Remarks on Limit Theorems for Nonlinear Functionals of Gaussian Sequences

Murray Rosenblatt*
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

Summary. Limit theorems for sums of nonlinear functionals of Gaussian sequences typically obtain as limit distribution that of a single term in an expansion given by Dobrushin [1] for a process subordinate to a Gaussian process. Here we show how one can obtain limit theorems of this type where the limit distribution is that of a full expansion of Dobrushin's type.

Introduction

Let $\left\{\xi_{n}\right\}, n=\ldots,-1,0,1, \ldots$ be a strictly stationary sequence. In dealing with limit laws one often defines the new sequences

$$
S_{n}^{N}=A_{N}^{-1} \sum_{j \in B_{n}^{N}} \xi_{j}, \quad N=1,2, \ldots,
$$

where

$$
B_{n}^{N}=\{j \mid n N \leqq j<(n+1) N\}
$$

and A_{N} is an appropriate norming constant. In investigating possible limit laws one is led to sequences $\left\{\xi_{n}\right\}$ with the following property. The joint distribution of
is the same as that of

$$
\xi_{n_{1}}, \ldots, \xi_{n_{k}}
$$

$$
S_{n_{1}}^{N}, \ldots, S_{n_{k}}^{N}
$$

for all $N=1,2, \ldots$ and integers n_{1}, \ldots, n_{k} with $A_{N}=N^{\alpha}$ for some parameter $\alpha>0$. The parameter α is called the self-similarity parameter for the sequence $\left\{\xi_{n}\right\}$ and the sequence itself is referred to as a self-similar process.

Dobrushin has characterized the self-similar processes subordinate to a Gaussian random spectral measure Z_{G} with spectral distribution G. For Borel

[^0]sets A with $G(A)<\infty$, the random variables $Z_{G}(A)$ have the following properties:
(i) The random variables $Z_{G}(A)$ are jointly Gaussian complex-valued.
(ii) $E Z_{G}(A)=0$,
$$
E Z_{G}(A) \overline{Z_{G}(B)}=G(A \cap B)
$$
(iii) $\sum_{j=1}^{n} Z_{G}\left(A_{j}\right)=Z_{G}\left(\bigcup_{j=1}^{n} A_{j}\right)$ if the sets A_{1}, \ldots, A_{n} are disjoint.
(iv) $Z_{G}(A)=\overline{Z_{G}(-A)}$.

Dobrushin [1] has shown that if $\left\{\xi_{n}\right\}$ has the form

$$
\begin{gather*}
\xi_{j}=\sum_{n=1}^{\infty} \frac{1}{n!} \int \exp \left\{i j \sum_{s=1}^{n} x_{s}\right\} \frac{\exp \left\{i \sum_{s=1}^{n} x_{s}\right\}-1}{i\left(\sum_{s=1}^{n} x_{s}\right)} \tag{1}\\
f_{n}\left(x_{1}, \ldots, x_{n}\right) Z_{G}\left(d x_{1}\right) \ldots Z_{G}\left(d x_{n}\right)
\end{gather*}
$$

with

$$
f_{n}\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{1-\frac{n x}{2}-\beta} f_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

and

$$
G(\lambda A)=\lambda^{\alpha} G(A),
$$

then $\left\{\xi_{n}\right\}$ is a self-similar process with self-similarity parameter β. The integrals in the representation (1) are multiple Wiener-Ito integrals. One has to check whether the formula (1) is meaningful for a sequence f_{n} in the sense that the variance of (1) is finite. If we assume that the functions f_{n} are symmetric functions of the variables x_{1}, \ldots, x_{n} the variance of (1) is given by

$$
\sum_{n=1}^{\infty} \frac{1}{n!} \int\left|f_{n}\left(x_{1}, \ldots, x_{n}\right)\right|^{2} K\left(\sum_{s=1}^{n} x_{s}\right) G\left(d x_{1}\right) \ldots G\left(d x_{n}\right)
$$

where K is the Fejer kernel

$$
\mathbf{K}(\mu)=\frac{\sin ^{2} \frac{\mu}{2}}{\left(\frac{\mu}{2}\right)^{2}}
$$

