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Summary. Limit  theorems for sums of nonl inear  functionals of Gaussian 
sequences typically obtain as limit distr ibution that  of  a single term in an 
expansion given by Dobrush in  [1] for a process subordinate  to a Gaussian 
process. Here  we show how one can obtain limit theorems of this type 
where the limit distr ibution is that  of a full expansion of  Dobrushin ' s  type. 

Introduction 

Let {~,}, n = . . . ,  - 1 ,  0, 1, ... be a strictly s tat ionary sequence. In dealing with 
limit laws one often defines the new sequences 

where 

N - I  S.=AN ~ ~j, N = l , 2  . . . .  , 
jEB~ 

B. -N- {jlnN <j <(n+ I)N} 

and A N is an appropr ia te  norming constant.  In investigating possible limit laws 
one is led to sequences {~} with the following property.  The joint  distr ibution 
of 

is the same as that  of 
S N S N 

n l  ~ " " ~  n k  

for all N = i, 2 . . . .  and integers n I . . . .  , n k with A N = N ~ for some parameter ~ > 0. 

The parameter ~ is called the self-similarity parameter  for the sequence {~,} 

and the sequence itself is referred to as a self-similar process. 

Dobrushin has characterized the self-similar processes subordinate to a 

Gaussian random spectral measure Zv with spectral distribution G. For Borel 
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sets A with G ( A ) <  o% the r a n d o m  variables ZG(A ) have the following proper-  
ties : 

(i) The  r a n d o m  variables  ZG(A ) are joint ly  Gauss i an  complex-valued.  

(ii) E Z a ( A ) = O ,  

EZG(A)Z~(B  ) = G(A m B). 

(iii) Z G ( A j ) = Z  G Aj if the sets A 1 . . . .  , A, 
j ~ l  J 

(iv) Z ~ ( A ) = Z G ( - A  ). 

Dobrush in  [-1] has shown that  if {4.} has the form 

with 

and 

are di~oint.  

= 

L ( x l  . . . .  , x , )ZG(dxO ... ZG(dx,)  

L( ,~x,  . . . .  , ~ .x~ 2 - ~ - e  L ( ~ ,  ... ,  x.) 

G()oA) =2~G(A),  

(1) 

,,=1 ~.. S l f " (x l , ' ' ' , x " )12K s_ x s G(dxl)  ,.. G(dx.) 

where K is the Fejer  kernel  

sin 2 
2 

The usual non  Gauss ian  limit theorems for part ial  sums of nonl inear  func- 
tionals of Gauss ian  sequences (see Dobrush in  and Ma jo r  [2];  Girai t is  and 
Surgailis [5];  Ma jo r  [3, 4], T a q q u  [8, 9], and Rosenbla t t  [6, 7]) cor respond  to 
a single t e rm in the expansion (1). In this paper ,  we will show that  there are 
limit theorems in which the l imiting dis tr ibut ion corresponds  to a complete  
expansion of the type (1). 

Let  Xn, n =  ...,  - 1 ,  0, 1, .. . ,  EX,,=O, E X  2 = 1, be  a Gauss ian  s ta t ionary  pro-  
cess with corre la t ion funct ion r(n)= E X o X  n satisfying 

r (n)~ln l  -~ , 0<c~<  1, (2) 

then {4.} is a self-similar process with self-similarity pa rame te r  ft. The integrals 
in the representa t ion  (1) are mul t ip le  Wiener - I to  integrals. One has to check 
whether  the fo rmula  (1) is meaningful  for a sequence fn in the sense that  the 
var iance of (1) is finite. If we assume that  the functions f .  are symmetr ic  
functions of the variables  x I . . . .  , x .  the var iance  of (1) is given by 
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as Int--'m. Let H be the spectral distribution function corresponding to (2) so 
that 

r(n)= i eln~H(dx) " 

The random spectral measure of the process {X,,} is Z H. Let us consider the 
process {Y,} subordinate to {X,} given by 

with 

Y,= ~ ~.v ~exp[in(xl  + . . .  -]-Xk)]tX1] 7k . . ,  IXkl 7k 
k>ko �9 

ZH(dXl) ... Zi~(dxk) 

1 ~ fi k = l , 2 , . . . .  
7k--k 2 k '  

(3) 

and k o the greatest integer less than or equal to 2(1 -fl)/o~. 
For the representation (3) to make sense we require that 

S ]xll 2y" ... Ixk f2~H(dxl) . . .  H(dxk)< oo (4) 
k > k o  k , 

since it is the variance of (3). This requires at the very least that for any index 
k for which ck@0 that 

ak= S ]xteTk H (dx) < oo. 

