite time horizon, we have 

P~ for all t_>0 r P~U(~__<t)=0 for all t__>0. 

But this is equivalent to: 

P~  <=~ P2(~<oo)--0. 

The left equality above holds by Theorem 1.1 (iii) for po, and hence so does the 
right equality. It follows that P~" satisfies conditions (i)-(iii) of Theorem 1.1. 

The converse is proved similarly. In particular, under P~, there is a con- 
t 

tinuous version of ~(t) = ~ 1G(co(s))&o(s) that defines a Brownian motion with 
drift # and 0 

exp { - # .  (~(t) - #  t) -�89 t} = (~(t))-i 

defines a martingale on (f], ~,  {~t}, P; ). [] 

Proof of Theorem 1.1. First observe that it suffices to prove existence of a 
solution P~ of (i)-(iii) for each xeS. To see this, suppose P~ is such a solution 
and P* is any solution of (i)-(ii). Let Gm, u,,, T m be as in Lemma 2.1. Then by 
the uniqueness of the solution Pff of the submartingale problem associated 
with L and u m on Gin, we have 

_ ? t i m  P *  - f l  - Px on g ~ ,  

and so for each t > 0, 

P~*(~<t)= lira P*(Tm<=t) 
m ~ o o  

= lira Px(T m <= t) 
m ~ o o  

=Px(v <t)  

= 0 .  

Hence P* also satisfies (iii). Similarly, for any A~o~ t and all s>t, 

P;*(A • {3 >s}) =Px(A n {~ >s}) 

By letting s i" oo and using the fact that P* and Px satisfy (iii), we conclude that 
P* =Px on [.) ~ and hence on ~. 

t ~ . +  
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A second simplification is that we may assume #=0.  For, by Lemma 2.1, 
there is a (unique) solution of (i)-(iii) for some #~IR d if and only if there is a 
(unique) solution for #=0.  Thus, for the remainder of this proof, we shall 
assume # = 0 and focus on proving the existence of a solution of (i)-(iii) for 
each x~S. 

We first consider the case where G is a d-dimensional polyhedral cone with 
vertex at the origin and give a proof by induction on the dimension d. In the 
course of this proof and later, in the extension to the general case of a simple 
polyhedron G, we shall need an estimate of how quickly an RBM escapes from 
a neighborhood of a vertex. Consequently, the following two propositions will 
be proved by induction on d. 

Proposition 2.1. Let (N, Q, b =0, # =0) be the data for a driftless d-dimensional 
R B M  satisfying the skew symmetry condition (1.1) with k~-d. In particular, N 
and Q are d x d  matrices, N = N  is invertible, and G={x~F,.d: N x > O }  is a 
polyhedral cone with vertex at the origin. Then for each xES there is a probabili- 
ty measure Px on (f2, f )  satisfying (i)-(iii) of Theorem 1.1. 

Remark. By the preceding discussion, any such Px is uniquely determined by 
(i)-(ii). 

Assuming Proposition 2.1 holds, let Yx denote the completion of f with 
respect to the probability measure P~ and let f t  ~ denote the augmentation of 
fit by the P~-null sets in f L  By similar reasoning to that in the proof of 
Lemma 2.1, for each x~S  there is a unique pair of continuous adapted d- 
dimensional processes B and V on (f2, fix, {ft~}, p~) such that the following 
hold. 

(a) B is a driftless d-dimensional Brownian motion starting from the origin. 
(b) For each i~{1, ...,d}, the i th component V i of V is an increasing process 

such that Px-a.s. 

Vi(0) = 0, and 
V i can only increase at those times t for which c~(t)~F~ ~ 

Thus (cf. Lemma 2.1), Vdt)= ( i  1v?(Cn(s))dV(s))( 

(c) The following decomposition of co holds P~-a.s. 

co( t )=x+B( t )+(N '+Q' )  V(t) for all t~0 .  

Proposition 2.2. For each fl>0, there is t > 0  and be(O, fi) such that for each xES 
satisfying ]x[ < 3, 

Px{ max IB(s)]<fi, Tv(t)J<=fl} > & (2.9) 
O<_s<_t 

In general, t and 6 will depend on fl, N, Q and d. 

For the induction proof of these propositions, we consider d = 1 first. In this 
case, G =  S is either [0, + oe) or ( - o G 0], and it is well known [7] that there is 
a solution of (i)-(iii) for each x~S. For the proof of Proposition 2.2, by 
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symmetry, we may suppose G = [0, oo). Then V can be represented explicitly in 
terms of B [2, 7]: 

V(t) =( - rain (x +B(s))) + 
0 _ < s < t  

< max ]B(s)[. 
O<_s<_t 

Hence the left member of (2.9) is equal to 

Px { max [B(s)l < fl}. 
O < s ~ t  

Under Px, B is a one-dimensional Brownian motion starting from the origin, 
and so the above probability is the same for all x~G and is strictly positive for 
any fl > 0 and t > 0. Hence, Proposition 2.2 holds for d = 1. 

For the induction step, suppose d_>_2 and Propositions 2.1 and 2.2 hold in 
all dimensions less than d. Let (N,Q,b=O, #=0)  be data as described in 
Proposition 2.1. Our candidate for a solution to (i)-(iii) is obtained as follows. 
Consider the sequence {Gr,, m =  1, 2, ...} of bounded C a domains defined at the 
beginning of this section. We shall make a particular choice of vector field u~ 
on 8G,,. Since the matrix N for the polyhedral cone G is d x d invertible and 
(1.1) holds, it follows from the proof of Lemma 3.2 in [9] that u~=-vi on 
8G,, c~F~ ~ i =  1, ..., d can be uniquely extended to a C 2 vector field um=-n~+q~ 
on 8Gr, such that the following skew symmetry condition holds: 

n~(~*), qm(a)+qm(r n~(r for all tT, ~*~SG,,. (2.10) 

For each m, let {P=", x~G,,} denote the family of probability measures on 
((2, ~ )  associated with the driftless reflected Brownian motion in G~ having 
reflection vector field u~ on t~G,n. More precisely, for each x~G,,, P~ is the 
unique probability measure on ((2, o~) satisfying the following three properties 
[15]. 