The usual non Gaussian limit theorems for partial sums of nonlinear functionals of Gaussian sequences (see Dobrushin and Major [2]; Giraitis and Surgailis [5]; Major [3, 4], Taqqu [8, 9], and Rosenblatt [6, 7]) correspond to a single term in the expansion (1). In this paper, we will show that there are limit theorems in which the limiting distribution corresponds to a complete expansion of the type (1).

Let $X_{n}, n=\ldots,-1,0,1, \ldots, E X_{n}=0, E X_{n}^{2}=1$, be a Gaussian stationary process with correlation function $r(n)=E X_{0} X_{n}$ satisfying

$$
\begin{equation*}
r(n) \cong|n|^{-\alpha}, \quad 0<\alpha<1, \tag{2}
\end{equation*}
$$

as $|n| \rightarrow \infty$. Let H be the spectral distribution function corresponding to (2) so that

$$
r(n)=\int_{-\pi}^{\pi} e^{i \ln x} H(d x)
$$

The random spectral measure of the process $\left\{X_{n}\right\}$ is Z_{H}. Let us consider the process $\left\{Y_{n}\right\}$ subordinate to $\left\{X_{n}\right\}$ given by

$$
\begin{gather*}
Y_{n}=\sum_{k>k_{0}} \frac{c_{k}}{k!} \int \exp \left[\operatorname{in}\left(x_{1}+\ldots+x_{k}\right)\right]\left|x_{1}\right|^{\gamma_{k}} \ldots\left|x_{k}\right|^{y_{k}} \tag{3}\\
Z_{H}\left(d x_{1}\right) \ldots Z_{H}\left(d x_{k}\right)
\end{gather*}
$$

with

$$
\gamma_{k}=\frac{1}{k}-\frac{\alpha}{2}-\frac{\beta}{k}, \quad k=1,2, \ldots
$$

and k_{0} the greatest integer less than or equal to $2(1-\beta) / \alpha$.
For the representation (3) to make sense we require that

$$
\begin{equation*}
\sum_{k>k_{0}} \frac{\left|c_{k}\right|^{2}}{k!} \int\left|x_{1}\right|^{2 \gamma_{k}} \ldots\left|x_{k}\right|^{2 \gamma_{k}} H\left(d x_{1}\right) \ldots H\left(d x_{k}\right)<\infty \tag{4}
\end{equation*}
$$

since it is the variance of (3). This requires at the very least that for any index k for which $c_{k} \neq 0$ that

$$
a_{k}=\int|x|^{2 \gamma_{k}} H(d x)<\infty
$$

This will be finite if one has $1>\beta$. Let us assume that $2 \gamma_{k}+\alpha=2(1-\beta) / k<1 / k$ so that

$$
\begin{aligned}
U_{n}^{(k)}= & \int e^{\operatorname{in}\left(x_{1}+\ldots+x_{k}\right)} \frac{e^{i\left(x_{1}+\ldots+x_{k}\right)}-1}{i\left(x_{1}+\ldots+x_{k}\right)}\left|x_{1}\right|^{\gamma_{k} \ldots}\left|x_{k}\right|^{y_{k}} \\
& \left|x_{1}\right|^{\frac{\alpha-1}{2}} \ldots\left|x_{k}\right|^{\frac{\alpha-1}{2}} W\left(d x_{1}\right) \ldots W\left(d x_{k}\right) D^{-k / 2}
\end{aligned}
$$

is well-defined where W is the random spectral measure of the white-noise process and $D=2 \Gamma(\alpha) \cos \left(\frac{\pi}{2} \alpha\right)$. This will happen if

$$
\beta>\frac{1}{2}
$$

Notice that

$$
\begin{equation*}
V_{n}=\sum_{k>k_{0}} \frac{c_{k}}{k!} U_{n}^{(k)} \tag{5}
\end{equation*}
$$