This will be finite if one has 1>/3. Let us assume that 27k+c~=2(1-f i ) /k< 1/k 
so that 

el(x1 + ... +xk) _ 1 
u(nk) = ~  ein(xl+...+xk) ixl]-i . . . .  [x l,k 

i(x I + ... + xk) 
o:-1 a - 1  

Ix1[ 2 ...[xk[ 2 W(dx  0 . . .  W(dxk) D-k/2 

is well-defined where W is the random spectral measure of the white-noise 

p r o c e s s a n d D = 2 F ( c O e o s ( 2 c ~  ) . This will happen if 

1 
fi>~- 

Notice that 

1 
is well-defined if 1 > 6 > -  and 

-- 2 

iCkl 2 s in  2 ~ x j )  

c k v.= Z k) (5) 
k>ko 

]Xll 2vk+~- I  .. .  ]Xk[ 27k+~ l d x l  . . .  d x  k D - k  
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such that 

Notice that if (2) is satisfied, there is a constant 

B > 2F(c~) 

IS eivxH(dx)[ <B(1 + [p[) ~ 

for all integral p. Let 

(6) 

We wish to show that under appropriate conditions, the partial sums of the 
process {]1,} given by (3) will converge in distribution to the process {V,} given 
by (5). More specifically, our object is to prove the following theorem. 

Theorem. Let {X,} be a stationary Gaussian process with mean zero and co- 
variance function r(n) satisfying (2). I f  { Y,} is the process (3) subordinate to {X,} 
and satisfies 

y, Ickl2Akr (1-f i )  < oo (7) 
k>ko k! 

(see (8)) then the partial sums 

N-~ E Y~, n = l , . . . , p ,  
j~Bff 

converge in distribution to that of the random variables 

Vn, n = l , . . . , p ,  

/f l > f i > ~ .  I f  2(1 - f i ) /~<  1 or if 

H(dx)= +f (x )  dx, 0<c~< 1, 

with the constant c =D 1 and f a function of bounded variation, the sum in (3), 
(5), and (7) can be taken from 1 to oo. 

The following simple lemma is helpful in the derivation. 

Lemma. Under condition (2) and 7k <0, 

1~ eip~'lxl2~ H (dx)] 

<B{ 
) F(a) + sin ~z 

(8) 
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In estimating (8) let us note  that  for k sufficiently large 22k= --~/ is negative. It 
is clearly of some interest to look at the Four ie r  coefficients of Ixl-". Now 

[. e in~lx l -"dx= c o s n x l x l - " d x  

= cosnx  ~ ( - 1 )  k dx 
-rt/2n ~.k= - n + l  >q + ( - 1 ) "  i + c ~  -ndx" 

2n 

For  n = 0 we have 

(9) 

2 
2 [ x - " d x  = - 7c 1 -". 

o ~ 1 - r l  

For  n 4= 0, the first par t  of the expression on the right of (9) is 

rt/2 t n 1 1 cosx ~ (-1)klx+k)zl -" dxn"-* 
-r~/2 kk= -n+l 

and for large n this can be approx imated  by 

=/2 

cosx  ~, ( - 1 ) k l x + k n l - " d x n  n-* 
- ~z12 k =  - a z  

o~ 

(10) 

If k is small and 2yk is positive a k is automat ical ly  finite. If 27k is negative we 
can still show that  

j" Ixl- 'TH(dx) < oo. 

m 
sin 2 2- (x - y) 

g"(x)=2~77 i 2 1 
-= sin ~ ( x - y )  

[yl-"dy,  

Let  

the Cesaro one sum of the t runcated Four ier  series of Ix]-". Let  the Ck'S be the 
Fourier  coefficients of [x]-". Now 

- ~  Ik] = m  m 

1 
-2rc<---~ [ck] Ir-k[" 