(I)  P y ( c o ( 0 )  = x )  = 1. 

(II) For each fE  C2(G) that satisfies 

we have 
Urn" Vf ~O on OG~ 

{f(co(t))-l i Af(o~(s))ds, t_>0} 

is a submartingale on (~2, ~,, {~},  P~"). 

(III) " - 
P~ (co(t)~G,, for all t > 0 ) = l .  

Let T,, be given by (2.4). Each x~S is in Gm for all m sufficiently large. 
For such m's, the probability measures P~ on ~rm are consistent, i.e., ~ = P Z  
on Jrm for all I>m, and so induce a finitely additive set function Px on the 

~-- Px need not ring U r,,. However, be eountably additive on U ~r~  and so is 
rn rtl 

not necessarily extendable to a probability measure on ~ .  Intuitively, this 
corresponds to the fact that we can construct paths of an RBM prior to the 
time ~ by taking pathwise limits of RBM's in Gm stopped on exit from 
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G~ u (OG~ n OG), but as these paths approach G \ S  they need not have a single 
limit point in G\S ,  and so on {z < c~} they need not be continuously extend- 
able to [0, z]. Eventually we will show that under the skew symmetry con- 
dition, Px can be extended to a probability measure on ~- with z =  oo Px-a.s. 
However, since we do not know this a priori, we must initially define an 
extension of P~ on a sufficiently rich probability space, namely, one that allows 
killing at the time z. 

For  this, let S~ where ~ is a (cemetery) point isolated from G. Let 
f2 ~ denote the set of all right continuous functions co: [0, oo)--*S ~ such that co is 
continuous on [0, z) where "c=inf{s>0:  co(s)~S} and co(s)=0 for all s>z .  The 
a-fields ~0, ~ a  and ~ are defined on f2 ~ in the same way as those without 
the O's are defined on f2. With coef2 ~ (2.4) defines an extension of T m to a 
stopping time on (f2 ~, Y~, {~0}). The probability measures P7 are concentrated 
on {coEO: co(s)~G~cS for all s>0} and so can be uniquely extended to 
probability measures on (f2 o, ~o). These extended measures will again be de- 
noted by PZ. For  each xeS, the consistent sequence {Pff]~ , m = l , 2 , . . . }  

induces a unique probability measure Pd on (f2 e, ~0)  such that P ] = P ~  on ~-~  
for all rn sufficiently large that xeG,~, and P](co(t)=0 for all t > z ) = l .  In 
particular, P] is uniquely characterized by the following four properties. Here 
we adopt the usual convention that functions defined on G are automatically 
extended to be zero at the cemetery ~. 

(i') Pd(co(O)=x)= l. 
(ii') For  each m and each f~C2(G) that satisfies 

Df>=O on ~G, 
we have 

f(co(tA Tin))- �89 ~ Af(co(s))ds, t>O 
0 

is a submartingale on (~20, ~0, {.,~v}, p]). 

(iii') Pi(co (t) ES for 0_< t _< T,,) = 1. 

(iv') P~(co(t)--~ for all t > z ) = l .  

We define P0 ~ to be the unit mass at coo-& Then the family {P], x~S ~ has 
the strong Markov property. To prove the existence of a solution of (i)-(iii) of 
Theorem 1.1, it suffices to show that for each x~S, 

P$(z< ~ ) = 0 .  (2.11) 

For  then P~ induces a suitable probability measure Px on (f2, ~ )  by 

Px(A)=PI(Ac~{r= oo}) for all A ~  

For  the proof of (2.11), we first prove that for each z~G\{0)  there are non- 
empty open balls Ul(z)~U(z ) centered at z in IR a, and t (z)>0 and 6(z)>0, 
such that U(z) has radius less than �89 and for all x~Ul(z)c~S, 

PT{co(t A Tv(~))~S for all rE[0, oo)} = 1 (2.12) 
and 

P~ {Tv(z) >= t(z)} > 6(z), (2.13) 
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where Tv(z)=-inf{t>O: co(t)r For this, fix zeG\{0}. If zeG, then for m 
sufficiently large, zeG,~ and there is a non-empty open ball U(z) centered at z 
of radius less than �89 such that U(z)~Gm. Then, for xeU(z), since PI=/zZ on 
Yrm and the RBM associated with P~ behaves like driftless d-dimensional 
Brownian motion up to the time Tu(z)< T,, P~-a.s., it follows that there is a 
non-empty open ball Ul(Z)cU(z), and t(z)>0 and 6(z)>0, such that (2.12)- 
(2.13) hold for all xeUi(z ). 

For zec~G\{0}, let k(z) denote the maximum number of faces of the 
polyhedral cone G={XERd: Nx>O} that contain z. Note, since z+0,  we have 
l<=k(z)<d. By relabelling the faces if necessary, we may denote the faces 
containing z by F 1, ...,Fk(z). Let N(z) (resp. Q(z)) denote the k(z)xd matrix 
whose rows are given by the normals (resp. q-vectors) associated with these 
faces. Let U(z) be an non-empty open ball in Na centered at z and of radius 
less than �89 such that U(z) is disjoint from all the faces of G except F 1 . . . .  , Fk(z). 
Since G is simple, the normals to the faces F1, ..., Fk(z) are linearly independent 
([1], Theorem 12.14) and so generate a vector space H(z) of dimension k(z). 
Any vector x e N  d can be uniquely decomposed: x=2+2  where 2 is the 
orthogonal projection of x on H(z) and 2 is the orthogonal projection of x on 
the orthogonal complement of H(z). Indeed, by performing a change of basis if 
necessary, we may view 2 as a vector in ]R k(z) and 2 as a vector in IR d-k(z) so 
that x=(2,2) and H(z) is identified with Nk(z). Let N and (~ denote the k(z) 
x k(z) matrices whose rows are respectively given by h i . . . . .  fi~(~) and 