is well-defined if $1>\beta>\frac{1}{2}$ and

$$
\begin{gathered}
\sum_{k>k_{0}} \frac{\left|c_{k}\right|^{2}}{k!} \int \frac{\sin ^{2} \frac{1}{2}\left(\sum_{1}^{k} x_{j}\right)}{\left(\frac{1}{2} \sum_{1}^{k} x_{j}\right)^{2}}\left|x_{1}\right|^{2 \gamma_{k}+\alpha-1} \ldots\left|x_{k}\right|^{2 \gamma_{k}+\alpha-1} d x_{1} \ldots d x_{k} D^{-k} \\
<\infty
\end{gathered}
$$

Notice that if (2) is satisfied, there is a constant

$$
\begin{equation*}
B>2 \Gamma(\alpha) \tag{6}
\end{equation*}
$$

such that

$$
\left|\int e^{i p x} H(d x)\right|<B(1+|p|)^{-\alpha}
$$

for all integral p. Let

$$
A=4 B\left\{\Gamma(\alpha) \cos \left(\frac{\pi}{2} \alpha\right)\right\}^{-1} .
$$

We wish to show that under appropriate conditions, the partial sums of the process $\left\{Y_{n}\right\}$ given by (3) will converge in distribution to the process $\left\{V_{n}\right\}$ given by (5). More specifically, our object is to prove the following theorem.
Theorem. Let $\left\{X_{n}\right\}$ be a stationary Gaussian process with mean zero and covariance function. $r(n)$ satisfying (2). If $\left\{Y_{n}\right\}$ is the process (3) subordinate to $\left\{X_{n}\right\}$ and satisfies

$$
\begin{equation*}
\sum_{k>k_{0}} \frac{\left|c_{k}\right|^{2}}{k!} A^{k} \Gamma\left(\frac{2}{k}(1-\beta)\right)^{k}<\infty \tag{7}
\end{equation*}
$$

(see (8)) then the partial sums

$$
N^{-\beta} \sum_{j \in B_{n}^{N}} Y_{j}, \quad n=1, \ldots, p
$$

converge in distribution to that of the random variables

$$
V_{n}, n=1, \ldots, p,
$$

if $1>\beta>\frac{1}{2}$. If $2(1-\beta) / \alpha<1$ or if

$$
H(d x)=\left(\frac{c}{|x|^{1-\alpha}}+f(x)\right) d x, \quad 0<\alpha<1
$$

with the constant $c=D^{-1}$ and f a function of bounded variation, the sum in (3), (5), and (7) can be taken from 1 to ∞.

The following simple lemma is helpful in the derivation.
Lemma. Under condition (2) and $\gamma_{k}<0$,

$$
\begin{align*}
& \left.\left|\int e^{i p x}\right| x\right|^{2 \gamma_{k}} H(d x) \mid \\
& \qquad\left\{\begin{array}{l}
\quad \frac{\Gamma(1-\alpha)}{\Gamma\left(1-\frac{2}{k}(1-\beta)\right)}
\end{array} \frac{\Gamma\left(\frac{2}{k}(1-\beta)\right)}{\Gamma(\alpha)}\left(1+\frac{\sin \pi\left(\alpha-\frac{2}{k}(1-\beta)\right)}{\sin \pi \alpha}\right)\right\} \tag{8}\\
& \left\{\cos \left(\frac{\pi}{2} \eta\right)\right\}^{-1}(1+|p|)^{-2 \gamma_{k}-\alpha} .
\end{align*}
$$