Fur ther  gm(x)>O for all x and 

lim g,~ (x) = [xl " 
m~oo 
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for all x, O<lxt~r.  Therefore  by Fa tou ' s  l e m m a  

i lxl-"dH(x) <liminf i g,.(x)dH(x) 
~z m ~ o o  - r e  

1 
<2 -~lckllr-kl 

and this last expression is finite by virtue of  (2) and (10) since 

- 1 - ~  = _ 2  (1 - / ~ )  - 1. 
K 

We shall now show that  

i dVXlxl-"H(dx)=~ ~ Cjrp_j. (11) 

Let  us consider  

i eiVXgm(x)dH(x) = 1~ 2 G ( 1 - 1 k l t r p -  k. (12) 
_ ~  2re ikl< m I T l  ] 

The equali ty (11) will follow f rom (12) on apply ing  the Lebesgue convergence 
theorem with m--+oo, if we can show tha t  

/ 1 \ - , / 2  
g,.(x) < K  1 + K  2 { ~ + x  2) (13) 

for some constants  K1, K 2 > 0  , First  it is clear that  for appropr ia t e  constants  
L 1 , L 2 > 0  one has 

�9 2 m 

1 s m  7 u m 1 
<=LI + L 2 7c 1 +mZu 2 

2~m sin2 2 u 

for [ul _-<~-. 

N o w  

-o0 rc 1 +mZ(x  _y)2 lYi-"dy=L3 Re - ~  12['-le-I~leir2d2 

for an appropr i a t e  cons tant  L 3 >0 .  But 

Re 2" -1e  m . , ~ = R e  m--iy Fif O 
0 

and 
1 -~ / 1 x -~/2 ,,) =cos 0 t 
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with (1/ ) 
0=arccos  {m-Z+y2} I- �9 

This gives us the inequality (13) and consequently the relation (11). From (6) 
and (10) it follows that 

1 B 
2 r c ~ , c f l ' o _ ; , < ~ F ( 1 - - t t ) c o s ( 2 ( 1 - - t l ) ) ~ ( l m ~ , ) ' i - l ( l + , p - - j , ) - L  (14) 

The sum on the right side of inequality (14) can be partitioned into three parts 

j E - t - j E  J>P'E ( I  -~- l i l y / -  1 (1 At-lp--jl)-~z=S1-~-$2-~-S 3 . 

An estimate for S~ is given by 

IJ/pl' - a Ipl"- 1 -~ 
j = O  

1 

Y un-l( 1 - u )  -~du  IPI" = 
0 

_ r ( ~ ) r O  -~) Ipl~ -~. 
r ( r /+  1 -cr 

if p#0 .  A corresponding estimate for S 2 is 

0 

[ u l " - ~ l l - u l - ~ d u l P l  ~-~ 
-oo 

1 

=j" I 1 -  vl '- 11vll-~tvl~lvl- 2dr Ipl ~-~ 
0 
1 

=~ II-vln-llvl~-"-Xdvlpl "-~ 
0 

r(U)r(~ -U) 
- i p l . - ~  r(~) 

if p # 0. in a similar manner one obtains the estimate 

r (~  - ~)r(1 -~)  
r (1  -~ )  IPI" 

for S 3 if p#0 .  These estimates imply that the right hand side of (14) is bounded 
by 

Bjz F(1 -r/) cos (1 - I/) [ F01 + 1 - c  0 

F(rl)F(c~-rl) F(~-q)F(1-c@ 
+ C(~) § C(1 -r/) Ipl ~-~ (lS) 
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if p4=0. The relation F(rl)F(1-rl)=rc/sin(nrl) ecalling that ~ = ~ - ~ ( 1 - f i )  
together with the bound (15) imply (8). 

Let us now consider the proof of the theorem. The terms corresponding to 
different k in (3) are orthogonal to each other. The estimate of the lemma and 
(7) imply that Yn is well-defined. Notice that 

with 

SN(y)=N -p ~ Yj 
j~B~ 
Ck eiN(xl + . .  +xk) _ 1 

= ~ ~ e  inN(xl+'' '+xk) 
k > ko '" " ei(x~ +"" + xk) _ 1 

k 

H ( t X s l " Z G ( d x , ) )  
S=I  

ei(U~ +... + uk) _ 1 
= ~ '  C ~ f e i n ( u l + . . . + ~ k )  

k ~ o k !  J 1 
{ei~(,, +...+,k) _ 1 } N 

Z~n~(d#l) ... Z~u~(dl.tk) 

kH(dx) = IxlEe.H(dx), 

kilN(A) = NakkH (N- ~ A), ~k=27k+C~=~(1 --fl). 

