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Remarks on Limit Theorems for Nonlinear Functionals
of Gaussian Sequences

Murray Rosenblatt*
Department of Mathematics, University of California, San Diego, LaJolla, CA 92093, USA

Summary. Limit theorems for sums of nonlinear functionals of Gaussian
sequences typically obtain as limit distribution that of a single term in an
expansion given by Dobrushin [1] for a process subordinate to a Gaussian
process. Here we show how one can obtain limit theorems of this type
where the limit distribution is that of a full expansion of Dobrushin’s type.

Introduction

Let {&,}, n=..., —1,0,1, ... be a strictly stationary sequence. In dealing with
limit laws one often defines the new sequences

S,J,Vz/lz\‘,1 Z < N=1,2,...,
jeBY
where
BY={j|nN <j<(n+1)N}

and Ay is an appropriate norming constant. In investigating possible limit laws
one is led to sequences {£,} with the following property. The joint distribution
of

. énla e énk
is the same as that of
SN LSy
for all N=1,2, ... and integers n,, ..., n, with Ay =N for some parameter «>0.

The parameter o is called the self-similarity parameter for the sequence {&,}
and the sequence itself is referred to as a self-similar process.

Dobrushin has characterized the self-similar processes subordinate to a
Gaussian random spectral measure Z, with spectral distribution G. For Borel
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sets A with G(A4) < oo, the random variables Z;(A) have the following proper-
ties:
(i) The random variables Z;(4) are jointly Gaussian complex-valued.
(i) EZ;(4)=0,
EZ (A)Z,(B)=G(ANB).

n

(il) ) Zs(A)=Zq ( U Aj) if the sets 4, ..., 4, are disjoint.
j=1 J=1

(V) Zg(A)=Zs(—A).
Dobrushin [1] has shown that if {£,} has the form

© 1 ; exp{iixs}—l
=3 —f exp{ij Y xs} (1)

s=1

with

LAy e Ax ) =22 f (s %)
and
G(2A)=*G(A),

then {£,} is a self-similar process with self-similarity parameter . The integrals
in the representation (1) are multiple Wiener-Ito integrals. One has to check
whether the formula (1) is meaningful for a sequence f, in the sense that the
variance of (1) is finite. If we assume that the functions f, are symmetric
functions of the variables x,, ..., x,, the variance of (1) is given by

n

i %f | fu1s ...,x,,)IZK(Z xs> G(dx,) ... G(dx,)

n=1 s=1

where K is the Fejer kernel

The usual non Gaussian limit theorems for partial sums of nonlinear func-
tionals of Gaussian sequences (see Dobrushin and Major [2]; Giraitis and
Surgailis [5]; Major [3,4], Taqqu [8, 9], and Rosenblatt [6, 7]) correspond to
a single term in the expansion (1). In this paper, we will show that there are
limit theorems in which the limiting distribution corresponds to a complete
expansion of the type (1).

Let X, n=..., —1,0,1,...,EX, =0, EX?=1, be a Gaussian stationary pro-
cess with correlation function r(n)=EX, X, satisfying

r(m=in|=% O<a<l, (2)
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as |n{—co. Let H be the spectral distribution function corresponding to (2} so
that

r(n)= | ¢"*H(dx).
The random spectral measure of the process {X,} is Z,. Let us consider the
process {Y,} subordinate to {X,} given by

¢ . y ,
Y=73 k—"'fexp[ln(x1+...+xk)]§x1]”<...Jxkj”‘ (3)
k>ko ™
Zgldx)) ... Zyldx,)
with

1 o f
————— k=1,2

yk k 2 k’ 3 <o

and k, the greatest integer less than or equal to 2(1 — f)/o.
For the representation (3) to make sense we require that

2

19 e o H ) - Hid) < o0 )

since it is the variance of (3). This requires at the very least that for any index
k for which ¢, #0 that

a,= | |x|*"H(dx) < co.

This will be finite if one has 1> f. Let us assume that 2y, +a=2(1—f)/k<1/k
so that

() + e F X)) _
U(k):jein(x1+.'.+xk) e |, 7% x|
" i +...+x) " ,

-1 a—1

x| 2 ... |x| 2 W(dx,)... W(dx,) D~*?

is well-defined where W is the random spectral measure of the white-noise
i

process and D=2TI(a)cos ( 5 cx) This will happen if

1
>—.
B 2
Notice that
c ,
V= ¥ uw )
k>ko ™ -

1
is well-defined if 1> f >5 and

P YA
e E(;’Cf)
> Il f‘ﬁ—z—
k>kp : (»Zx)
n J

e, 2Pt et )P Yy odx, DTF

[\
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Notice that if (2) is satisfied, there is a constant

B>2I(x) (6)
such that .
|| eP*H(dx)| <B(1+|pl)~*

A=4B{F(oc)cos (g—ac)}_l.