In estimating (8) let us note that for k sufficiently large $2 \gamma_{k}=-\eta$ is negative. It is clearly of some interest to look at the Fourier coefficients of $|x|^{-\eta}$. Now

$$
\begin{align*}
\int_{-\pi}^{\pi} e^{i n x}|x|^{-\eta} d x= & \int_{-\pi}^{\pi} \cos n x|x|^{-\eta} d x \\
= & \int_{-\pi / 2 n}^{\pi / 2 n} \cos n x\left\{\sum_{k=-n+1}^{n-1}(-1)^{k}\left|x+\frac{k \pi}{n}\right|^{-\eta}\right\} d x \\
& +(-1)^{n}\left[\int_{\pi-\frac{\pi}{2 n}}^{\pi}+\int_{-\pi}^{-\pi}\right] \cos n x|x|^{-\eta} d x \tag{9}
\end{align*}
$$

For $n=0$ we have

$$
2 \int_{0}^{\pi} x^{-\eta} d x=\frac{2}{1-\eta} \pi^{1-\eta}
$$

For $n \neq 0$, the first part of the expression on the right of (9) is

$$
\int_{-\pi / 2}^{\pi / 2} \cos x\left\{\sum_{k=-n+1}^{n-1}(-1)^{k}|x+k \pi|^{-n}\right\} d x n^{\eta-1}
$$

and for large n this can be approximated by

$$
\begin{align*}
& \int_{-\pi / 2}^{\pi / 2} \cos x \sum_{k=-\infty}^{\infty}(-1)^{k}|x+k \pi|^{-\eta} d x n^{\eta-1} \\
& \quad=\int_{-\infty}^{\infty} \cos x|x|^{-\eta} d x n^{\eta-1}=2 \Gamma(1-\eta) \cos \left(\frac{\pi}{2}(1-\eta)\right) n^{n-1} . \tag{10}
\end{align*}
$$

If k is small and $2 \gamma_{k}$ is positive a_{k} is automatically finite. If $2 \gamma_{k}$ is negative we can still show that

$$
\int|x|^{-\eta} H(d x)<\infty .
$$

Let

$$
g_{m}(x)=\frac{1}{2 \pi m} \int_{-\pi}^{\pi} \frac{\sin ^{2} \frac{m}{2}(x-y)}{\sin ^{2} \frac{1}{2}(x-y)}|y|^{-n} d y,
$$

the Cesaro one sum of the truncated Fourier series of $|x|^{-\eta}$. Let the c_{k} 's be the Fourier coefficients of $|x|^{-\eta}$. Now

$$
\begin{aligned}
\int_{-\pi}^{\pi} g_{m}(x) d H(x)= & \frac{1}{2 \pi} \sum_{|k| \leqq m} c_{k}\left(1-\frac{|k|}{m}\right) r_{-k} \\
& \leqq \frac{1}{2 \pi} \sum_{k}\left|c_{k}\right|\left|r_{-k}\right| .
\end{aligned}
$$

Further $g_{m}(x) \geqq 0$ for all x and

$$
\lim _{m \rightarrow \infty} g_{m}(x)=|x|^{-\eta}
$$

for all $x, 0<|x| \leqq \pi$. Therefore by Fatou's lemma

$$
\begin{aligned}
\int_{-\pi}^{\pi}|x|^{-\eta} d H(x) & \leqq \liminf _{m \rightarrow \infty} \int_{-\pi}^{\pi} g_{m}(x) d H(x) \\
& \leqq \frac{1}{2 \pi} \sum\left|c_{k}\right|\left|r_{-k}\right|
\end{aligned}
$$

and this last expression is finite by virtue of (2) and (10) since

$$
\eta-1-\alpha=-\frac{2}{k}(1-\beta)-1
$$

We shall now show that

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i p x}|x|^{-\eta} H(d x)=\frac{1}{2 \pi} \sum_{j} c_{j} r_{p-j} \tag{11}
\end{equation*}
$$

Let us consider

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i p x} g_{m}(x) d H(x)=\frac{1}{2 \pi} \sum_{|k| \leqq m} c_{k}\left(1-\frac{|k|}{m}\right) r_{p-k} \tag{12}
\end{equation*}
$$