~ !  ~ !  . ql .... ,qk(~), and let (~ denote the k(z)x (d-k(z)) matrix whose rows are given 
by c~, ..., q"k(~)" Then (N, Q, b=0,  fi=0) are data for a k(z)-dimensional RBM in 
the polyhedron Gz----{2~k(~): ~r2>0}. Since (1.1) is assumed to hold and 

fii.glj=nl.qj for all i, je{ l  .... ,k(z)}, 

it follows that this data satisfies the skew symmetry condition. 
Let S~ denote the smooth part of G~ and let ~ denote the set of continuous 

functions 6): [0, o e ) ~ N  k(~) satisfying 6)(0)eS~. Let ~,  ~t be defined on ~ in the 
same way that Y and ~ are defined on f2. Since the data (N, (~, b =0, ~=0)  
satisfy the skew symmetry condition, by the induction assumption, for this data 
and each 2~S~ there is a probability measure ~ on (f2, ~ )  corresponding to the 
RBM starting from 2. Moreover, by the discussion preceding Proposition 2.2, 
the following decomposition holds/5~-a.s.: 

6)(t)=2+B(t)+(N'+Q') V(t) for all t>0 ,  

where /~ and V are continuous adapted k(z)-dimensional processes on 
(f], ~ ,  { ~ } ,  ~)  with the following properties. 

(a) /~ is a driftless k(z)-dimensional Brownian motion starting from the 
origin, and 

(b) for each i, ~ is an increasing process such that ~-a.s. 

~(0) =0  and 
can only increase at those times t for which &(t)e~ ~ where ~o is the 

part of ~ = {~eG~: fi~. ~ = 0} that does not meet any other face of G~. 
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Here the completion ~ and augmentation ~ are defined in the obvious 
way. 

Let /~ be a (d-k(z))-dimensional Brownian motion starting from the origin 
defined on some probability space (f~, ~,,/~) such that /~ is independent of/~ 
and V. For x=(2,2)~U(z)c~S, define J~=(Jf, J() such that for each 
(t, c5, 03)E[0, ~ )x~?  x ~, 

X(t, c5, 03) = 2 +/~(t, c5) + (.N' + Q') 17(t, c5), (2.14) 

X(t, co, co)=x+B(t, 03)+ A, - . Q v(t, o). (2.15) 

Define ~ = ~  x ~ ,  f f = ~  x ~ ,  Px=P~Xfio, 

Tm =inf{t_->0: X(t)(sGm~(~G~c~c?G)}, 

Tv(~)-- inf{t __> 0: )((t)~ U(z)}. 

Note that for m sufficiently large, x~G,, and/~-a.s.: Js T_~)~G~ for all t>0 .  
It follows from (2.14)-(2.15) and It6's formula that, for x~G~, the probability 
measure induced on the canonical space (f~, ~-) by J~('/x T~) under /~  satisfies 
the submartingale characterization of PZ on ~. and hence agrees with U on 

�9 T r n '  x 

grin" 
Now, for m sufficiently large that x~Gm, on {T~<oo} we have 

X(Tm)~OGm\(F~ i~-a.s. Then, since limsup(U(z)~(~Gm\(F~ 
m ~ o o  

~F~)) ) )=0  and J~ has continuous paths in S~ x Nd-k(~), we have: 

P.(T~ >_ ~<~ for some m, r < o0)+ ~(lim ~ = ~ = o~)= 1. 
m 

By the definition_ of Px ~, the above also holds with P], Tin, and Tv(~), in place of 
Px, Tin, and Tv(~), respectively, and hence 

P]{o~(t/x Tv(~))sS for all t > 0} = 1, (2.16) 

and the probability measure induced on ((2, ~ by Jr('/x Tv(~l) under /~  agrees 
with P2 on W.r~:<x ~. 

Let /~=(B,B). Then, from the representation (2.14)-(2.15), it follows that 
there is fi(z)~(O, 1/2) such that the open ball Uz(z ) in Ne centered at z and of 
radius fl(z) is contained in U(z), and for each x~Ua(z)c~S we have/~-a.s. 

{ max [/~(s)l <fi(z), ]~'(t)[ < fl(z)} ~ {X(s)~U(z) for all O<s<=t}. 
O ~ s < - t  

It is proved below that there is t(z)>O and 6(z)~(O, fl(z)) such that 

/~{ max I/~(s)l <fi(z), I~'(t(z))l <fi(z)} >6(z) (2.17) 
O<_s<_t (z )  

for all X~Ul(Z)c~S where Ul(z)={x~lR~: Ix-z l  <6(z)}. It then follows that 

P~{Tv(~)>t(z)}>6(z ) for all x~U~(z)c~S. (2.18) 
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Then by (2.16) and the remarks following it, we see that (2.12)-(2.13) hold. For 
the proof of (2.17), note that for each x~U2(z)c~S, 

/~ { max [/~(s)[ < fl(z), [if(t)[ < fl(z)} 
O<_s<_t 

>~{maxl~(s)I<fi(z);_P~maxIB(s),< fl(z) , IV(t)l = < ~  j-} 
o-<~-<, - 2 J (o-<,-<t - 2 

Then by the properties of the (d-k(z))-dimensional Brownian motion /J and 
the induction hypothesis that Proposition 2.2 holds in dimension k(z)<d, it 
follows that there is t(z)>0 and 5(z)~(O, �89 such that (2.17) holds. 