We wish to show that under appropriate conditions, the partial sums of the
process {Y,} given by (3) will converge in distribution to the process {V,} given
by (5). More specifically, our object is to prove the following theorem.

for all integral p. Let

Theorem. Let {X,} be a stationary Gaussian process with mean zero and co-
variance function.r(n) satisfying (2). If {Y,} is the process (3) subordinate to {X,}
and satisfies
lck|2 2 k
1 e (4(1 —[3)) <o %)
k;m k! k
(see (8)) then the partial sums

NS Y, n=1,..,p,

J

if 1>ﬁ>%. If 21 —Byu<l or if
C
H(dX)Z (—1_7+f(X)) dx, O<axl,
|x]

with the constant c=D~"' and f a function of bounded variation, the sum in (3),
(5), and (7) can be taken from 1 to 0.

The following simple lemma is helpful in the derivation.

Lemma. Under condition (2) and 7, <0,

|§ &' |x|?7™H (dx)|

) ri-g +F(%(1—ﬁ)) 1+sinn(a~%(1—ﬁ)) o

F(l—%(l—ﬁ)) I'(x) sinmo

{cos (%n)}—l(lﬂpnﬂyk-“.
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In estimating (8) let us note that for k sufficiently large 2y, = —# is negative. It
is clearly of some interest to look at the Fourier coefficients of |x|~". Now

k3 K1

| e™|x|7"dx= | cosnx|x| "dx
—r -z

= R/jzn cosnx{ nil (—1)F

k —~n
x+—7t }dx
—n/2n k= —n+1
7 —n+ﬁ
+(=0| [ + [ [Jcosnx|x| "dx. )
n_z"_n —-r
For n=0 we have
m 2
2fxMdx=—"n'""
0 1—9

For n+0, the first part of the expression on the right of (9) is

/2 n—1
| cosx{ Y (—1)"|x—l—knl‘”}dxn”‘l
-2

k= -n+1
and for large n this can be approximated by

w2 ©

[ cosx Y (—=1f|x+kn| "dxn"""
—mf2 k= —o0

= }O cosx|x| "dxn""'=2I(1—n) cos (g(l—n))n”‘l. (10)

If k is small and 2y, is positive g, is automatically finite. If 2y, is negative we
can still show that

[ 1] =" H (dx) < co.
Let
) nsinzg(x—y)
- -1
=5 | 0 yl~"dy,

i1 . 2; _
sin 2(x ¥)

the Cesaro one sum of the truncated Fourier series of [x|~". Let the ¢,’s be the
Fourier coefficients of [x|~". Now

T

1 k
J aatine=5- 3 o (-5,

1
ég% el 1r_l-
Further g, (x)20 for all x and

lim g, (x)=|x[""

m-— o0
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for all x, 0<|x|<=. Therefore by Fatou’s lemma

<liminf jf[ 2,,(x)dH(x)

M- _g

1
< - Y lad i

[ IxI-7dH()

and this last expression is finite by virtue of (2) and (10) since

2
—l—a=—=(1-8-1.
n—1-a=—2(1-p)
We shall now show that
| e (x|~ H(dx) =
| er*ix| (x)—Echrpﬂj.
gt 7

Let us consider

K|
Z ¢, (1 _E) ok

k| =m

T ) 1
| e g, (dH =5

M. Rosenblatt

(12)

The equality (11) will follow from (12) on applying the Lebesgue convergence

theorem with m — o, if we can show that

1 —-n/2
2. X)=K,+K, (Wﬁ-xz)

(13)

for some constants K, K,>0, First it is clear that for appropriate constants

L,,L,>0 one has

sin? 2y
1 2 Lo+ m 1
2nm sinzlu =TT e mt?
2
n
f <—.
or |u|_2
Now
2 m 1 ® N
Ly My =LaRe | el

for an appropriate constant L, >0. But

w0 1, 1 -1
Re j" l”‘le*l(ﬁﬂy)dizRe (——iy) I'(y)
o m
and

1 -1 1 —n/2
Re (~—iy) =cosnb: (—2+y2)
m m
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with
0= arccos( /{m‘2+y} )

This gives us the inequality (13) and consequently the relation (11). From (6)
and (10) it follows that

3 DI 5 T cos (S -n) S+l eip =)= 09
The sum on the right side of inequality (14) can be partitioned into three parts
(Z + ZO+JZF> T+ A +]p—j)*=8,+S, +8S;.
=0 j<o Jj>
An estimate for S, is given by

4 —a

> il Byt
j=0
;j{u”"l(l—u)‘“duim”*“
0
rmri— d); o
F(11+1 )

if p£0. A corresponding estimate for S, is

0
[ lul"= 1 —ul=*dulp|"~*

— 20

O!‘ﬂb—‘ O ey

1o~ ol ~"jol*|v]~>dv|pl"~*

[L—o|"~*o[*~"~ dv|p|"*
:F(n)l“(oc—n)| s
I'(a)
if p=0. In a similar manner one obtains the estimate
a—mI'(1—a) P
I'(l—yn)

for S5 if p=0. These estimates imply that the right hand side of (14) is bounded
by