The equality (11) will follow from (12) on applying the Lebesgue convergence theorem with $m \rightarrow \infty$, if we can show that

$$
\begin{equation*}
g_{m}(x) \leqq K_{1}+K_{2}\left(\frac{1}{m^{2}}+x^{2}\right)^{-n / 2} \tag{13}
\end{equation*}
$$

for some constants $K_{1}, K_{2}>0$, First it is clear that for appropriate constants $L_{1}, L_{2}>0$ one has

$$
\frac{1}{2 \pi m} \frac{\sin ^{2} \frac{m}{2} u}{\sin ^{2} \frac{1}{2} u} \leqq L_{1}+L_{2} \frac{m}{\pi} \frac{1}{1+m^{2} u^{2}}
$$

for $|u| \leqq \frac{\pi}{2}$.
Now

$$
\int_{-\infty}^{\infty} \frac{m}{\pi} \frac{1}{1+m^{2}(x-y)^{2}}|y|^{-\eta} d y=L_{3} \operatorname{Re} \int_{-\infty}^{\infty}|\lambda|^{\eta-1} e^{-\left|\frac{\lambda}{m}\right|} e^{i y \lambda} d \lambda
$$

for an appropriate constant $L_{3}>0$. But

$$
\operatorname{Re} \int_{0}^{\infty} \lambda^{\eta-1} e^{-\lambda\left(\frac{1}{m}-i y\right)} d \lambda=\operatorname{Re}\left(\frac{1}{m}-i y\right)^{-\eta} \Gamma(\eta)
$$

and

$$
\operatorname{Re}\left(\frac{1}{m}-i y\right)^{-\eta}=\cos \eta \theta \cdot\left(\frac{1}{m^{2}}+y^{2}\right)^{-\eta / 2}
$$

with

$$
\theta=\arccos \left(\frac{1}{m} /\left\{m^{-2}+y^{2}\right\}^{\frac{1}{2}}\right)
$$

This gives us the inequality (13) and consequently the relation (11). From (6) and (10) it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \sum_{j}\left|c_{j} r_{p-j}\right| \leqq \frac{B}{\pi} \Gamma(1-\eta) \cos \left(\frac{\pi}{2}(1-\eta)\right) \sum_{j}(1+|j|)^{\eta-1}(1+|p-j|)^{-\alpha} \tag{14}
\end{equation*}
$$

The sum on the right side of inequality (14) can be partitioned into three parts

$$
\left(\sum_{j=0}^{p}+\sum_{j<0}+\sum_{j>p}\right)(1+|j|)^{n-1}(1+|p-j|)^{-\alpha}=S_{1}+S_{2}+S_{3} .
$$

An estimate for S_{1} is given by

$$
\begin{aligned}
\sum_{j=0}^{p} & |j / p|^{n-1}\left|\frac{p-j}{p}\right|^{-\alpha}|p|^{\eta-1-\alpha} \\
& \cong \int_{0}^{1} u^{\eta-1}(1-u)^{-\alpha} d u|p|^{\eta-\alpha} \\
& \equiv \frac{\Gamma(\eta) \Gamma(1-\alpha)}{\Gamma(\eta+1-\alpha)}|p|^{\eta-\alpha}
\end{aligned}
$$

if $p \neq 0$. A corresponding estimate for S_{2} is

$$
\begin{aligned}
& \int_{-\infty}^{0}|u|^{\eta-1}|1-u|^{-\alpha} d u|p|^{\eta-\alpha} \\
&=\int_{0}^{1}|1-v|^{\eta-1}|v|^{1-\eta}|v|^{\alpha}|v|^{-2} d v|p|^{\eta-\alpha} \\
&=\int_{0}^{1}|1-v|^{\eta-1}|v|^{\alpha-\eta-1} d v|p|^{\eta-\alpha} \\
&=\frac{\Gamma(\eta) \Gamma(\alpha-\eta)}{\Gamma(\alpha)}|p|^{\eta-\alpha}
\end{aligned}
$$