Now, let 0 < e < K < o o  and define G~K={x~G: e<[xl<K}. Then {Ul(z): 
zeG~K } is an open cover of the compact set G~K and so has a finite subcover 

l 1 

Ul(zl) , . . . ,  U1(zz) , say. Let t~K=mint(zi) and 6~K=min 6(zl). Define 
i = 1  i = 1  

r~K=inf{t>0:  co(t)~d~K }. Fix xECJ~KC~S. We inductively define sequences 
{i(j), j = l , 2  . . . .  } and {a i, j = l ,  2, ...} on f2 ~ and an increasing family of Pff-null 
sets {Nj, j = l ,  2 . . . .  } in ~-~ as follows. Let i(1)~{1,...,/} such that x~U~(zio)) , 
and define a l = i n f { t > 0 :  Co(t)~U(zIo))}Ar~K. By (2.12), ~{og(t/xal)aS for all 
t>0}  = 1. Hence, there is a P]-null set N~eo~ such that 

co(al)eO~:c~S for all toe{a1 < oo}~N/.  

Here the superscript c is used to denote the complement of a set in f2 ~ 
Suppose j > 2  and i ( j -1 ) ,  aa_ z and Nj_ 1 have been defined such that 
Pj(oo(tAaj_l)eS for all t > 0 ) = l ,  and Nj_ a is a Px~-null set such that 
a)(ay_l)eg~c~S for each ooe{o-~_,<oc}c~N~,. Then on {a~_,=c~}voN~_> 
define i ( j )=i(j-1)  and let ay=aj_a, and on {aj_a < oo} c~Nf_ ~, let i(j) be such 
that co(a,_z)eUl(Z~(j) ) and define a~=inf{t>aj_,: co(t)r Then it 
follows from (2.12) that P](co(t A @_~S for all t > 0 ) = l  and hence there is a P]- 
null set Nj~Nj_~ such that co(aj)eG,KmS for all (oe{aa< c~} c~Nf. 

We shall now prove that 

Px{aj- ~r some j ,  V~K<C~}+P]{!imaj=LK 00}=1. (2.19) 
j ~ c o  

From this it follows that 

PT(a)(t A %K)eS for all t > O ) =  1. 

Note that since crj__<%~:, to prove (2.19) it suffices to show that 

{aj<'c~ for a l l j } c { l i m a j = o o }  P]-a.s.. 
j ~ c o  

For this, note that by the strong Markov property we have P~-a.s. 

j = l  j = l  

j=l 

(2.20) 

(2.21) 
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where the last inequality follows by (2.13). Thus, P]-a.s. 

{aj<Z~K for all j} ={j~ll{~j . . . .  } 6 ~ =  o@ 

t } Y~P2%<~, % ~ - ~ j > t o K l ~ ) = ~  �9 
k j =  1 

By an extension of the Borel-Cantelli lemma ([5], Corollary 2.3), the last set 
above is Px~-a.s. equal to 

{o-j< o% aj+ 1 --~j>t~K for infinitely many j}. 

Hence (2.21) and so (2.19)-(2.20) hold. 
It follows from (2.20) and the characterization (i')-(iv') that for each x~S, P/ 

is the unique probability measure on (fF, o ~~ satisfying the following four 
properties. 

(i") P](~o(0) = x ) =  1. 
(ii") For each f s  C 2 (G) that satisfies 

Df >= 0 on OG 

and each 0 < e < Ixl < K < 0% we have 

f(C~(tAGK))-- �89 ~ Af(o~(s))ds, t>O 
0 

is a submartingale on (f2 ~ ~0,  {~/},  p/). 

(iii") For each 0<~<[x[  < K <  0% 

P~(co(t/x z~K)zS for all t > 0 ) =  1. 

(iv") z=l imz~_l ,  Pd-a.s. and 
e.~0 

Pi(e)(t)=3 for all t > z ) = l .  

For the proofs of (2.11) and Proposition 2.2, the following two lemmas are 
needed. The first of these describes a "scaling" property of the family of 
probability measures {Pj, xES}. It is analogous to Proposition 2.9 in [-16] and 
Lemma 4.3 in [20]. The main inequality (2.32) used in the proof of the second 
lemma is analogous to (3.28) in [16]. 

For notational convenience, we define 2-1{0} = {~} for any 2 > 0. 

Lemma 2.2. Let x6S and 2>0.  Then for each A ~  ~ 

Pd (A) = P]x (2 -~ co (22. )6 A). (2.22) 

Proof. For each A e ~  ~, let Q~(A) denote the right member of (2.22). By the 
characterization of Pal, to prove (2.22) it suffices to verify that (2~ satisfies (i")- 
(iv") with Q~ in place of Pd. 
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Properties (i"), (iii") and (iv") for Qx follow easily from those for PZx and the 
facts that 2 S = S, 

~,~K(co)=22~,r .)) for 0 < e < K <  oo, (2.23) 
and 

(co) = 22 z (2- * o)(22")). (2.24) 

For (ii"), if f cC2(O)  satisfies Df>O on 0G then so does f (L-1. ) ,  since d is a 
cone with vertex at the origin and the directions of reflection are constant on 
each face. Then by applying property (ii") of P[~ to f (2  -1 .) and performing a 
change of variable in the time integration (from s to 2-2 s), we conclude that 
for O<e <[xl<K < 0% 

f(2-'CO(A2tAzz~,zK(co)))--�89 5 (A f)(2-~ co(2Zs)) as, ~ t> 
0 

is a Pz~-submartingale, where z(t, co)=t/x 2-2zz~,z~:(co). Then by the definition 
of Q~ and (2.23), it follows that 

f(co(tA %K))-- �89 ~ Af(co(s))ds, ~o, t>= 
0 

is a Qx-submartingale. [] 

For each t~[0, oo), define 
A(t)-A(t, .) on ~20 by 

A(t, co)= 

the extended real-valued random variable 

~ d s  for t<v ,  
0 lUatO) l 

(2.25) 
co for t>~.  

Note that A(t)< oo on {co: t<z(co)}. For each teE0, oo), let 

a(t)=inf{s>O: A(s)>t}. 

From the next lemma it follows that for each x~S, P]{a( t )<z  for all t~[0, oo)} 
~ ] .  

For ease of notation, in the sequel E~, will be used to denote expectation 
with respect to P]. 