B 7 rmIl—q)

— (- (=)=

7 F=m)cos (2 ( '7)) {F(n—l—l—oc)

Hmrw—m+rm—mr0~wbm%a

15
e (1 —n) (1)
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if p*0. The relation I'(n)I(1 —n)=n/sin(nn) (recalling that nza—%(l —ﬁ))
together with the bound (15) imply (8). k

Let us now consider the proof of the theorem. The terms corresponding to
different k in (3) are orthogonal to each other. The estimate of the lemma and
(7) imply that ¥, is well-defined. Notice that

S¥Y)=N-"* Y v,

jeBrlj
iIN(oL+ 0+ x0)
— c_kj‘einN(x1+...+xk) el. i xk 1
k>k0k! g F ot |
k
[T (x*Zgldxy)
s=1
Hpr+ .4 px)
— Z c_kjein(ﬂ1+---+ﬂk) e " 1
.1
k>k0k! {etﬁ(uw--»*-uk)_l}N

Z g dpy) ... Z g (dw)

(H(dx)=|x[*"H (dx),

with

) 2
Hy(A=N“HN"4), =2y +a= (1-f)

The measures  H (‘) tend locally weakly to the measures ,G(+) where ,G(*) has
a spectral density

D~ Y|x|®1
with

D, =2T(x)cos (?) .
Let

pitxi+ 3

Ky(xg, oo x)=—+ .
{ezﬁ(x1+...+xk)_1}N

Just as in the case of the paper of Dobrushin and Major [2] one can show that
the sequence of measures

1 2
Z ﬁpexnp(x1+.,,+xk) |KN(x17 "'=xk)|2

r=t (16)
Hyldxy) ... Hyldx,)

in(A) =£

tends weakly to the finite measure

pZ

1
k,u(A):j Z ﬁpeinp(x1+...+xk)
A |[p=1

G, (dx,) ... G,(dx,)

17)

as N -0, k>k,.
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We shall now show that the distribution of

m

Z ) je’“(’“+ ) B (.“17 . ."uk)
k=ko-+1 (18)
kHN(d/h) ZkHN(de)

tends to that of

m

y Ck.‘"em(uﬁr +uk)K(§ M-)
k=tgr1 K! je= 1 ! (19)
k
H (] [ W(dﬂj))

for each positive integer m. Let us now use the notation of Sect. 4 of the paper of
Dobrushin [1]. Let h eHGk, ko <k<m. Then the distribution of

Z jhk(xlﬂ e kHN(dxl) ZkHN(dxk) (20
k=ko+1
tends to that of
Z Fhe(eys s x) Zg (dXy) ... Zg, (dx)) (21)
k=ko+1

as N—oco. This follows since the integrals of (20) are polynomials in the
random variables Z , (B) (the Bs are the one-dimensional projections of the
level sets of the functions h,). Since the joint distributions of the random
variables Z y (B) tend to the joint distribution of the random variables Z;, (B),
it follows that the distribution of (20) tends to that of (21). Given any &>0
there is an h e Hf, such that

f Ky (g, ey X)) —hy(xq, '--axk)lz WHyldx,) .. Hy(dx) <e,
Rk

ky<k<m, and

2

G dx) ... G (dx)<e

]

Rk

K (i xj) —h(xq, ..., X))

j=1

The sets of inequalities follow from the convergence of the measures (16) to
k

(17) and the convergence of Ky(x,, ..., x,) to K ( > xj) on every finite interval.
j=1
The last comments imply that the distribution of (18) tends to the distribution
of (19) as N - o for each positive m.
The proof of the theorem will be complete if we can show that the variance
of the remainder

o0

C .
kz k_k'j em(ﬂl*'---‘*'llk)KN('ul’ “_”uk)
=m -

Z g duy) . Z g (d i) 22)
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can be made uniformly small as N —co if m is fixed but sufficiently large. The
variance of

jein(ul+"'+uk)KN(ﬂ1: cees .“k)ZkHN(d,“J ZkHN(d:u'k)
_“KN(:ul: cevs Nk)|2kHN(dH1) o Hyldpy). (23)

pUj)=] € x| H(dx)

18

If

then (23) by the argument on p. 34 of [2] can be rewritten

1
Y. (N=liDp()-

2—-ké
N 2w

Using the lemma, one can see that this is bounded in absolute value by

erfoon) 2 004

ljl<N

-2(1-8

N-L (24)

The assumption (7) together with the estimate (24) implies that the variance of
(22) is uniformly small as N - oo if m is sufficiently large.
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