if $p \neq 0$. In a similar manner one obtains the estimate

$$
\frac{\Gamma(\alpha-\eta) \Gamma(1-\alpha)}{\Gamma(1-\eta)}|p|^{\eta-\alpha}
$$

for S_{3} if $p \neq 0$. These estimates imply that the right hand side of (14) is bounded by

$$
\begin{align*}
& \frac{B}{\pi} \Gamma(1-\eta) \cos \left(\frac{\pi}{2}(1-\eta)\right)\left\{\frac{\Gamma(\eta) \Gamma(1-\alpha)}{\Gamma(\eta+1-\alpha)}\right. \\
& \left.\quad+\frac{\Gamma(\eta) \Gamma(\alpha-\eta)}{\Gamma(\alpha)}+\frac{\Gamma(\alpha-\eta) \Gamma(1-\alpha)}{\Gamma(1-\eta)}\right\}|p|^{\eta-\alpha} \tag{15}
\end{align*}
$$

if $p \neq 0$. The relation $\Gamma(\eta) \Gamma(1-\eta)=\pi / \sin (\pi \eta) \quad$ (recalling that $\left.\eta=\alpha-\frac{2}{k}(1-\beta)\right)$
together with the bound (15) imply (8). together with the bound (15) imply (8).

Let us now consider the proof of the theorem. The terms corresponding to different k in (3) are orthogonal to each other. The estimate of the lemma and (7) imply that Y_{n} is well-defined. Notice that

$$
\begin{aligned}
S_{n}^{N}(Y)= & N^{-\beta} \sum_{j \in B_{n}^{N}} Y_{j} \\
= & \sum_{k>k_{0}} \frac{c_{k}}{k!} \int e^{i n N\left(x_{1}+\ldots+x_{k}\right)} \frac{e^{i N\left(x_{1}+\ldots+x_{k}\right)}-1}{e^{i\left(x_{1}+\ldots+x_{k}\right)}-1} \\
& \prod_{s=1}^{k}\left(\left|x_{s}\right|^{\gamma_{k}} Z_{G}\left(d x_{s}\right)\right) \\
= & \sum_{k>k_{0}} \frac{c_{k}}{k!} \int e^{\operatorname{in}\left(\mu_{1}+\ldots+\mu_{k}\right)} \frac{e^{i\left(\mu_{1}+\ldots+\mu_{k}\right)}-1}{\left\{e^{i \frac{1}{N}\left(\mu_{1}+\ldots+\mu_{k}\right)}-1\right\} N} \\
& Z_{k H_{N}}\left(d \mu_{1}\right) \ldots Z_{k H_{N}}\left(d \mu_{k}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& { }_{k} H(d x)=|x|^{2 \gamma_{k}} H(d x), \\
& { }_{k} H_{N}(A)=N^{\tilde{\alpha}_{k}} H\left(N^{-1} A\right), \quad \tilde{\alpha}_{k}=2 \gamma_{k}+\alpha=\frac{2}{k}(1-\beta) .
\end{aligned}
$$

The measures ${ }_{k} H_{N}(\cdot)$ tend locally weakly to the measures ${ }_{k} G(\cdot)$ where ${ }_{k} G(\cdot)$ has a spectral density

$$
D^{-1}|x|^{\bar{\alpha}_{k}-1}
$$

with

$$
D_{k}=2 \Gamma(\alpha) \cos \left(\frac{\alpha \pi}{2}\right)
$$

Let

$$
K_{N}\left(x_{1}, \ldots, x_{k}\right)=\frac{e^{i\left(x_{1}+\ldots+x_{k}\right)}-1}{\left\{e^{i \frac{i}{N}\left(x_{1}+\ldots+x_{k}\right)}-1\right\} N}
$$