Lemma 2.3. For each x~S we have 

Proof Define 

PT(A(~ - )  = lim A(t) = oo) = 1. (2.26) 
tSz 

qS(x)=E~,[exp(- S }co(s)l-2ds)] for each xeS. (2.27) 
[0, ~) 

To prove (2.26), it suffices to show that ~b-0 on S. Now, by Lemma 2.2 and 
(2.24), for each 2 > 0  and x~S, 

q~(2x)=E~,[exp(- S 12co(2-2s)l-Nds)] =(b(x), (2.28) 
[0, A2t(o)) 
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where the last equality follows by a change of variable in the integration. By 
the strong Markov property and (2.20), for xeS satisfying Ixl = 1 and any t > 0  
we have 

OAt 

where 
q ~ i n f { s > 0 :  co(s)r G1/2, 2} (2.30) 

and 
d l / 2 , 2 ~ {  z e a l :  �89 <2}. 

Let 
K ~sup{qS(x): xeS}. 

By (2.28), K=sup{qS(x): xeS, Ix[ = 1}, and so from (2.29) we obtain 

r/At 

where the supremum is over xeS satisfying Ixl=l. The following crucial 
estimate will be used to show K = 0. It is proved below that there is t e > 0  and 
6e > 0 such that 

inf P] {r/> td} __> 6e. (2.32) 
I:~1= 1 

Loosely speaking this means that with positive P]-probability (uniformly 
bounded away from zero for all x~S satisfying Ix[=l) ,  co does not hit the 
surfaces {yeS: lyl =1} or {yeS: lyl--2} " too quickly". In particular, the re- 
flection near the non-smooth part of the boundary does not give " too large a 
push" towards these surfaces. To prove this, consider zeG such that Izl--1. 
Recall that the ball U(z) of (2.13) has radius less than �89 so that for each 
xeUl(z)~S by (2.13) we have 

P] {~/->_ t(z)} > P~ {Tv(z) > t(z)} > ~ (z) > 0. (2.33) 

Now {Ul(z): zeal, [z[--1} is an open cover of the compact set {zeG: [z[=l} 
l 

and so it has a finite subcover U~(zO,...,U~(zz) , say. Set 6e=minfi(zi) and 
1 i = l  

td=min t(zi). Since each xeS satisfying Ixl =1 is contained in U~(z,x)) for some 
i=1 

i(x)6{1 . . . .  , l}, it follows from (2.33) that (2.32) holds. 
Now, by applying (2.32), we obtain 

suP   exp(- i )] Ico(s)l-2ds ~ sup (P~it/<td}. l+P~{r/__>td} e -t~/4) 
[xl=l k Ixl=l 

= sup (1 --P~{~>=td} (1 --e-t~/4)) 
Ixl = 1 

_-< 1 - ~d(1 - e  -td/4) < 1. 

It follows from this and (2.31) that K = 0 ,  as desired. []  

Having established Lemmas 2.2 and 2.3, we now prove that (2.11) holds. 
First consider the case d=2 ,  for which G is a two-dimensional wedge. To 
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interpret the skew symmetry condition, suppose that the boundary of G has 
been oriented with unit tangent vector e i pointing in the positive direction on 
the side Fi, i = 1, 2. For each side Fi, define an angle of reflection Oie ( - ~, ~) by 
the relationship qi=eltanOi. Then as shown in [9], the condition (1.1) is 
equivalent to the condition: 01=02 . It was shown in 1-18] that when this 
condition holds, for each x~S there is a unique probability measure Px on 
((2, i f )  satisfying properties (i)-(iii) of Theorem 1.1. By the construction of P], it 
follows that Px=P~ on ~- and hence (2.11) holds for d=2.  

Now suppose d>3.  To prove (2.11) in this case, we extend the definition of 
X to ~2~ 

X(t, co)=o)(t) for all t=>O and coco e, 

and define Y on ~2 ~ by the following time-change of X 

y ( t )= fX . ,o  for ONt < A ( z - )  
(2.34) 

for t>A(~-) .  

By Lemma 2.3, for each xES we have Pj-a.s. 

Y(t)=X~(~)~S for all t>0 .  (2.35) 

To define processes using the functions X and Y, we need to specify associated 
probability measures on (YY, ~-0). In particular, different processes can be 
defined using the same function X (or Y) but different probability measures on 
(Q~ if~ For reference purposes, let Y~ denote the strong Markov process in S 
associated with Y and the family of probability measures {/z], xES}. 

In the sequel, the process Y* defined by adjoint (or dual) data to that for Y~ 
will be needed. Note that if the direction of reflection vl = n~ + q~ on each face F~ 
is replaced by the adjoint direction of reflection ~)i =-nl-q~, then (1.1) still holds. 
For each x~S, l e t / ~  denote the probability measure on (g2 ~, if0) characterized 
in the same way (i")-(iv") as P], but with ~ in place of v~ for each i. Then (2.26) 
holds w i t h / ~  in place of Px ~ and so (2.35) holds /~-a.s. Let f-' denote the strong 
Markov process in S associated with Y and the family of probability measures 
{P~, x~S}. It is shown below that Y* and f'~ are in duality relative to the 
measure v defined on S by: 

v(dx) = Ix[- 2 dx. (2.36) 

Note that v is a Radon measure on S since we are considering the case d > 3. 
Recall that for each x~G,,, Px ~ is the probability measure on ((2 ~ ~0) such 

that the strong Markov process X" associated with X and {P~, x~Gm} is a 
realization of the driftless reflected Brownian motion in G,~ having reflection 
vector field u m on 0G,,, where 1.~m~-nm~-qm agrees with v~ o n  OGmC3Fi ~ for each 
i~{1 . . . .  ,d} and satisfies (2.10). Similarly, let ^~ { ~ ,  x~G,,} denote the family of 
probability measures on (f2 ~ J~)  associated with the driftless reflected Brown- 
ian motion in G,, having the adjoint reflection vector field a~-n, , -q , ,  on ~G,,, 
and let )~" denote the realization associated with X and ~" {Ps xEG,~}. Since 
Gm n {0} = r it follows from property (III) of P~ and the definition of A that 
for each x~G,,, P~"-a.s.: A(~)= oo and (2.35) holds. Similarly, this is true with 
/~" in place of P~. Let Y" (respectively f-") denote the strong Markov process 
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in Gm associated with Y and the family of probability measures {P~", x~G,,} 
(respectively {/~m, x~G,,}). 