The measures kilN(") tend locally weakly to the measures kG(') where kG(') has 
a spectral density 

D-1lxl~.-a 
with 

Let 

Dk = 2F(oOcos ( 7  ). 

ei(Xz+ ...+xk) __ 1 
K N ( x l ,  . . . , x k ) =  1 

r i--(xz+,..+xk) /eN - 1 } N  

Just as in the case of the paper of Dobrushin and Major 1-2] one can show that 
the sequence of measures 

k i l N ( A ) = !  p~=l DPeinp(xl+'"+xk) 2 l K N ( X i  . . . .  ,Xk)l 2 

kHN(dxl) ... kH~(dxk) 
(16) 

tends weakly to the finite measure 

2 

Gk(dXl) ... Gk(dx k) 
as N~oo,  k>k o. 

(17) 
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We shall now show that the distribution of 

Ck 

k = k o + l  

z~,~(d#O ... Z ,~(d#~) 
(18) 

tends to that of 

~..~Ck ein(a~+'"+"k)K( k )~=lflj 
k=ko+l j -  (19) 

k a - 1  

~ + ~ -  W [[ ~ #j (d#j)) 
j = l  

for each positive integer m. Let us now use the notation of Sect. 4 of the paper of 
Dobrushin [1]. Let hkeH~, k o <k<=m. Then the distribution of 

; hk(X 1 ..... xk)ZkI_IN(dxl)... Z~(dxk)  (20) 
k = k o + l  

tends to that of 

S hk(Xl''"' Xk)ZGk(dXl) "'" Zc~k(dXk) (21) 
k = k o + l  

as N~oQ.  This follows since the integrals of (20) are polynomials in the 
random variables ZkH~(B ) (the Bs are the one-dimensional projections of the 
level sets of the functions hk). Since the joint distributions of the random 
variables Z n~(B ) tend to the joint distribution of the random variables ZG~(B), 
it follows that the distribution of (20) tends to that of (21). Given any ~>0  
there is an hkeH~ such that 

]KN(x1, ...,Xk)--hk(Xl, ..., Xk)[ 2 kH~(dxl) ... kHN(dXk)<e, 
R k 

k o <k<m, and 

~=~ xj --hk(Xl, ..., Gk(dxl) ... Gk(dXk)<e. 
R k j _  

The sets of inequalities follow from the convergence of the measures (16) to 

(17) andtheconvergenceofKN(Xl , . . . , xk) toK(~xj )  on every finite interval. 
j= 

The last comments  imply that the distribution of (18) tends to the distribution 
of (19) as N ~ o e  for each positive m. 

The proof  of the theorem will be complete if we can show that the variance 
of the remainder 

oo 

k~m~T.~eln("l+'"+"~'KN(#l .... ,#k) 

ZknN(d#l) ... Z~HN(d#k) (22) 
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can be made uniformly small as N--+ m if m is fixed but sufficiently large. The 
variance of 

S ein (Ul +...+ #k)KN (#1 . . . . .  ilk) Zku2v (d #1) . �9 �9 ZkHN (dJAk) 
is 

S IKN(~I,-.., ~k)12kHN(dlal) "'" kHN(d&)" (23) 
If 

P(J) = 5 eIJ~ Ixl2~H(dx) 

then (23) by the argument on p. 34 of [2] can be rewritten 

1 
(N -IJl) P(J) ~. 

N 2 - k a  IJl <N 

Using the lemma, one can see that this is bounded in absolute value by 

AkF (~ (1--f l ) )k  I,~N. ( 1 - - ~ - )  J~'N - 2 ( 1 - f l ) N -  1" (24) 

The assumption (7) together with the estimate (24) implies that the variance of 
(22) is uniformly small as N--+ oo if m is sufficiently large. 
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