Just as in the case of the paper of Dobrushin and Major [2] one can show that the sequence of measures

$$
\begin{gather*}
{ }_{k} \mu_{N}(A)=\int_{A}\left|\sum_{p=1}^{l} \beta_{p} e^{\operatorname{inp(x_{1}+\ldots +x_{k})}}\right|^{2}\left|K_{N}\left(x_{1}, \ldots, x_{k}\right)\right|^{2} \tag{16}\\
{ }_{k} H_{N}\left(d x_{1}\right) \ldots{ }_{k} H_{N}\left(d x_{k}\right)
\end{gather*}
$$

tends weakly to the finite measure

$$
\begin{gather*}
{ }_{k} \mu(A)=\int_{A}\left|\sum_{p=1}^{l} \beta_{p} e^{\operatorname{in} p\left(x_{1}+\ldots+x_{k}\right)}\right| p^{2}\left|K\left(\sum_{j=1}^{k} x_{j}\right)\right|^{2} \tag{17}\\
G_{k}\left(d x_{1}\right) \ldots G_{k}\left(d x_{k}\right)
\end{gather*}
$$

as $N \rightarrow \infty, k>k_{0}$.

We shall now show that the distribution of

$$
\begin{gather*}
\sum_{k=k_{0}+1}^{m} \frac{c_{k}}{k!} \int e^{\operatorname{in}\left(\mu_{1}+\ldots+\mu_{k}\right)} K_{N}\left(\mu_{1}, \ldots, \mu_{k}\right) \tag{18}\\
Z_{k H_{N}}\left(d \mu_{1}\right) \ldots Z_{k H_{N}}\left(d \mu_{k}\right)
\end{gather*}
$$

tends to that of

$$
\begin{gather*}
\sum_{k=k_{0}+1}^{m} \frac{c_{k}}{k!} \int e^{\operatorname{in}\left(\mu_{1}+\ldots+\mu_{k}\right)} K\left(\sum_{j=1}^{k} \mu_{j}\right) \tag{19}\\
\prod_{j=1}^{k}\left(\left|\mu_{j}\right|^{\gamma_{k}+\frac{\alpha-1}{2}} W\left(d \mu_{j}\right)\right)
\end{gather*}
$$

for each positive integer m. Let us now use the notation of Sect. 4 of the paper of Dobrushin [1]. Let $h_{k} \in H_{G_{k}}^{k}, k_{0}<k \leqq m$. Then the distribution of

$$
\begin{equation*}
\sum_{k=k_{0}+1}^{m} \int h_{k}\left(x_{1}, \ldots, x_{k}\right) Z_{k H_{N}}\left(d x_{1}\right) \ldots Z_{k H_{N}}\left(d x_{k}\right) \tag{20}
\end{equation*}
$$

tends to that of

$$
\begin{equation*}
\sum_{k=k_{0}+1}^{m} \int h_{k}\left(x_{1}, \ldots, x_{k}\right) Z_{G_{k}}\left(d x_{1}\right) \ldots Z_{G_{k}}\left(d x_{k}\right) \tag{21}
\end{equation*}
$$

as $N \rightarrow \infty$. This follows since the integrals of (20) are polynomials in the random variables $Z_{k H_{N}}(B)$ (the B s are the one-dimensional projections of the level sets of the functions h_{k}). Since the joint distributions of the random variables $Z_{k H_{N}}(B)$ tend to the joint distribution of the random variables $Z_{G_{k}}(B)$, it follows that the distribution of (20) tends to that of (21). Given any $\varepsilon>0$ there is an $h_{k} \in H_{G_{k}}^{k}$ such that

$$
\int_{R^{k}}\left|K_{N}\left(x_{1}, \ldots, x_{k}\right)-h_{k}\left(x_{1}, \ldots, x_{k}\right)\right|^{2} \quad{ }_{k} H_{N}\left(d x_{1}\right) \ldots_{k} H_{N}\left(d x_{k}\right)<\varepsilon,
$$

$k_{0}<k \leqq m$, and

$$
\int_{R^{k}}\left|K\left(\sum_{j=1}^{k} x_{j}\right)-h_{k}\left(x_{1}, \ldots, x_{k}\right)\right|^{2} G_{k}\left(d x_{1}\right) \ldots G_{k}\left(d x_{k}\right)<\varepsilon .
$$

The sets of inequalities follow from the convergence of the measures (16) to (17) and the convergence of $K_{N}\left(x_{1}, \ldots, x_{k}\right)$ to $K\left(\sum_{j=1}^{k} x_{j}\right)$ on every finite interval. The last comments imply that the distribution of (18) tends to the distribution of (19) as $N \rightarrow \infty$ for each positive m.