By [11], Sect. 5 and [12], X" and )~m are in duality relative to their 
common stationary distribution. It was shown in [9] that under the condition 
(2.10), this stationary distribution is the uniform distribution on 6,,. Then by 
the nature of the time-change defining Y from X, it follows that Y~ and f "  are 
in duality relative to the measure v. In particular, they are in weak duality 
relative to v, i.e., for all continuous functions f and g having compact support 
in R ~, 

E~[f(Y(t))] g(x) lx l -2dx= ~ f(x)ff~'~[g(Y(t))] Ixl-2dx for all t=>0. (2.37) 
6m G,. 

Here and below, E~ and /~m denote the expectations relative to PZ and P~,̂ m 
respectively. Next it is proved that (2.37) continues to hold with S, E~ a n d / ~  
in place of G,,, E7 and *" Ex, respectively. For T m defined by (2.4) and each 
x ~ G  m,  

E 7 [f(Y(t)); t <= A(T,~)] -= E~ [f(Y(t)); t < A(T,)] (2.38) 
and 

I:Z(t > A(Tm)) = P](t > A(Tm)), (2.39) 

because ym and Y* have the same behavior up to the time A(Tm). Hence, 

I ~ Em [f(Y(t))] g(x) Ixl- 2 dx - ~ E~ [f(Y(t))] g(x)]x[- 2 dx[ 
Gm S 

= I S {Em [f(Y(t)); t > A(Tm) ] - E~ [f(Y(t)); t > A(Tm) ] } g (x)Ix I - 2 dx 

- ~ E~[f(Y(t))] g(x)[x[-2dxl 
S\d,~ 

<lflo~(2~P2(t>A(Z,,))lg(x)l Ix l-2dx+ ~ Ig(x)l [xl-2dx), (2.40) 
S S\Gm 

where in the last line above, [ f l~ -max l f ( x ) l  and (2.39) has been used. Now 
X E ~ x  d 

for each xES, T,,Tz Ff-a.s. so that by (2.26): _V~(t>A(Tm))~O as m~co .  By 
combining this with l im(S\Gm)=r and the fact that g has compact support, 

t n ~  cx3 

we conclude that the expression in (2.40) tends to zero as m~oo.  The same is 
true with/~7 a n d / ~  in place of E 7 and E~, respectively. Thus, by letting m--+oo 
in (2.37) we obtain 

jE~[f(Y(t))] g(x)Ixl-2dx= jf(x)ff~[g(Y(t))] Ixl-2dx for all t>0 .  (2.41) 
s s 

It follows that v is an invariant measure for Y~ and ?~ and that these processes 
are in weak duality relative to v. 

The proof of (2.11) can now be completed using an argument similar to 
that in [16]. For this, consider the canonical Markov chain defined on the 
path space F - S  ~ with one-step transition probabilities: ~(x, dy)=P][Y(1)~dy] 
for x~S. By (2.41), v is an invariant measure for this Markov chain. Let P~ 
denote the law on r of the chain with initial (a-finite) measure v. By applying 
the Hopf decomposition theorem to the shift operator acting on the set of P~- 
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integrable functions on F, we obtain a decomposition of F into a conservative 
part cg and a dissipative part N (see Revuz [143, Theorem 2.3, p. 124). To see 
the implications of this, let w =(w(0), w(1), w(2) . . . .  ) denote a generic element of 
F. Since d>3 ,  the open ball U(0, r), centered at the origin 0 and of radius 
re(0, oo), has finite v-measure. Thus the function f defined on F by f(w) 
= lv(o,~)(w(O)) is P~-integrable, and so are the functions gj, j = 2 ,  3, ... defined on 
F by gj(w)= 1vo(j)(w(O)) where U~(j)= U(0, 1)\U(0, l/j). Then it follows from the 
Hopf theorem that 1-14] (p. 124) 

P~-a.e. on @" 

and for each j > 2 

• lv(o, 1)(w(i)) < o% (2.42) 
i = 0  

P~-a.e. on ~g: ~ lvo(j)(w(i))=O or oe. (2.43) 
i = 0  

Thus cg is included P~-a.e. in the set 

{V j > 2 ,  ~_olv~(j)(w(i))=O}u{~j>2: i~=olv~(j)(w(i))=o@. (2.44) 

By combining (2.42)-(2.44) we obtain 

P~ (lim sup [w(i)[ = O) = 0. (2.45) 

Thus, for v-a.e, xeS 

P] (lim sup I Y(i)I = 0) = 0. (2.46) 
i ~ c o  

Fix an x for which (2.46) holds and let j > 2  be a fixed positive integer. Define 
o-1 =inf{t>=0: Xt4U(O , t/j)c~S}, zl=inf{ t>o- l :  Xt~S\U(O, 1/(2j))}, and define o i 
and z i for i > 2  inductively such that o-i=inf{t>z~_l: Xtq~U(O, 1/j)c~S} and 
ri= inf{t >=oi: Xt(~S\ U(O , 1/(2j))}. Then, 

{lim inf IX, I = o} c~ {lim sup IX~l > l/j} ~ 1{ . . . .  )= oo . (2.47) 
t ' ~  t'i'z i= 

For any t > 0, by the strong Markov property we have P]-a.s. 

i = 1  i=1  

(2.48) 

{ 2} 
where tla=inf{s>__0: w(s)r and Gj= z~G: <lzl=<j . By 

ma (Lemma 2.2) and inequality (2.32), we have 

the scaling lem- 

inf P=~(t b > j -  2 td ) > 6d (2.49) 
z 
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where the infimum is over all zeS  satisfying [zl=l/j.  It then follows from 
(2.47)-(2.49) that P/-a.s. 