The proof of the theorem will be complete if we can show that the variance of the remainder

$$
\begin{gather*}
\sum_{k=m}^{\infty} \frac{c_{k}}{k!} \int e^{\operatorname{in}\left(\mu_{1}+\ldots+\mu_{k}\right)} K_{N}\left(\mu_{1}, \ldots, \mu_{k}\right) \\
Z_{k H_{N}}\left(d \mu_{1}\right) \ldots Z_{k k H_{N}}\left(d \mu_{k}\right) \tag{22}
\end{gather*}
$$

can be made uniformly small as $N \rightarrow \infty$ if m is fixed but sufficiently large. The variance of

$$
\int e^{\operatorname{in}\left(\mu_{1}+\ldots+\mu_{k}\right)} K_{N}\left(\mu_{1}, \ldots, \mu_{k}\right) Z_{k H_{N}}\left(d \mu_{1}\right) \ldots Z_{k H_{N}}\left(d \mu_{k}\right)
$$

is

$$
\begin{equation*}
\int\left|K_{N}\left(\mu_{1}, \ldots, \mu_{k}\right)\right|^{2}{ }_{k} H_{N}\left(d \mu_{1}\right) \ldots_{k} H_{N}\left(d \mu_{k}\right) . \tag{23}
\end{equation*}
$$

If

$$
\rho(j)=\int e^{i j x}|x|^{2 \gamma_{k}} H(d x)
$$

then (23) by the argument on p. 34 of [2] can be rewritten

$$
\frac{1}{N^{2-k \widetilde{\alpha}}} \sum_{|j|<N}(N-|j|) \rho(j)^{k} .
$$

Using the lemma, one can see that this is bounded in absolute value by

$$
\begin{equation*}
A^{k} \Gamma\left(\frac{2}{k}(1-\beta)\right)^{k} \sum_{|j|<N}\left(1-\frac{|j|}{N}\right)\left|\frac{j}{N}\right|^{-2(1-\beta)} N^{-1} . \tag{24}
\end{equation*}
$$

The assumption (7) together with the estimate (24) implies that the variance of (22) is uniformly small as $N \rightarrow \infty$ if m is sufficiently large.

References

1. Dobrushin, R.L.: Gaussian and their subordinated generalized fields. Ann. Probab. 7, 1-28 (1979)
2. Dobrushin, R.L., Major, P.: Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27-52 (1979)
3. Major, P.: Multiple Wiener-Ito integrals. Lect. Notes Math. 849. Berlin, Heidelberg, New York: Springer 1981
4. Major, P.: Limit theorems for nonlinear functions of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 129-158 (1981)
5. Giraitis, L., Surgailis, D.: CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70, 191-212 (1985)
6. Rosenblatt, M.: Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 125-132 (1979)
7. Rosenblatt, M.: Limit theorems for Fourier transforms of functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 55, 123-132 (1981)
8. Taqqu, M.S.: Convergence of iterated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27-52 (1979)
9. Taqqu, M.S.: Self-similar processes and related ultraviolet and infrared catastrophes. In: Fritz, J., Lebowitz, J., Szasz, D. (eds.) Random fields, vol. II, pp. 1057-1096. Amsterdam, New York: North-Holland 1981

[^0]: * This research is supported in part by Office of Naval Research contract N00014-81-K-003 and National Science Foundation Grant No. DMS 83-12106