.< "cl-ai>=j-2ta[~,)=oo . { l imin f lX t l=O}c~{ l imsuplX ,[>l / j }~  Px(a, o% 
t ' ~  tTz i 

By an extension of the Borel-Cantelli lemma ([5], Corollary 2.3), the last set 
above is P]-a.s. equal to 

{a i < c~, z i - ai > j -  2 t~ for infinitely many i} c {z = oo}. 

Combining this with (2.46), since j was arbitrary we see that P~-a.s. 

{lim inf [Xt[ = O} = 0 {lim inflXt[ = O} ~ {lim sup [Xtl > 1/j}c {'c = oo}. 
t'~l: j = l  t~z tt~ 

(2.50) 
But, by Lemma 2.3 and the definition of A, 

{z < oo} c {lira inf[Xt] =0} P]-a,s. 

Combining this with (2.50) yields (2.11) for v-a.e, x~S. In fact (2.11) holds for 
each xeS.  To see this, fix x~S. Then there is r > 0  (depending on x) such that 
the open ball U(x,r) in IR d, centered at x and of radius r, meets at most one 
face Fi of G and is a positive distance from the origin. Since v is uniformly 
equivalent to Lebesgue measure on U(x,r), by using spherical polar coor- 
dinates centered at x and Fubini's theorem, it follows from the fact that (2.11) 
holds v-a.e, on S that there is se(0, r) such that 

P j ( z<  oo) da(y) =0  (2.51) 
OU(x,s)c~S 

and hence 

P / ( z<  oo)=0 for a-a.e, y~OU(x,s)c~S, (2.52) 

where cr denotes surface measure on the boundary DU(x, s) of U(x, s). Now, by 
the strong Markov property 

P~(z < oo) = ~ ~c(dy) Py'(z < oo), (2.53) 
OU(x,s)~S 

where ~c denotes the hitting distribution of X on OU(x,s)~S under Pj. Up to 
the time of hitting OU(x,s)c~S, X under Px ~ behaves like a driftless Brownian 
motion that is reflected in the direction v i on the hyperplane containing F~. It 
follows that ~c is absolutely continuous with respect to ~ and hence by (2.52)- 
(2.53), (2.11) holds. Thus, Proposition 2.1 holds with Px=P] on (f2,~,~). To 
complete the induction step, we need to prove Proposition 2.2 for d>2 .  

It follows from the skew symmetry condition that I + N - 1 Q  is invertible 
[9] and so N'+Q'  is invertible, since N is invertible. Thus, from the semi- 
martingale representation (c) following Proposition 2.1, for each x~S we have 
Px-a.s. 

V ( t )=(N '+Q' ) - l ( cg ( t ) - x -B( t ) )  for all t>0 .  (2.54) 
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Let M denote the matrix norm of (N'+Q')  -~ so that for all x e R  a, 
I(N'+Q')-~xl  <M]xl .  Recall from the proof of Lemma 2.3 that for 

/7=inf{t_-->0" Ico(t)J<�89 or Ic~(t)l>2}, 

there is t a > 0 and c5 a > 0 such that 

infP~ (/7 > ta) > c5 a (2.55) 
x 

where the infimum is over all x e S  satisfying Ixl=l .  Moreover, by the scaling 
lemma (Lemma 2.2), we have for each 2>0,  t__>0 and xeS ,  

Px~(/Tz > 22 t) = P~(/7 > t), (2.56) 

where /7z~inf{s>0: Ico(s)l<2/2 or [co(s)l>22}. Now, fix f l>0  and let 
8=min(f i ,  fl/(4M), c5e/2 ). If Ico(t)l=<2,~, Ixl_-<a and [B(t)l_-<cS, then (2.54) implies 
that 

I r(t)l </L (2.57) 

For each r>0 ,  let r , = i n f { s > 0 :  Ico(s)l>r}. Then for each x e S  satisfying Ixl<,~, 
by the strong Markov property and (2.55)-(2.56) we have for all t < ta, 

Px(z2~<,~zt)<Px(z~<,~2t; P~(,,) {/7~ <,~2 t}) 
< px(z a < ~2 t; Pa-~o(~){t7 < t}) 

< l - -cSa<l .  

Then for each x s S  satisfying Ixl < c~, by (2.57) we have for all t < t a, 

P~{ max IB(s)l < fl, IV(62 t)l < [3} > Px { max IB(s)l < 8, z2a> 82 t} 
O <_8<~h2t 0 ~ $ ~ 2 t  

>P~{ max IB(s ) l<6}-P~ir2~<62t}  
O<s<,~2t 

__>P.{ max IB(s)l<c~}-(1-c~a). 
O<s<=t~2t 

Under P~, B is a d-dimensional Brownian motion starting from the origin. 
Thus, for all sufficiently sinai1 t~(0, ta), the probability in the last line above 
exceeds (1--�89 uniformly in x. Thus, for some t*e(O, ta) , for all x ~ S  satisfying 
Ixl <,~, we have 

P~{ max IB(s)l < fl, IV(62 t*)[ < fl} > �89 a> 6 > O, 
0 < s _ < ~ 2 t  * 

and so (2.9) holds with t=c52t *. This completes the proof of the induction step 
and hence of Propositions 2.1 and 2.2. 

To complete the proof of Theorem 1.1, we need to consider the general 
case where G is a polyhedron. We must prove existence of a solution of (i_)-(iii) 
for each x e S  and data (N, Q, b , / i=0)  satisfying (1.1). Since each point in G may 
be viewed locally as being in a polyhedral cone, it follows from Propositions 
2.1 and 2.2 and their proofs (see especially (2.12)-(2.13)), that for each z~G 
there are non-empty open balls U l ( z ) c U ( z  ) centered at z in ~a, and t(z)>0 
and cS(z)> 0, such that the following properties hold. Here Tv(~)= inf{t >0:  co(t) 
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r U(z)}. The ball U(z) does not meet any face of G other than those containing 
z, and for each xeUl(z)c~S there is a probability measure Px on (f~,~r~z)) 
characterized by three conditions, namely, (i)-(ii) of Theorem 1.1 with t/x Tv~) 
in place of t there, and the condition: Px(~0(tA Tv{z))eS for all t > 0 ) = l .  More- 
over, for each xeUl(z)c~S , 

Px { rv(~) > t (z)} _>_ 6 (z). (2.58) 

If G is compact, there is a finite cover of (J by sets U~(z~), ..., U~(z~) for some 
z~,...,z~eG. By successive conditioning [15], for any xeS we can build a 
solution of (i)-(ii) from the locally defined Px's. The fact that this procedure 
yields a probability measure on Y, or in other words (iii) holds, follows from 
the estimate (2.58) by a Borel-Cantelli argument similar to that used to prove 
(2.20). Now if G is unbounded, we can cover it by countably many balls {U~(z~), 
i=1 ,2 , . . .}  such that for each i, (2.58) holds with z--z~, t(z~)=t and 6(zi)=6 
where t > 0  and 6 > 0  are independent of i. This uniform estimate follows 
because G is convex and has only finitely many faces. More precisely, outside 
of some compact set we can apply a version of the Brownian-like scaling 
property of Lemma 2.2 on each face extending to infinity together with the 
spatial homogeneity of Brownian motion in G to obtain the desired uniformity. 
Then for xeS, the existence of P, satisfying (i)-(ii) follows in the same way as 
when G is compact. [] 

It follows from (2.41) and the nature of the time-change defining Y from X 
that when G is a polyhedral cone (i.e., N is a d x d invertible matrix) and/~=0,  
the strong Markov processes associated with X and the families of probability 
measures {P~, xeS} and {/~, xeS} are in weak duality with respect to Lebesgue 
measure on S. In the next section, a generalization of this (Theorem 1.2) is 
proved. 

3. Invariant Measure and Dual Process 

Proof of Theorem 1.2. Assume that the hypotheses of Theorem 1.2 hold. 
Consider the sequence {G,,, r e= l ,  2, ...} of bounded C 3 domains defined at the 
beginning of Sect. 2. Recall that n,, denotes the inward unit normal vector field 
on 8G,~. Then since (1.1) holds and N contains an invertible d x d submatrix, it 
follows from Lemma 3.2 in [9] that Um=--V~ on 8G,,c~F~ ~ for i=1  . . . .  ,k, can be 
uniquely extended to a C z vector field um=n,,+qm on ~G m such that the 
following holds: 

nm(~r*)- qm(a) +qm(a*)" rim(a) =0  for all o-, a*sSG,,. (3.1) 

For each m, let {pro, Xe~m } denote the family of probability measures on 
(s ~-) associated with the reflected Brownian motion in G,, having drift # and 
reflection vector field u,n on 0Gin, i.e., for each xeGm, P~m is characterized by 
(I)-(III) (following (2.10)) of Sect. 2, with L in place of A/2 there. Let X" denote 
the realization of this process associated with X and {P~", xeG~}. It was shown 
in [9] that under condition (3.1), X ~ has a unique stationary distribution with 
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density proportional to p(x)=exp{7(#).x}, where 7(#) is given by (1.7). Let 
{/~", xcGm} denote the family of probability measures on (f2,~)  associated 
with the reflected Brownian motion in G,, having drift 7 ( # ) - #  and the adjoint 
reflection vector field ~=-n~-q~_on OG,,, and let )(~ denote the realization 
associated with X and {P~", xeGm}. Then by [11, 123, X ~ and J(" are in 
duality relative to the common invariant measure p(dx)=p(x)dx. In particular, 
for all continuous functions f and g having compact support in IR e, 

g(x)E'~'[f(X(t))]p(x)dx= ~ f(x)E~[g(X(t))]p(x)dx for all t>0 .  (3.2) 
Grn Grn 

Here E~ and / ~  denote expectations with respect to P~ and A m ~ ,  respectively. 
Now {Px, x~S} denotes the family of probability measures on (f2, ~ )  for the 
RBM associated with the data (N, Q, b, #). Let {/~, xsS} denote the family for 
the RBM associated with (N, -Q,b, 7-#). Note that (1.1) also holds for the 
latter. Let E x and /~x denote the expectations with respect to Px and /~ 
respectively. Then since ~= ~ Px-a.s. and/~-a.s, for each x~S, it follows by the 
same kind of argument as used to deduce (2.41) from (2.37) that the following 
holds for all continuous functions f and g having compact support in ]R e, 

~g(x)Ex[f(X(t))]p(x)dx=~f(x)E~[g(X(t))]p(x)dx for all t ~0 .  (3.3) 
S S 

Hence the RBM's associated with {P~, x~S} and {/~, xsS} are in weak duality 
relative to the measure p(dx)-p(x)dx and this measure is invariant for both 
processes. Indeed, the processes are in strong duality relative to p. This is a 
consequence of the fact that for each x~S, each Borel set AcS, and each t>0 ,  

P~(X(t)~A)>O if and only if re(A)>0, (3.4) 

where m denotes Lebesgue measure on IR~. The above follows from the proper- 
ties of the reflected Brownian motions (with drift #) in {G,,} and the fact that 
for each xeS, X behaves the same under P~ and Px m until the time Tin, and 
T, ,~oe P~-a.s. as m-~oe. [] 

Proof of Corollary 1.1. Suppose the hypotheses of the Corollary hold. Then by 
Theorem 1.2 and the normalization of p, {C(#)} -1 exp{7(#).x} is a stationary 
density for the RBM associated with (N, Q, b, #). Uniqueness follows from (3.4) 
since this implies the RBM is ergodic in S and has at most one stationary 
distribution (finite invariant measure) ([21], pp. 388-390). [] 
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